1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
/// Invalid ranges were specified for constructing the histogram.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum InvalidRangeError {
/// The number of ranges is less than the number of bins + 1.
NotEnoughRanges,
/// The ranges are not sorted or `(low, high)` where `low` > `high` is
/// encountered.
NotSorted,
/// A range contains `nan`.
NaN,
}
/// A sample is out of range of the histogram.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct SampleOutOfRangeError;
#[doc(hidden)]
#[macro_export]
macro_rules! define_histogram_common {
($LEN:expr) => {
use $crate::Histogram as Trait;
/// The number of bins of the histogram.
const LEN: usize = $LEN;
impl ::core::fmt::Debug for Histogram {
fn fmt(&self, formatter: &mut ::core::fmt::Formatter<'_>) -> ::core::fmt::Result {
formatter.write_str("Histogram {{ range: ")?;
self.range[..].fmt(formatter)?;
formatter.write_str(", bins: ")?;
self.bin[..].fmt(formatter)?;
formatter.write_str(" }}")
}
}
impl Histogram {
/// Construct a histogram with constant bin width.
#[inline]
pub fn with_const_width(start: f64, end: f64) -> Self {
let step = (end - start) / (LEN as f64);
let mut range = [0.; LEN + 1];
for (i, r) in range.iter_mut().enumerate() {
*r = start + step * (i as f64);
}
Self {
range,
bin: [0; LEN],
}
}
/// Construct a histogram from given ranges.
///
/// The ranges are given by an iterator of floats where neighboring
/// pairs `(a, b)` define a bin for all `x` where `a <= x < b`.
///
/// Fails if the iterator is too short (less than `n + 1` where `n`
/// is the number of bins), is not sorted or contains `nan`. `inf`
/// and empty ranges are allowed.
#[inline]
pub fn from_ranges<T>(ranges: T) -> Result<Self, $crate::InvalidRangeError>
where
T: IntoIterator<Item = f64>,
{
let mut range = [0.; LEN + 1];
let mut last_i = 0;
for (i, r) in ranges.into_iter().enumerate() {
if i > LEN {
break;
}
if r.is_nan() {
return Err($crate::InvalidRangeError::NaN);
}
if i > 0 && range[i - 1] > r {
return Err($crate::InvalidRangeError::NotSorted);
}
range[i] = r;
last_i = i;
}
if last_i != LEN {
return Err($crate::InvalidRangeError::NotEnoughRanges);
}
Ok(Self {
range,
bin: [0; LEN],
})
}
/// Find the index of the bin corresponding to the given sample.
///
/// Fails if the sample is out of range of the histogram.
#[inline]
pub fn find(&self, x: f64) -> Result<usize, $crate::SampleOutOfRangeError> {
// We made sure our ranges are valid at construction, so we can
// safely unwrap.
match self.range.binary_search_by(|p| p.partial_cmp(&x).unwrap()) {
Ok(i) if i < LEN => Ok(i),
Err(i) if i > 0 && i < LEN + 1 => Ok(i - 1),
_ => Err($crate::SampleOutOfRangeError),
}
}
/// Add a sample to the histogram.
///
/// Fails if the sample is out of range of the histogram.
#[inline]
pub fn add(&mut self, x: f64) -> Result<(), $crate::SampleOutOfRangeError> {
if let Ok(i) = self.find(x) {
self.bin[i] += 1;
Ok(())
} else {
Err($crate::SampleOutOfRangeError)
}
}
/// Return the ranges of the histogram.
#[inline]
pub fn ranges(&self) -> &[f64] {
&self.range[..]
}
/// Return an iterator over the bins and corresponding ranges:
/// `((lower, upper), count)`
#[inline]
pub fn iter(&self) -> IterHistogram<'_> {
self.into_iter()
}
/// Reset all bins to zero.
#[inline]
pub fn reset(&mut self) {
self.bin = [0; LEN];
}
/// Return the lower range limit.
///
/// (The corresponding bin might be empty.)
#[inline]
pub fn range_min(&self) -> f64 {
self.range[0]
}
/// Return the upper range limit.
///
/// (The corresponding bin might be empty.)
#[inline]
pub fn range_max(&self) -> f64 {
self.range[LEN]
}
}
/// Iterate over all `(range, count)` pairs in the histogram.
#[derive(Debug, Clone)]
pub struct IterHistogram<'a> {
remaining_bin: &'a [u64],
remaining_range: &'a [f64],
}
impl<'a> ::core::iter::Iterator for IterHistogram<'a> {
type Item = ((f64, f64), u64);
fn next(&mut self) -> Option<((f64, f64), u64)> {
if let Some((&bin, rest)) = self.remaining_bin.split_first() {
let left = self.remaining_range[0];
let right = self.remaining_range[1];
self.remaining_bin = rest;
self.remaining_range = &self.remaining_range[1..];
return Some(((left, right), bin));
}
None
}
}
impl<'a> ::core::iter::IntoIterator for &'a Histogram {
type Item = ((f64, f64), u64);
type IntoIter = IterHistogram<'a>;
fn into_iter(self) -> IterHistogram<'a> {
IterHistogram {
remaining_bin: self.bins(),
remaining_range: self.ranges(),
}
}
}
impl $crate::Histogram for Histogram {
#[inline]
fn bins(&self) -> &[u64] {
&self.bin[..]
}
}
impl<'a> ::core::ops::AddAssign<&'a Self> for Histogram {
#[inline]
fn add_assign(&mut self, other: &Self) {
for (a, b) in self.range.iter().zip(other.range.iter()) {
assert_eq!(a, b, "Both histograms must have the same ranges");
}
for (x, y) in self.bin.iter_mut().zip(other.bin.iter()) {
*x += y;
}
}
}
impl ::core::ops::MulAssign<u64> for Histogram {
#[inline]
fn mul_assign(&mut self, other: u64) {
for x in &mut self.bin[..] {
*x *= other;
}
}
}
impl $crate::Merge for Histogram {
fn merge(&mut self, other: &Self) {
assert_eq!(self.bin.len(), other.bin.len());
for (a, b) in self.range.iter().zip(other.range.iter()) {
assert_eq!(a, b, "Both histograms must have the same ranges");
}
for (a, b) in self.bin.iter_mut().zip(other.bin.iter()) {
*a += *b;
}
}
}
};
}
#[cfg(feature = "serde1")]
#[doc(hidden)]
#[macro_export]
macro_rules! define_histogram_inner {
($name:ident, $LEN:expr) => {
mod $name {
$crate::define_histogram_common!($LEN);
use ::serde::{Deserialize, Serialize};
use serde_big_array::BigArray;
/// A histogram with a number of bins known at compile time.
#[derive(Clone, Serialize, Deserialize)]
pub struct Histogram {
/// The ranges defining the bins of the histogram.
#[serde(with = "BigArray")]
range: [f64; LEN + 1],
/// The bins of the histogram.
#[serde(with = "BigArray")]
bin: [u64; LEN],
}
}
};
}
#[cfg(not(feature = "serde1"))]
#[doc(hidden)]
#[macro_export]
macro_rules! define_histogram_inner {
($name:ident, $LEN:expr) => {
mod $name {
$crate::define_histogram_common!($LEN);
/// A histogram with a number of bins known at compile time.
#[derive(Clone)]
pub struct Histogram {
/// The ranges defining the bins of the histogram.
range: [f64; LEN + 1],
/// The bins of the histogram.
bin: [u64; LEN],
}
}
};
}
/// Define a histogram with a number of bins known at compile time.
///
/// Because macros are not hygienic for items, everything is defined in a private
/// module with the given name. This includes the `Histogram` struct, the number
/// of bins `LEN` and the histogram iterator `HistogramIter`.
///
/// Note that you need to make sure that `core` is accessible to the macro.
///
///
/// # Example
///
/// ```
/// use average::{Histogram, define_histogram};
///
/// define_histogram!(hist, 10);
/// let mut h = hist::Histogram::with_const_width(0., 100.);
/// for i in 0..100 {
/// h.add(i as f64).unwrap();
/// }
/// assert_eq!(h.bins(), &[10, 10, 10, 10, 10, 10, 10, 10, 10, 10]);
/// ```
#[macro_export]
macro_rules! define_histogram {
($name:ident, $LEN:expr) => {
$crate::define_histogram_inner!($name, $LEN);
};
}