1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
use num_traits::ToPrimitive;
#[cfg(feature = "serde1")]
use serde::{Deserialize, Serialize};

use super::{Estimate, Merge};

include!("mean.rs");
include!("variance.rs");
#[cfg(any(feature = "std", feature = "libm"))]
include!("skewness.rs");
#[cfg(any(feature = "std", feature = "libm"))]
include!("kurtosis.rs");

/// Alias for `Variance`.
pub type MeanWithError = Variance;

#[doc(hidden)]
#[macro_export]
macro_rules! define_moments_common {
    ($name:ident, $MAX_MOMENT:expr) => {
        use num_traits::{pow, ToPrimitive};

        /// An iterator over binomial coefficients.
        struct IterBinomial {
            a: u64,
            n: u64,
            k: u64,
        }

        impl IterBinomial {
            /// For a given n, iterate over all binomial coefficients binomial(n, k), for k=0...n.
            #[inline]
            pub fn new(n: u64) -> IterBinomial {
                IterBinomial { k: 0, a: 1, n }
            }
        }

        impl Iterator for IterBinomial {
            type Item = u64;

            #[inline]
            fn next(&mut self) -> Option<u64> {
                if self.k > self.n {
                    return None;
                }
                self.a = if !(self.k == 0) {
                    self.a * (self.n - self.k + 1) / self.k
                } else {
                    1
                };
                self.k += 1;
                Some(self.a)
            }
        }

        /// The maximal order of the moment to be calculated.
        const MAX_MOMENT: usize = $MAX_MOMENT;

        impl $name {
            /// Create a new moments estimator.
            #[inline]
            pub fn new() -> $name {
                $name {
                    n: 0,
                    avg: 0.,
                    m: [0.; MAX_MOMENT - 1],
                }
            }

            /// Determine whether the sample is empty.
            #[inline]
            pub fn is_empty(&self) -> bool {
                self.n == 0
            }

            /// Return the sample size.
            #[inline]
            pub fn len(&self) -> u64 {
                self.n
            }

            /// Estimate the mean of the population.
            ///
            /// Returns NaN for an empty sample.
            #[inline]
            pub fn mean(&self) -> f64 {
                if self.n > 0 { self.avg } else { f64::NAN }
            }

            /// Estimate the `p`th central moment of the population.
            /// 
            /// If `p` > 1, returns NaN for an empty sample.
            #[inline]
            pub fn central_moment(&self, p: usize) -> f64 {
                let n = self.n.to_f64().unwrap();
                match p {
                    0 => 1.,
                    1 => 0.,
                    _ => if self.n > 0 { self.m[p - 2] / n } else { f64::NAN },
                }
            }

            /// Estimate the `p`th standardized moment of the population.
            #[cfg(any(feature = "std", feature = "libm"))]
            #[cfg_attr(doc_cfg, doc(cfg(any(feature = "std", feature = "libm"))))]
            #[inline]
            pub fn standardized_moment(&self, p: usize) -> f64 {
                match p {
                    0 => self.n.to_f64().unwrap(),
                    1 => 0.,
                    2 => 1.,
                    _ => {
                        let variance = self.central_moment(2);
                        assert_ne!(variance, 0.);
                        self.central_moment(p) / pow(num_traits::Float::sqrt(variance), p)
                    }
                }
            }

            /// Calculate the sample variance.
            ///
            /// This is an unbiased estimator of the variance of the population.
            /// 
            /// Returns NaN for samples of size 1 or less.
            #[inline]
            pub fn sample_variance(&self) -> f64 {
                if self.n < 2 {
                    return f64::NAN;
                }
                self.m[0] / (self.n - 1).to_f64().unwrap()
            }

            /// Calculate the sample skewness.
            /// 
            /// Returns NaN for an empty sample.
            #[cfg(any(feature = "std", feature = "libm"))]
            #[cfg_attr(doc_cfg, doc(cfg(any(feature = "std", feature = "libm"))))]
            #[inline]
            pub fn sample_skewness(&self) -> f64 {
                use num_traits::Float;

                if self.n == 0 {
                    return f64::NAN;
                }
                if self.n == 1 {
                    return 0.;
                }
                let n = self.n.to_f64().unwrap();
                if self.n < 3 {
                    // Method of moments
                    return self.central_moment(3)
                        / Float::powf(n * (self.central_moment(2) / (n - 1.)), 1.5);
                }
                // Adjusted Fisher-Pearson standardized moment coefficient
                Float::sqrt(n * (n - 1.)) / (n * (n - 2.))
                    * Float::powf(self.central_moment(3) / (self.central_moment(2) / n), 1.5)
            }

            /// Calculate the sample excess kurtosis.
            /// 
            /// Returns NaN for samples of size 3 or less.
            #[inline]
            pub fn sample_excess_kurtosis(&self) -> f64 {
                if self.n < 4 {
                    return f64::NAN;
                }
                let n = self.n.to_f64().unwrap();
                (n + 1.) * n * self.central_moment(4)
                    / ((n - 1.) * (n - 2.) * (n - 3.) * pow(self.central_moment(2), 2))
                    - 3. * pow(n - 1., 2) / ((n - 2.) * (n - 3.))
            }

            /// Add an observation sampled from the population.
            #[inline]
            pub fn add(&mut self, x: f64) {
                self.n += 1;
                let delta = x - self.avg;
                let n = self.n.to_f64().unwrap();
                self.avg += delta / n;

                let mut coeff_delta = delta;
                let over_n = 1. / n;
                let mut term1 = (n - 1.) * (-over_n);
                let factor1 = -over_n;
                let mut term2 = (n - 1.) * over_n;
                let factor2 = (n - 1.) * over_n;

                let factor_coeff = -delta * over_n;

                let prev_m = self.m;
                for p in 2..=MAX_MOMENT {
                    term1 *= factor1;
                    term2 *= factor2;
                    coeff_delta *= delta;
                    self.m[p - 2] += (term1 + term2) * coeff_delta;

                    let mut coeff = 1.;
                    let mut binom = IterBinomial::new(p as u64);
                    binom.next().unwrap(); // Skip k = 0.
                    for k in 1..(p - 1) {
                        coeff *= factor_coeff;
                        self.m[p - 2] +=
                            binom.next().unwrap().to_f64().unwrap() * prev_m[p - 2 - k] * coeff;
                    }
                }
            }
        }

        impl $crate::Merge for $name {
            #[inline]
            fn merge(&mut self, other: &$name) {
                if other.is_empty() {
                    return;
                }
                if self.is_empty() {
                    *self = other.clone();
                    return;
                }

                let n_a = self.n.to_f64().unwrap();
                let n_b = other.n.to_f64().unwrap();
                let delta = other.avg - self.avg;

                self.n += other.n;
                let n = self.n.to_f64().unwrap();
                let n_a_over_n = n_a / n;
                let n_b_over_n = n_b / n;
                self.avg += n_b_over_n * delta;

                let factor_a = -n_b_over_n * delta;
                let factor_b = n_a_over_n * delta;
                let mut term_a = n_a * factor_a;
                let mut term_b = n_b * factor_b;
                let prev_m = self.m;
                for p in 2..=MAX_MOMENT {
                    term_a *= factor_a;
                    term_b *= factor_b;
                    self.m[p - 2] += other.m[p - 2] + term_a + term_b;

                    let mut coeff_a = 1.;
                    let mut coeff_b = 1.;
                    let mut coeff_delta = 1.;
                    let mut binom = IterBinomial::new(p as u64);
                    binom.next().unwrap();
                    for k in 1..(p - 1) {
                        coeff_a *= -n_b_over_n;
                        coeff_b *= n_a_over_n;
                        coeff_delta *= delta;
                        self.m[p - 2] += binom.next().unwrap().to_f64().unwrap()
                            * coeff_delta
                            * (prev_m[p - 2 - k] * coeff_a + other.m[p - 2 - k] * coeff_b);
                    }
                }
            }
        }

        impl core::default::Default for $name {
            fn default() -> $name {
                $name::new()
            }
        }

        $crate::impl_from_iterator!($name);
        $crate::impl_from_par_iterator!($name);
        $crate::impl_extend!($name);
    };
}

#[cfg(feature = "serde1")]
#[doc(hidden)]
#[macro_export]
macro_rules! define_moments_inner {
    ($name:ident, $MAX_MOMENT:expr) => {
        $crate::define_moments_common!($name, $MAX_MOMENT);

        use serde::{Deserialize, Serialize};

        /// Estimate the first N moments of a sequence of numbers ("population").
        #[derive(Debug, Clone, Serialize, Deserialize)]
        pub struct $name {
            /// Number of samples.
            ///
            /// Technically, this is the same as m_0, but we want this to be an integer
            /// to avoid numerical issues, so we store it separately.
            n: u64,
            /// Average.
            avg: f64,
            /// Moments times `n`.
            ///
            /// Starts with m_2. m_0 is the same as `n` and m_1 is 0 by definition.
            m: [f64; MAX_MOMENT - 1],
        }
    };
}

#[cfg(not(feature = "serde1"))]
#[doc(hidden)]
#[macro_export]
macro_rules! define_moments_inner {
    ($name:ident, $MAX_MOMENT:expr) => {
        $crate::define_moments_common!($name, $MAX_MOMENT);

        /// Estimate the first N moments of a sequence of numbers ("population").
        #[derive(Debug, Clone)]
        pub struct $name {
            /// Number of samples.
            ///
            /// Technically, this is the same as m_0, but we want this to be an integer
            /// to avoid numerical issues, so we store it separately.
            n: u64,
            /// Average.
            avg: f64,
            /// Moments times `n`.
            ///
            /// Starts with m_2. m_0 is the same as `n` and m_1 is 0 by definition.
            m: [f64; MAX_MOMENT - 1],
        }
    };
}

/// Define an estimator of all moments up to a number given at compile time.
///
/// This uses a [general algorithm][paper] and is slightly less efficient than
/// the specialized implementations (such as [`Mean`], [`Variance`],
/// [`Skewness`] and [`Kurtosis`]), but it works for any number of moments >= 4.
///
/// (In practise, there is an upper limit due to integer overflow and possibly
/// numerical issues.)
///
/// [paper]: https://doi.org/10.1007/s00180-015-0637-z.
/// [`Mean`]: ./struct.Mean.html
/// [`Variance`]: ./struct.Variance.html
/// [`Skewness`]: ./struct.Skewness.html
/// [`Kurtosis`]: ./struct.Kurtosis.html
///
///
/// # Example
///
/// ```
/// use average::{define_moments, assert_almost_eq};
///
/// define_moments!(Moments4, 4);
///
/// let mut a: Moments4 = (1..6).map(f64::from).collect();
/// assert_eq!(a.len(), 5);
/// assert_eq!(a.mean(), 3.0);
/// assert_eq!(a.central_moment(0), 1.0);
/// assert_eq!(a.central_moment(1), 0.0);
/// assert_eq!(a.central_moment(2), 2.0);
/// assert_eq!(a.standardized_moment(0), 5.0);
/// assert_eq!(a.standardized_moment(1), 0.0);
/// assert_eq!(a.standardized_moment(2), 1.0);
/// a.add(1.0);
/// // skewness
/// assert_almost_eq!(a.standardized_moment(3), 0.2795084971874741, 1e-15);
/// // kurtosis
/// assert_almost_eq!(a.standardized_moment(4), -1.365 + 3.0, 1e-14);
/// ```
#[macro_export]
macro_rules! define_moments {
    ($name:ident, $MAX_MOMENT:expr) => {
        $crate::define_moments_inner!($name, $MAX_MOMENT);
    };
}