aws_lc_rs/
aead.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
// Copyright 2015-2016 Brian Smith.
// SPDX-License-Identifier: ISC
// Modifications copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0 OR ISC

//! Authenticated Encryption with Associated Data (AEAD).
//!
//! See [Authenticated encryption: relations among notions and analysis of the
//! generic composition paradigm][AEAD] for an introduction to the concept of
//! AEADs.
//!
//! [AEAD]: https://eprint.iacr.org/2000/025
//! [`crypto.cipher.AEAD`]: https://golang.org/pkg/crypto/cipher/#AEAD
//!
//! # Randomized Nonce API
//!
//! [`RandomizedNonceKey`] provides a simplified API interface that doesn't
//! require the caller to handle construction of a `NonceSequence` or `Nonce` values
//! themselves.
//!
//! ```rust
//! # use std::error::Error;
//! #
//! # fn main() -> Result<(), Box<dyn Error>> {
//! use aws_lc_rs::aead::{Aad, RandomizedNonceKey, AES_128_GCM};
//!
//! let key_bytes = &[
//!     0xa5, 0xf3, 0x8d, 0x0d, 0x2d, 0x7c, 0x48, 0x56, 0xe7, 0xf3, 0xc3, 0x63, 0x0d, 0x40, 0x5b,
//!     0x9e,
//! ];
//!
//! // Create AES-128-GCM key
//! let key = RandomizedNonceKey::new(&AES_128_GCM, key_bytes)?;
//!
//! let message = "test message";
//! let mut in_out = Vec::from(message);
//!
//! // Seal the plaintext message (in_out) and append the tag to the ciphertext.
//! // The randomized nonce used for encryption will be returned.
//! let nonce = key.seal_in_place_append_tag(Aad::empty(), &mut in_out)?;
//!
//! // Open the ciphertext message (in_out), using the provided nonce, and validating the tag.
//! let plaintext = key.open_in_place(nonce, Aad::empty(), &mut in_out)?;
//!
//! assert_eq!(message.as_bytes(), plaintext);
//! #   Ok(())
//! # }
//! ```
//!
//! # TLS AEAD APIs
//!
//! Systems developers creating TLS protocol implementations should use
//! [`TlsRecordSealingKey`] and [`TlsRecordOpeningKey`] respectively for AEAD.
//!
//! # Nonce Sequence APIs
//!
//! The [`UnboundKey`], [`OpeningKey`], [`SealingKey`], and [`LessSafeKey`] types are the
//! AEAD API's provided for compatability with the original *ring* API.
//!
//! Users should prefer [`RandomizedNonceKey`] which provides a simplified experience around
//! Nonce construction.
//!
//! ```
//! use aws_lc_rs::aead::{
//!     nonce_sequence, Aad, BoundKey, OpeningKey, SealingKey, UnboundKey, AES_128_GCM,
//! };
//! use aws_lc_rs::rand;
//! use aws_lc_rs::test::from_hex;
//!
//! let plaintext = "plaintext value";
//!
//! // Generate random bytes for secret key
//! let mut key_bytes = [0u8; 16];
//! rand::fill(&mut key_bytes).expect("Unable to generate key");
//!
//! // Contextual information must match between encryption and decryption
//! let aad_content = "aws-lc-rs documentation";
//! let sequence_id = 0xabcdef01u32.to_be_bytes();
//!
//! // Buffer containing plaintext. This will be modified to contain the ciphertext.
//! let mut in_out_buffer = Vec::from(plaintext);
//!
//! // Construct a SealingKey for encryption
//! let unbound_key = UnboundKey::new(&AES_128_GCM, &key_bytes).unwrap();
//! let nonce_sequence = nonce_sequence::Counter64Builder::new()
//!     .identifier(sequence_id)
//!     .build();
//! let mut sealing_key = SealingKey::new(unbound_key, nonce_sequence);
//!
//! // Encrypt a value using the SealingKey
//! let aad = Aad::from(aad_content);
//! sealing_key
//!     .seal_in_place_append_tag(aad, &mut in_out_buffer)
//!     .expect("Encryption failed");
//!
//! // The buffer now contains the ciphertext followed by a "tag" value.
//! let plaintext_len = in_out_buffer.len() - AES_128_GCM.tag_len();
//!
//! // Construct an OpeningKey for decryption
//! let unbound_key = UnboundKey::new(&AES_128_GCM, &key_bytes).unwrap();
//! let nonce_sequence = nonce_sequence::Counter64Builder::new()
//!     .identifier(sequence_id)
//!     .build();
//! let mut opening_key = OpeningKey::new(unbound_key, nonce_sequence);
//!
//! // Decrypt the value using the OpeningKey
//! let aad = Aad::from(aad_content);
//! opening_key
//!     .open_in_place(aad, &mut in_out_buffer)
//!     .expect("Decryption failed");
//!
//! let decrypted_plaintext = core::str::from_utf8(&in_out_buffer[0..plaintext_len]).unwrap();
//!
//! assert_eq!(plaintext, decrypted_plaintext);
//! ```

use crate::{derive_debug_via_id, error::Unspecified, hkdf};
use aead_ctx::AeadCtx;
use core::{fmt::Debug, ops::RangeFrom};

mod aead_ctx;
mod aes_gcm;
mod chacha;
pub mod chacha20_poly1305_openssh;
mod nonce;
pub mod nonce_sequence;
mod poly1305;
pub mod quic;
mod rand_nonce;
mod tls;
mod unbound_key;

pub use self::{
    aes_gcm::{AES_128_GCM, AES_128_GCM_SIV, AES_256_GCM, AES_256_GCM_SIV},
    chacha::CHACHA20_POLY1305,
    nonce::{Nonce, NONCE_LEN},
    rand_nonce::RandomizedNonceKey,
    tls::{TlsProtocolId, TlsRecordOpeningKey, TlsRecordSealingKey},
    unbound_key::UnboundKey,
};

/// A sequences of unique nonces.
///
/// A given `NonceSequence` must never return the same `Nonce` twice from
/// `advance()`.
///
/// A simple counter is a reasonable (but probably not ideal) `NonceSequence`.
///
/// Intentionally not `Clone` or `Copy` since cloning would allow duplication
/// of the sequence.
pub trait NonceSequence {
    /// Returns the next nonce in the sequence.
    ///
    /// # Errors
    /// `error::Unspecified` if  "too many" nonces have been requested, where how many
    /// is too many is up to the implementation of `NonceSequence`. An
    /// implementation may that enforce a maximum number of records are
    /// sent/received under a key this way. Once `advance()` fails, it must
    /// fail for all subsequent calls.
    fn advance(&mut self) -> Result<Nonce, Unspecified>;
}

/// An AEAD key bound to a nonce sequence.
pub trait BoundKey<N: NonceSequence>: Debug {
    /// Constructs a new key from the given `UnboundKey` and `NonceSequence`.
    fn new(key: UnboundKey, nonce_sequence: N) -> Self;

    /// The key's AEAD algorithm.
    fn algorithm(&self) -> &'static Algorithm;
}

/// An AEAD key for authenticating and decrypting ("opening"), bound to a nonce
/// sequence.
///
/// Intentionally not `Clone` or `Copy` since cloning would allow duplication
/// of the nonce sequence.
///
/// Prefer [`RandomizedNonceKey`] for opening operations.
pub struct OpeningKey<N: NonceSequence> {
    key: UnboundKey,
    nonce_sequence: N,
}

impl<N: NonceSequence> BoundKey<N> for OpeningKey<N> {
    fn new(key: UnboundKey, nonce_sequence: N) -> Self {
        Self {
            key,
            nonce_sequence,
        }
    }

    #[inline]
    fn algorithm(&self) -> &'static Algorithm {
        self.key.algorithm()
    }
}

impl<N: NonceSequence> Debug for OpeningKey<N> {
    fn fmt(&self, f: &mut core::fmt::Formatter) -> Result<(), core::fmt::Error> {
        f.debug_struct("OpeningKey")
            .field("algorithm", &self.algorithm())
            .finish()
    }
}

impl<N: NonceSequence> OpeningKey<N> {
    /// Authenticates and decrypts (“opens”) data in place.
    ///
    /// `aad` is the additional authenticated data (AAD), if any.
    ///
    /// On input, `in_out` must be the ciphertext followed by the tag. When
    /// `open_in_place()` returns `Ok(plaintext)`, the input ciphertext
    /// has been overwritten by the plaintext; `plaintext` will refer to the
    /// plaintext without the tag.
    ///
    /// Prefer [`RandomizedNonceKey::open_in_place`].
    ///
    // # FIPS
    // Use this method with one of the following algorithms:
    // * `AES_128_GCM`
    // * `AES_256_GCM`
    //
    /// # Errors
    /// `error::Unspecified` when ciphertext is invalid. In this case, `in_out` may have been
    /// overwritten in an unspecified way.
    #[inline]
    #[allow(clippy::needless_pass_by_value)]
    pub fn open_in_place<'in_out, A>(
        &mut self,
        aad: Aad<A>,
        in_out: &'in_out mut [u8],
    ) -> Result<&'in_out mut [u8], Unspecified>
    where
        A: AsRef<[u8]>,
    {
        self.key
            .open_within(self.nonce_sequence.advance()?, aad.as_ref(), in_out, 0..)
    }

    /// Authenticates and decrypts (“opens”) data in place, with a shift.
    ///
    /// `aad` is the additional authenticated data (AAD), if any.
    ///
    /// On input, `in_out[ciphertext_and_tag]` must be the ciphertext followed
    /// by the tag. When `open_within()` returns `Ok(plaintext)`, the plaintext
    /// will be at `in_out[0..plaintext.len()]`. In other words, the following
    /// two code fragments are equivalent for valid values of
    /// `ciphertext_and_tag`, except `open_within` will often be more efficient:
    ///
    ///
    /// ```skip
    /// let plaintext = key.open_within(aad, in_out, cipertext_and_tag)?;
    /// ```
    ///
    /// ```skip
    /// let ciphertext_and_tag_len = in_out[ciphertext_and_tag].len();
    /// in_out.copy_within(ciphertext_and_tag, 0);
    /// let plaintext = key.open_in_place(aad, &mut in_out[..ciphertext_and_tag_len])?;
    /// ```
    ///
    /// Similarly, `key.open_within(aad, in_out, 0..)` is equivalent to
    /// `key.open_in_place(aad, in_out)`.
    ///
    ///
    /// The shifting feature is useful in the case where multiple packets are
    /// being reassembled in place. Consider this example where the peer has
    /// sent the message “Split stream reassembled in place” split into
    /// three sealed packets:
    ///
    /// ```ascii-art
    ///                 Packet 1                  Packet 2                 Packet 3
    /// Input:  [Header][Ciphertext][Tag][Header][Ciphertext][Tag][Header][Ciphertext][Tag]
    ///                      |         +--------------+                        |
    ///               +------+   +-----+    +----------------------------------+
    ///               v          v          v
    /// Output: [Plaintext][Plaintext][Plaintext]
    ///        “Split stream reassembled in place”
    /// ```
    ///
    /// This reassembly be accomplished with three calls to `open_within()`.
    ///
    /// Prefer [`RandomizedNonceKey::open_in_place`].
    ///
    // # FIPS
    // Use this method with one of the following algorithms:
    // * `AES_128_GCM`
    // * `AES_256_GCM`
    //
    /// # Errors
    /// `error::Unspecified` when ciphertext is invalid. In this case, `in_out` may have been
    /// overwritten in an unspecified way.
    #[inline]
    #[allow(clippy::needless_pass_by_value)]
    pub fn open_within<'in_out, A>(
        &mut self,
        aad: Aad<A>,
        in_out: &'in_out mut [u8],
        ciphertext_and_tag: RangeFrom<usize>,
    ) -> Result<&'in_out mut [u8], Unspecified>
    where
        A: AsRef<[u8]>,
    {
        self.key.open_within(
            self.nonce_sequence.advance()?,
            aad.as_ref(),
            in_out,
            ciphertext_and_tag,
        )
    }
}

/// An AEAD key for encrypting and signing ("sealing"), bound to a nonce
/// sequence.
///
/// Intentionally not `Clone` or `Copy` since cloning would allow duplication
/// of the nonce sequence.
///
/// Prefer [`RandomizedNonceKey`] for sealing operations.
pub struct SealingKey<N: NonceSequence> {
    key: UnboundKey,
    nonce_sequence: N,
}

impl<N: NonceSequence> BoundKey<N> for SealingKey<N> {
    fn new(key: UnboundKey, nonce_sequence: N) -> Self {
        Self {
            key,
            nonce_sequence,
        }
    }

    #[inline]
    fn algorithm(&self) -> &'static Algorithm {
        self.key.algorithm()
    }
}

impl<N: NonceSequence> Debug for SealingKey<N> {
    fn fmt(&self, f: &mut core::fmt::Formatter) -> Result<(), core::fmt::Error> {
        f.debug_struct("SealingKey")
            .field("algorithm", &self.algorithm())
            .finish()
    }
}

impl<N: NonceSequence> SealingKey<N> {
    /// Deprecated. Renamed to `seal_in_place_append_tag`.
    ///
    /// Prefer [`RandomizedNonceKey::seal_in_place_append_tag`].
    ///
    // # FIPS
    // This method must not be used.
    //
    /// # Errors
    /// See `seal_in_place_append_tag`
    #[deprecated(note = "Renamed to `seal_in_place_append_tag`.")]
    #[inline]
    pub fn seal_in_place<A, InOut>(
        &mut self,
        aad: Aad<A>,
        in_out: &mut InOut,
    ) -> Result<(), Unspecified>
    where
        A: AsRef<[u8]>,
        InOut: AsMut<[u8]> + for<'in_out> Extend<&'in_out u8>,
    {
        self.seal_in_place_append_tag(aad, in_out)
    }

    /// Encrypts and signs (“seals”) data in place, appending the tag to the
    /// resulting ciphertext.
    ///
    /// `key.seal_in_place_append_tag(aad, in_out)` is equivalent to:
    ///
    /// ```skip
    /// key.seal_in_place_separate_tag(aad, in_out.as_mut())
    ///     .map(|tag| in_out.extend(tag.as_ref()))
    /// ```
    ///
    /// Prefer [`RandomizedNonceKey::seal_in_place_append_tag`].
    ///
    // # FIPS
    // This method must not be used.
    //
    /// # Errors
    /// `error::Unspecified` when `nonce_sequence` cannot be advanced.
    #[inline]
    #[allow(clippy::needless_pass_by_value)]
    pub fn seal_in_place_append_tag<A, InOut>(
        &mut self,
        aad: Aad<A>,
        in_out: &mut InOut,
    ) -> Result<(), Unspecified>
    where
        A: AsRef<[u8]>,
        InOut: AsMut<[u8]> + for<'in_out> Extend<&'in_out u8>,
    {
        self.key
            .seal_in_place_append_tag(Some(self.nonce_sequence.advance()?), aad.as_ref(), in_out)
            .map(|_| ())
    }

    /// Encrypts and signs (“seals”) data in place.
    ///
    /// `aad` is the additional authenticated data (AAD), if any. This is
    /// authenticated but not encrypted. The type `A` could be a byte slice
    /// `&[u8]`, a byte array `[u8; N]` for some constant `N`, `Vec<u8>`, etc.
    /// If there is no AAD then use `Aad::empty()`.
    ///
    /// The plaintext is given as the input value of `in_out`. `seal_in_place()`
    /// will overwrite the plaintext with the ciphertext and return the tag.
    /// For most protocols, the caller must append the tag to the ciphertext.
    /// The tag will be `self.algorithm.tag_len()` bytes long.
    ///
    /// Prefer [`RandomizedNonceKey::seal_in_place_separate_tag`].
    ///
    // # FIPS
    // This method must not be used.
    //
    /// # Errors
    /// `error::Unspecified` when `nonce_sequence` cannot be advanced.
    #[inline]
    #[allow(clippy::needless_pass_by_value)]
    pub fn seal_in_place_separate_tag<A>(
        &mut self,
        aad: Aad<A>,
        in_out: &mut [u8],
    ) -> Result<Tag, Unspecified>
    where
        A: AsRef<[u8]>,
    {
        self.key
            .seal_in_place_separate_tag(Some(self.nonce_sequence.advance()?), aad.as_ref(), in_out)
            .map(|(_, tag)| tag)
    }
}

/// The additionally authenticated data (AAD) for an opening or sealing
/// operation. This data is authenticated but is **not** encrypted.
///
/// The type `A` could be a byte slice `&[u8]`, a byte array `[u8; N]`
/// for some constant `N`, `Vec<u8>`, etc.
pub struct Aad<A: AsRef<[u8]>>(A);

impl<A: AsRef<[u8]>> Aad<A> {
    /// Construct the `Aad` from the given bytes.
    #[inline]
    pub fn from(aad: A) -> Self {
        Aad(aad)
    }
}

impl<A> AsRef<[u8]> for Aad<A>
where
    A: AsRef<[u8]>,
{
    fn as_ref(&self) -> &[u8] {
        self.0.as_ref()
    }
}

impl Aad<[u8; 0]> {
    /// Construct an empty `Aad`.
    #[must_use]
    pub fn empty() -> Self {
        Self::from([])
    }
}

impl hkdf::KeyType for &'static Algorithm {
    #[inline]
    fn len(&self) -> usize {
        self.key_len()
    }
}

/// Immutable keys for use in situations where `OpeningKey`/`SealingKey` and
/// `NonceSequence` cannot reasonably be used.
///
/// Prefer [`RandomizedNonceKey`] when practical.
///
// # FIPS
// The following conditions must be met:
// * `UnboundKey`'s algorithm is one of:
//   * `AES_128_GCM`
//   * `AES_256_GCM`
// * Use `open_in_place` or `open_within` only.
pub struct LessSafeKey {
    key: UnboundKey,
}

impl LessSafeKey {
    /// Constructs a `LessSafeKey` from an `UnboundKey`.
    #[must_use]
    pub fn new(key: UnboundKey) -> Self {
        Self { key }
    }

    /// Like [`OpeningKey::open_in_place()`], except it accepts an arbitrary nonce.
    ///
    /// `nonce` must be unique for every use of the key to open data.
    ///
    /// Prefer [`RandomizedNonceKey::open_in_place`].
    ///
    // # FIPS
    // Use this method with one of the following algorithms:
    // * `AES_128_GCM`
    // * `AES_256_GCM`
    //
    /// # Errors
    /// `error::Unspecified` when ciphertext is invalid.
    #[inline]
    pub fn open_in_place<'in_out, A>(
        &self,
        nonce: Nonce,
        aad: Aad<A>,
        in_out: &'in_out mut [u8],
    ) -> Result<&'in_out mut [u8], Unspecified>
    where
        A: AsRef<[u8]>,
    {
        self.open_within(nonce, aad, in_out, 0..)
    }

    /// Like [`OpeningKey::open_within()`], except it accepts an arbitrary nonce.
    ///
    /// `nonce` must be unique for every use of the key to open data.
    ///
    /// Prefer [`RandomizedNonceKey::open_in_place`].
    ///
    // # FIPS
    // Use this method with one of the following algorithms:
    // * `AES_128_GCM`
    // * `AES_256_GCM`
    //
    /// # Errors
    /// `error::Unspecified` when ciphertext is invalid.
    #[inline]
    #[allow(clippy::needless_pass_by_value)]
    pub fn open_within<'in_out, A>(
        &self,
        nonce: Nonce,
        aad: Aad<A>,
        in_out: &'in_out mut [u8],
        ciphertext_and_tag: RangeFrom<usize>,
    ) -> Result<&'in_out mut [u8], Unspecified>
    where
        A: AsRef<[u8]>,
    {
        self.key
            .open_within(nonce, aad.as_ref(), in_out, ciphertext_and_tag)
    }

    /// Authenticates and decrypts (“opens”) data into another provided slice.
    ///
    /// `aad` is the additional authenticated data (AAD), if any.
    ///
    /// On input, `in_ciphertext` must be the ciphertext. The tag must be provided in
    /// `in_tag`.
    ///
    /// The `out_plaintext` length must match the provided `in_ciphertext`.
    ///
    /// # Errors
    /// `error::Unspecified` when ciphertext is invalid. In this case, `out_plaintext` may
    /// have been overwritten in an unspecified way.
    ///
    #[inline]
    #[allow(clippy::needless_pass_by_value)]
    pub fn open_separate_gather<A>(
        &self,
        nonce: Nonce,
        aad: Aad<A>,
        in_ciphertext: &[u8],
        in_tag: &[u8],
        out_plaintext: &mut [u8],
    ) -> Result<(), Unspecified>
    where
        A: AsRef<[u8]>,
    {
        self.key
            .open_separate_gather(&nonce, aad.as_ref(), in_ciphertext, in_tag, out_plaintext)
    }

    /// Deprecated. Renamed to `seal_in_place_append_tag()`.
    ///
    /// Prefer [`RandomizedNonceKey::seal_in_place_append_tag`].
    ///
    // # FIPS
    // This method must not be used.
    //
    #[deprecated(note = "Renamed to `seal_in_place_append_tag`.")]
    #[inline]
    #[allow(clippy::missing_errors_doc)]
    pub fn seal_in_place<A, InOut>(
        &self,
        nonce: Nonce,
        aad: Aad<A>,
        in_out: &mut InOut,
    ) -> Result<(), Unspecified>
    where
        A: AsRef<[u8]>,
        InOut: AsMut<[u8]> + for<'in_out> Extend<&'in_out u8>,
    {
        self.seal_in_place_append_tag(nonce, aad, in_out)
    }

    /// Like [`SealingKey::seal_in_place_append_tag()`], except it accepts an
    /// arbitrary nonce.
    ///
    /// `nonce` must be unique for every use of the key to seal data.
    ///
    /// Prefer [`RandomizedNonceKey::seal_in_place_append_tag`].
    ///
    // # FIPS
    // This method must not be used.
    //
    /// # Errors
    /// `error::Unspecified` if encryption operation fails.
    #[inline]
    #[allow(clippy::needless_pass_by_value)]
    pub fn seal_in_place_append_tag<A, InOut>(
        &self,
        nonce: Nonce,
        aad: Aad<A>,
        in_out: &mut InOut,
    ) -> Result<(), Unspecified>
    where
        A: AsRef<[u8]>,
        InOut: AsMut<[u8]> + for<'in_out> Extend<&'in_out u8>,
    {
        self.key
            .seal_in_place_append_tag(Some(nonce), aad.as_ref(), in_out)
            .map(|_| ())
    }

    /// Like `SealingKey::seal_in_place_separate_tag()`, except it accepts an
    /// arbitrary nonce.
    ///
    /// `nonce` must be unique for every use of the key to seal data.
    ///
    /// Prefer [`RandomizedNonceKey::seal_in_place_separate_tag`].
    ///
    // # FIPS
    // This method must not be used.
    //
    /// # Errors
    /// `error::Unspecified` if encryption operation fails.
    #[inline]
    #[allow(clippy::needless_pass_by_value)]
    pub fn seal_in_place_separate_tag<A>(
        &self,
        nonce: Nonce,
        aad: Aad<A>,
        in_out: &mut [u8],
    ) -> Result<Tag, Unspecified>
    where
        A: AsRef<[u8]>,
    {
        self.key
            .seal_in_place_separate_tag(Some(nonce), aad.as_ref(), in_out)
            .map(|(_, tag)| tag)
    }

    /// Encrypts and signs (“seals”) data in place with extra plaintext.
    ///
    /// `aad` is the additional authenticated data (AAD), if any. This is
    /// authenticated but not encrypted. The type `A` could be a byte slice
    /// `&[u8]`, a byte array `[u8; N]` for some constant `N`, `Vec<u8>`, etc.
    /// If there is no AAD then use `Aad::empty()`.
    ///
    /// The plaintext is given as the input value of `in_out` and `extra_in`. `seal_in_place()`
    /// will overwrite the plaintext contained in `in_out` with the ciphertext. The `extra_in` will
    /// be encrypted into the `extra_out_and_tag`, along with the tag.
    /// The `extra_out_and_tag` length must be equal to the `extra_len` and `self.algorithm.tag_len()`.
    ///
    /// `nonce` must be unique for every use of the key to seal data.
    ///
    // # FIPS
    // This method must not be used.
    //
    /// # Errors
    /// `error::Unspecified` if encryption operation fails.
    #[inline]
    #[allow(clippy::needless_pass_by_value)]
    pub fn seal_in_place_scatter<A>(
        &self,
        nonce: Nonce,
        aad: Aad<A>,
        in_out: &mut [u8],
        extra_in: &[u8],
        extra_out_and_tag: &mut [u8],
    ) -> Result<(), Unspecified>
    where
        A: AsRef<[u8]>,
    {
        self.key.seal_in_place_separate_scatter(
            nonce,
            aad.as_ref(),
            in_out,
            extra_in,
            extra_out_and_tag,
        )
    }

    /// The key's AEAD algorithm.
    #[inline]
    #[must_use]
    pub fn algorithm(&self) -> &'static Algorithm {
        self.key.algorithm()
    }
}

impl Debug for LessSafeKey {
    fn fmt(&self, f: &mut core::fmt::Formatter) -> Result<(), core::fmt::Error> {
        f.debug_struct("LessSafeKey")
            .field("algorithm", self.algorithm())
            .finish()
    }
}

/// An AEAD Algorithm.
pub struct Algorithm {
    init: fn(key: &[u8], tag_len: usize) -> Result<AeadCtx, Unspecified>,
    key_len: usize,
    id: AlgorithmID,

    // /// Use `max_input_len!()` to initialize this.
    // TODO: Make this `usize`.
    max_input_len: u64,
}

impl Algorithm {
    /// The length of the key.
    #[inline]
    #[must_use]
    pub fn key_len(&self) -> usize {
        self.key_len
    }

    /// The length of a tag.
    ///
    /// See also `MAX_TAG_LEN`.
    #[inline]
    #[must_use]
    pub fn tag_len(&self) -> usize {
        TAG_LEN
    }

    /// The length of the nonces.
    #[inline]
    #[must_use]
    pub fn nonce_len(&self) -> usize {
        NONCE_LEN
    }
}

derive_debug_via_id!(Algorithm);

#[derive(Debug, Eq, PartialEq, Copy, Clone)]
#[allow(non_camel_case_types)]
enum AlgorithmID {
    AES_128_GCM,
    AES_256_GCM,
    AES_128_GCM_SIV,
    AES_256_GCM_SIV,
    CHACHA20_POLY1305,
}

impl PartialEq for Algorithm {
    #[inline]
    fn eq(&self, other: &Self) -> bool {
        self.id == other.id
    }
}

impl Eq for Algorithm {}

/// An authentication tag.
#[must_use]
#[repr(C)]
pub struct Tag([u8; MAX_TAG_LEN], usize);

impl AsRef<[u8]> for Tag {
    fn as_ref(&self) -> &[u8] {
        self.0[..self.1].as_ref()
    }
}

#[allow(dead_code)]
const MAX_KEY_LEN: usize = 32;

// All the AEADs we support use 128-bit tags.
const TAG_LEN: usize = 16;

/// The maximum length of a tag for the algorithms in this module.
pub const MAX_TAG_LEN: usize = TAG_LEN;

#[cfg(test)]
mod tests {
    use super::*;
    use crate::{iv::FixedLength, test::from_hex};

    #[cfg(feature = "fips")]
    mod fips;

    #[test]
    fn test_aes_128() {
        let key = from_hex("000102030405060708090a0b0c0d0e0f").unwrap();
        let og_nonce = from_hex("5bf11a0951f0bfc7ea5c9e58").unwrap();
        let plaintext = from_hex("00112233445566778899aabbccddeeff").unwrap();
        let unbound_key = UnboundKey::new(&AES_128_GCM, &key).unwrap();
        assert_eq!(&AES_128_GCM, unbound_key.algorithm());

        assert_eq!(16, AES_128_GCM.tag_len());
        assert_eq!(12, AES_128_GCM.nonce_len());

        let less_safe_key = LessSafeKey::new(unbound_key);

        let nonce: [u8; NONCE_LEN] = og_nonce.as_slice().try_into().unwrap();
        let mut in_out = Vec::from(plaintext.as_slice());

        #[allow(deprecated)]
        less_safe_key
            // Test coverage for `seal_in_place`, which calls `seal_in_place_append_tag`.
            .seal_in_place(Nonce(FixedLength::from(nonce)), Aad::empty(), &mut in_out)
            .unwrap();

        let mut in_out_clone = in_out.clone();
        let nonce: [u8; NONCE_LEN] = og_nonce.as_slice().try_into().unwrap();
        assert!(less_safe_key
            .open_in_place(
                Nonce(FixedLength::from(nonce)),
                Aad::from("test"),
                &mut in_out_clone
            )
            .is_err());

        let mut in_out_clone = in_out.clone();
        let mut nonce: [u8; NONCE_LEN] = og_nonce.as_slice().try_into().unwrap();
        nonce[0] = 0;
        assert!(less_safe_key
            .open_in_place(
                Nonce(FixedLength::from(nonce)),
                Aad::empty(),
                &mut in_out_clone
            )
            .is_err());

        let nonce: [u8; NONCE_LEN] = og_nonce.as_slice().try_into().unwrap();
        less_safe_key
            .open_in_place(Nonce(FixedLength::from(nonce)), Aad::empty(), &mut in_out)
            .unwrap();

        assert_eq!(plaintext, in_out[..plaintext.len()]);
    }
}