avro_rs/
util.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
use crate::{AvroResult, Error};
use serde_json::{Map, Value};
use std::{convert::TryFrom, i64, io::Read, sync::Once};

/// Maximum number of bytes that can be allocated when decoding
/// Avro-encoded values. This is a protection against ill-formed
/// data, whose length field might be interpreted as enourmous.
/// See max_allocation_bytes to change this limit.
pub static mut MAX_ALLOCATION_BYTES: usize = 512 * 1024 * 1024;
static MAX_ALLOCATION_BYTES_ONCE: Once = Once::new();

pub trait MapHelper {
    fn string(&self, key: &str) -> Option<String>;

    fn name(&self) -> Option<String> {
        self.string("name")
    }

    fn doc(&self) -> Option<String> {
        self.string("doc")
    }
}

impl MapHelper for Map<String, Value> {
    fn string(&self, key: &str) -> Option<String> {
        self.get(key)
            .and_then(|v| v.as_str())
            .map(|v| v.to_string())
    }
}

pub fn read_long<R: Read>(reader: &mut R) -> AvroResult<i64> {
    zag_i64(reader)
}

pub fn zig_i32(n: i32, buffer: &mut Vec<u8>) {
    zig_i64(n as i64, buffer)
}

pub fn zig_i64(n: i64, buffer: &mut Vec<u8>) {
    encode_variable(((n << 1) ^ (n >> 63)) as u64, buffer)
}

pub fn zag_i32<R: Read>(reader: &mut R) -> AvroResult<i32> {
    let i = zag_i64(reader)?;
    i32::try_from(i).map_err(|e| Error::ZagI32(e, i))
}

pub fn zag_i64<R: Read>(reader: &mut R) -> AvroResult<i64> {
    let z = decode_variable(reader)?;
    Ok(if z & 0x1 == 0 {
        (z >> 1) as i64
    } else {
        !(z >> 1) as i64
    })
}

fn encode_variable(mut z: u64, buffer: &mut Vec<u8>) {
    loop {
        if z <= 0x7F {
            buffer.push((z & 0x7F) as u8);
            break;
        } else {
            buffer.push((0x80 | (z & 0x7F)) as u8);
            z >>= 7;
        }
    }
}

fn decode_variable<R: Read>(reader: &mut R) -> AvroResult<u64> {
    let mut i = 0u64;
    let mut buf = [0u8; 1];

    let mut j = 0;
    loop {
        if j > 9 {
            // if j * 7 > 64
            return Err(Error::IntegerOverflow);
        }
        reader
            .read_exact(&mut buf[..])
            .map_err(Error::ReadVariableIntegerBytes)?;
        i |= (u64::from(buf[0] & 0x7F)) << (j * 7);
        if (buf[0] >> 7) == 0 {
            break;
        } else {
            j += 1;
        }
    }

    Ok(i)
}

/// Set a new maximum number of bytes that can be allocated when decoding data.
/// Once called, the limit cannot be changed.
///
/// **NOTE** This function must be called before decoding **any** data. The
/// library leverages [`std::sync::Once`](https://doc.rust-lang.org/std/sync/struct.Once.html)
/// to set the limit either when calling this method, or when decoding for
/// the first time.
pub fn max_allocation_bytes(num_bytes: usize) -> usize {
    unsafe {
        MAX_ALLOCATION_BYTES_ONCE.call_once(|| {
            MAX_ALLOCATION_BYTES = num_bytes;
        });
        MAX_ALLOCATION_BYTES
    }
}

pub fn safe_len(len: usize) -> AvroResult<usize> {
    let max_bytes = max_allocation_bytes(512 * 1024 * 1024);

    if len <= max_bytes {
        Ok(len)
    } else {
        Err(Error::MemoryAllocation {
            desired: len,
            maximum: max_bytes,
        })
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn test_zigzag() {
        let mut a = Vec::new();
        let mut b = Vec::new();
        zig_i32(42i32, &mut a);
        zig_i64(42i64, &mut b);
        assert_eq!(a, b);
    }

    #[test]
    fn test_zig_i64() {
        let mut s = Vec::new();
        zig_i64(std::i32::MAX as i64, &mut s);
        assert_eq!(s, [254, 255, 255, 255, 15]);

        s.clear();
        zig_i64(std::i32::MAX as i64 + 1, &mut s);
        assert_eq!(s, [128, 128, 128, 128, 16]);

        s.clear();
        zig_i64(std::i32::MIN as i64, &mut s);
        assert_eq!(s, [255, 255, 255, 255, 15]);

        s.clear();
        zig_i64(std::i32::MIN as i64 - 1, &mut s);
        assert_eq!(s, [129, 128, 128, 128, 16]);

        s.clear();
        zig_i64(i64::MAX, &mut s);
        assert_eq!(s, [254, 255, 255, 255, 255, 255, 255, 255, 255, 1]);

        s.clear();
        zig_i64(i64::MIN, &mut s);
        assert_eq!(s, [255, 255, 255, 255, 255, 255, 255, 255, 255, 1]);
    }

    #[test]
    fn test_zig_i32() {
        let mut s = Vec::new();
        zig_i32(std::i32::MAX / 2, &mut s);
        assert_eq!(s, [254, 255, 255, 255, 7]);

        s.clear();
        zig_i32(std::i32::MIN / 2, &mut s);
        assert_eq!(s, [255, 255, 255, 255, 7]);

        s.clear();
        zig_i32(-(std::i32::MIN / 2), &mut s);
        assert_eq!(s, [128, 128, 128, 128, 8]);

        s.clear();
        zig_i32(std::i32::MIN / 2 - 1, &mut s);
        assert_eq!(s, [129, 128, 128, 128, 8]);

        s.clear();
        zig_i32(std::i32::MAX, &mut s);
        assert_eq!(s, [254, 255, 255, 255, 15]);

        s.clear();
        zig_i32(std::i32::MIN, &mut s);
        assert_eq!(s, [255, 255, 255, 255, 15]);
    }

    #[test]
    fn test_overflow() {
        let causes_left_shift_overflow: &[u8] = &[0xe1, 0xe1, 0xe1, 0xe1, 0xe1];
        assert!(decode_variable(&mut &causes_left_shift_overflow[..]).is_err());
    }

    #[test]
    fn test_safe_len() {
        assert_eq!(42usize, safe_len(42usize).unwrap());
        assert!(safe_len(1024 * 1024 * 1024).is_err());
    }
}