1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
/// Estimate the arithmetic mean, the variance, the skewness and the kurtosis of
/// a sequence of numbers ("population").
///
/// This can be used to estimate the standard error of the mean.
#[derive(Debug, Clone)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct Kurtosis {
/// Estimator of mean, variance and skewness.
avg: Skewness,
/// Intermediate sum of terms to the fourth for calculating the skewness.
sum_4: f64,
}
impl Kurtosis {
/// Create a new kurtosis estimator.
#[inline]
pub fn new() -> Kurtosis {
Kurtosis {
avg: Skewness::new(),
sum_4: 0.,
}
}
/// Increment the sample size.
///
/// This does not update anything else.
#[inline]
fn increment(&mut self) {
self.avg.increment();
}
/// Add an observation given an already calculated difference from the mean
/// divided by the number of samples, assuming the inner count of the sample
/// size was already updated.
///
/// This is useful for avoiding unnecessary divisions in the inner loop.
#[inline]
fn add_inner(&mut self, delta: f64, delta_n: f64) {
// This algorithm was suggested by Terriberry.
//
// See https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance.
let n = self.len().to_f64().unwrap();
let term = delta * delta_n * (n - 1.);
let delta_n_sq = delta_n*delta_n;
self.sum_4 += term * delta_n_sq * (n*n - 3.*n + 3.)
+ 6. * delta_n_sq * self.avg.avg.sum_2
- 4. * delta_n * self.avg.sum_3;
self.avg.add_inner(delta, delta_n);
}
/// Determine whether the sample is empty.
#[inline]
pub fn is_empty(&self) -> bool {
self.avg.is_empty()
}
/// Estimate the mean of the population.
///
/// Returns NaN for an empty sample.
#[inline]
pub fn mean(&self) -> f64 {
self.avg.mean()
}
/// Return the sample size.
#[inline]
pub fn len(&self) -> u64 {
self.avg.len()
}
/// Calculate the sample variance.
///
/// This is an unbiased estimator of the variance of the population.
///
/// Returns NaN for samples of size 1 or less.
#[inline]
pub fn sample_variance(&self) -> f64 {
self.avg.sample_variance()
}
/// Calculate the population variance of the sample.
///
/// This is a biased estimator of the variance of the population.
///
/// Returns NaN for an empty sample.
#[inline]
pub fn population_variance(&self) -> f64 {
self.avg.population_variance()
}
/// Estimate the standard error of the mean of the population.
#[inline]
pub fn error_mean(&self) -> f64 {
self.avg.error_mean()
}
/// Estimate the skewness of the population.
///
/// Returns NaN for an empty sample.
#[inline]
pub fn skewness(&self) -> f64 {
self.avg.skewness()
}
/// Estimate the excess kurtosis of the population.
///
/// Returns NaN for an empty sample.
#[inline]
pub fn kurtosis(&self) -> f64 {
if self.is_empty() {
return f64::NAN;
}
if self.sum_4 == 0. {
return 0.;
}
let n = self.len().to_f64().unwrap();
debug_assert_ne!(self.avg.avg.sum_2, 0.);
n * self.sum_4 / (self.avg.avg.sum_2 * self.avg.avg.sum_2) - 3.
}
}
impl core::default::Default for Kurtosis {
fn default() -> Kurtosis {
Kurtosis::new()
}
}
impl Estimate for Kurtosis {
#[inline]
fn add(&mut self, x: f64) {
let delta = x - self.avg.avg.avg.avg;
self.increment();
let n = self.len().to_f64().unwrap();
self.add_inner(delta, delta/n);
}
#[inline]
fn estimate(&self) -> f64 {
self.kurtosis()
}
}
impl Merge for Kurtosis {
#[inline]
fn merge(&mut self, other: &Kurtosis) {
if other.is_empty() {
return;
}
if self.is_empty() {
*self = other.clone();
return;
}
let len_self = self.len().to_f64().unwrap();
let len_other = other.len().to_f64().unwrap();
let len_total = len_self + len_other;
let delta = other.mean() - self.mean();
let delta_n = delta / len_total;
let delta_n_sq = delta_n * delta_n;
self.sum_4 += other.sum_4
+ delta * delta_n*delta_n_sq * len_self*len_other
* (len_self*len_self - len_self*len_other + len_other*len_other)
+ 6.*delta_n_sq * (len_self*len_self * other.avg.avg.sum_2 + len_other*len_other * self.avg.avg.sum_2)
+ 4.*delta_n * (len_self * other.avg.sum_3 - len_other * self.avg.sum_3);
self.avg.merge(&other.avg);
}
}
impl_from_iterator!(Kurtosis);
impl_from_par_iterator!(Kurtosis);
impl_extend!(Kurtosis);