1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
/// Estimate the arithmetic mean, the variance, the skewness and the kurtosis of
/// a sequence of numbers ("population").
///
/// This can be used to estimate the standard error of the mean.
#[derive(Debug, Clone)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct Kurtosis {
    /// Estimator of mean, variance and skewness.
    avg: Skewness,
    /// Intermediate sum of terms to the fourth for calculating the skewness.
    sum_4: f64,
}

impl Kurtosis {
    /// Create a new kurtosis estimator.
    #[inline]
    pub fn new() -> Kurtosis {
        Kurtosis {
            avg: Skewness::new(),
            sum_4: 0.,
        }
    }

    /// Increment the sample size.
    ///
    /// This does not update anything else.
    #[inline]
    fn increment(&mut self) {
        self.avg.increment();
    }

    /// Add an observation given an already calculated difference from the mean
    /// divided by the number of samples, assuming the inner count of the sample
    /// size was already updated.
    ///
    /// This is useful for avoiding unnecessary divisions in the inner loop.
    #[inline]
    fn add_inner(&mut self, delta: f64, delta_n: f64) {
        // This algorithm was suggested by Terriberry.
        //
        // See https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance.
        let n = self.len().to_f64().unwrap();
        let term = delta * delta_n * (n - 1.);
        let delta_n_sq = delta_n*delta_n;
        self.sum_4 += term * delta_n_sq * (n*n - 3.*n + 3.)
            + 6. * delta_n_sq * self.avg.avg.sum_2
            - 4. * delta_n * self.avg.sum_3;
        self.avg.add_inner(delta, delta_n);
    }

    /// Determine whether the sample is empty.
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.avg.is_empty()
    }

    /// Estimate the mean of the population.
    ///
    /// Returns NaN for an empty sample.
    #[inline]
    pub fn mean(&self) -> f64 {
        self.avg.mean()
    }

    /// Return the sample size.
    #[inline]
    pub fn len(&self) -> u64 {
        self.avg.len()
    }

    /// Calculate the sample variance.
    ///
    /// This is an unbiased estimator of the variance of the population.
    /// 
    /// Returns NaN for samples of size 1 or less.
    #[inline]
    pub fn sample_variance(&self) -> f64 {
        self.avg.sample_variance()
    }

    /// Calculate the population variance of the sample.
    ///
    /// This is a biased estimator of the variance of the population.
    /// 
    /// Returns NaN for an empty sample.
    #[inline]
    pub fn population_variance(&self) -> f64 {
        self.avg.population_variance()
    }

    /// Estimate the standard error of the mean of the population.
    #[inline]
    pub fn error_mean(&self) -> f64 {
        self.avg.error_mean()
    }

    /// Estimate the skewness of the population.
    /// 
    /// Returns NaN for an empty sample.
    #[inline]
    pub fn skewness(&self) -> f64 {
        self.avg.skewness()
    }

    /// Estimate the excess kurtosis of the population.
    /// 
    /// Returns NaN for an empty sample.
    #[inline]
    pub fn kurtosis(&self) -> f64 {
        if self.is_empty() {
            return f64::NAN;
        }
        if self.sum_4 == 0. {
            return 0.;
        }
        let n = self.len().to_f64().unwrap();
        debug_assert_ne!(self.avg.avg.sum_2, 0.);
        n * self.sum_4 / (self.avg.avg.sum_2 * self.avg.avg.sum_2) - 3.
    }

}

impl core::default::Default for Kurtosis {
    fn default() -> Kurtosis {
        Kurtosis::new()
    }
}

impl Estimate for Kurtosis {
    #[inline]
    fn add(&mut self, x: f64) {
        let delta = x - self.avg.avg.avg.avg;
        self.increment();
        let n = self.len().to_f64().unwrap();
        self.add_inner(delta, delta/n);
    }

    #[inline]
    fn estimate(&self) -> f64 {
        self.kurtosis()
    }
}

impl Merge for Kurtosis {
    #[inline]
    fn merge(&mut self, other: &Kurtosis) {
        if other.is_empty() {
            return;
        }
        if self.is_empty() {
            *self = other.clone();
            return;
        }
        let len_self = self.len().to_f64().unwrap();
        let len_other = other.len().to_f64().unwrap();
        let len_total = len_self + len_other;
        let delta = other.mean() - self.mean();
        let delta_n = delta / len_total;
        let delta_n_sq = delta_n * delta_n;
        self.sum_4 += other.sum_4
            + delta * delta_n*delta_n_sq * len_self*len_other
              * (len_self*len_self - len_self*len_other + len_other*len_other)
            + 6.*delta_n_sq * (len_self*len_self * other.avg.avg.sum_2 + len_other*len_other * self.avg.avg.sum_2)
            + 4.*delta_n * (len_self * other.avg.sum_3 - len_other * self.avg.sum_3);
        self.avg.merge(&other.avg);
    }
}

impl_from_iterator!(Kurtosis);
impl_from_par_iterator!(Kurtosis);
impl_extend!(Kurtosis);