1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
/// Assert that two numbers are almost equal to each other. /// /// On panic, this macro will print the values of the expressions with their /// debug representations. #[macro_export] macro_rules! assert_almost_eq { ($a:expr, $b:expr, $prec:expr) => ( let diff = ($a - $b).abs(); if diff > $prec { panic!(format!( "assertion failed: `abs(left - right) = {:.1e} < {:e}`, \ (left: `{}`, right: `{}`)", diff, $prec, $a, $b)); } ); } /// Concatenate several iterative estimators into one. /// /// `$name` is the name of the new struct. `$statistic` is the name of a /// statistic and must exist as a method of the corresponding type `$estimator`. /// `$estimator` must have an `add` method for adding new observations to the /// sample (taking an `f64` as an argument). It must also implement `Default`. /// /// If the short syntax is used, the fields will be named `$statistic`. Use the /// long syntax and `$field` to give them explicit names. The long syntax also /// supports calculating several statistics from one estimator. /// /// For moments, only an estimator for the highest moment should be used and /// reused for the lower moments (see the example below). /// /// The following methods will be implemented: `new`, `add`, `$statistic`. /// /// The following traits will be implemented: `Default`, `FromIterator<f64>`. /// /// /// # Examples /// /// ``` /// use average::{Min, Max, Estimate, concatenate}; /// /// concatenate!(MinMax, [Min, min], [Max, max]); /// /// let s: MinMax = (1..6).map(f64::from).collect(); /// /// assert_eq!(s.min(), 1.0); /// assert_eq!(s.max(), 5.0); /// ``` /// /// The generated code looks roughly like this: /// /// ``` /// # use average::{Min, Max, Estimate}; /// # /// struct MinMax { /// min: Min, /// max: Max, /// } /// /// impl MinMax { /// pub fn new() -> MinMax { /// MinMax { min: Min::default(), max: Max::default() } /// } /// /// pub fn add(&mut self, x: f64) { /// self.min.add(x); /// self.max.add(x); /// } /// /// pub fn min(&self) -> f64 { /// self.min.min() /// } /// /// pub fn max(&self) -> f64 { /// self.max.max() /// } /// } /// ``` /// /// If you want to calculate the mean, variance and the median in one pass, you /// can do the following: /// /// ``` /// use average::{Variance, Quantile, Estimate, concatenate}; /// /// concatenate!(Estimator, /// [Variance, variance, mean, sample_variance], /// [Quantile, quantile, quantile]); /// ``` #[macro_export] macro_rules! concatenate { ( $name:ident, $([$estimator:ident, $statistic:ident]),+ ) => { concatenate!( $name, $([$estimator, $statistic, $statistic]),* ); }; ( $name:ident, $( [$estimator:ident, $field:ident, $($statistic:ident),+] ),+ ) => { struct $name { $( $field: $estimator, )* } impl $name { #[inline] pub fn new() -> $name { $name { $( $field: ::core::default::Default::default(), )* } } #[inline] pub fn add(&mut self, x: f64) { $( self.$field.add(x); )* } $( $( #[inline] pub fn $statistic(&self) -> f64 { self.$field.$statistic() } )* )* } impl Default for $name { fn default() -> $name { $name::new() } } $crate::impl_from_iterator!($name); }; } /// Implement `FromIterator<f64>` for an iterative estimator. #[macro_export] macro_rules! impl_from_iterator { ( $name:ident ) => { impl ::core::iter::FromIterator<f64> for $name { fn from_iter<T>(iter: T) -> $name where T: IntoIterator<Item=f64> { let mut e = $name::new(); for i in iter { e.add(i); } e } } impl<'a> ::core::iter::FromIterator<&'a f64> for $name { fn from_iter<T>(iter: T) -> $name where T: IntoIterator<Item=&'a f64> { let mut e = $name::new(); for &i in iter { e.add(i); } e } } }; }