aws_lc_rs/rand.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
// Copyright 2015-2016 Brian Smith.
// SPDX-License-Identifier: ISC
// Modifications copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0 OR ISC
//! Cryptographic pseudo-random number generation.
//!
//! An application should create a single `SystemRandom` and then use it for
//! all randomness generation. Functions that generate random bytes should take
//! a `&dyn SecureRandom` parameter instead of instantiating their own. Besides
//! being more efficient, this also helps document where non-deterministic
//! (random) outputs occur. Taking a reference to a `SecureRandom` also helps
//! with testing techniques like fuzzing, where it is useful to use a
//! (non-secure) deterministic implementation of `SecureRandom` so that results
//! can be replayed. Following this pattern also may help with sandboxing
//! (seccomp filters on Linux in particular). See `SystemRandom`'s
//! documentation for more details.
//! # Example
//! ```
//! use aws_lc_rs::{rand, rand::SecureRandom};
//!
//! // Using `rand::fill`
//! let mut rand_bytes = [0u8; 32];
//! rand::fill(&mut rand_bytes).unwrap();
//!
//! // Using `SystemRandom`
//! let rng = rand::SystemRandom::new();
//! rng.fill(&mut rand_bytes).unwrap();
//!
//! // Using `rand::generate`
//! let random_array = rand::generate(&rng).unwrap();
//! let more_rand_bytes: [u8; 64] = random_array.expose();
//! ```
use crate::error::Unspecified;
use crate::fips::indicator_check;
use aws_lc::RAND_bytes;
use core::fmt::Debug;
/// A secure random number generator.
pub trait SecureRandom: sealed::SecureRandom {
/// Fills `dest` with random bytes.
///
/// # Errors
/// `error::Unspecified` if unable to fill `dest`.
fn fill(&self, dest: &mut [u8]) -> Result<(), Unspecified>;
}
impl<T> SecureRandom for T
where
T: sealed::SecureRandom,
{
#[inline]
fn fill(&self, dest: &mut [u8]) -> Result<(), Unspecified> {
self.fill_impl(dest)
}
}
/// A random value constructed from a `SecureRandom` that hasn't been exposed
/// through any safe Rust interface.
///
/// Intentionally does not implement any traits other than `Sized`.
pub struct Random<T: RandomlyConstructable>(T);
impl<T: RandomlyConstructable> Random<T> {
/// Expose the random value.
#[inline]
pub fn expose(self) -> T {
self.0
}
}
/// Generate the new random value using `rng`.
///
/// # Errors
/// `error::Unspecified` if unable to fill buffer.
#[inline]
pub fn generate<T: RandomlyConstructable>(
rng: &dyn SecureRandom,
) -> Result<Random<T>, Unspecified> {
let mut r = T::zero();
rng.fill(r.as_mut_bytes())?;
Ok(Random(r))
}
pub(crate) mod sealed {
use crate::error;
pub trait SecureRandom: core::fmt::Debug {
/// Fills `dest` with random bytes.
fn fill_impl(&self, dest: &mut [u8]) -> Result<(), error::Unspecified>;
}
pub trait RandomlyConstructable: Sized {
fn zero() -> Self;
// `Default::default()`
fn as_mut_bytes(&mut self) -> &mut [u8]; // `AsMut<[u8]>::as_mut`
}
impl<const T: usize> RandomlyConstructable for [u8; T] {
#[inline]
fn zero() -> Self {
[0; T]
}
#[inline]
fn as_mut_bytes(&mut self) -> &mut [u8] {
&mut self[..]
}
}
}
/// A type that can be returned by `aws_lc_rs::rand::generate()`.
pub trait RandomlyConstructable: sealed::RandomlyConstructable {}
impl<T> RandomlyConstructable for T where T: sealed::RandomlyConstructable {}
/// A secure random number generator where the random values come from the
/// underlying *AWS-LC* libcrypto.
///
/// A single `SystemRandom` may be shared across multiple threads safely.
//
// # FIPS
// Use this implementation for retrieving random bytes.
#[derive(Clone, Debug)]
pub struct SystemRandom(());
const SYSTEM_RANDOM: SystemRandom = SystemRandom(());
impl SystemRandom {
/// Constructs a new `SystemRandom`.
#[inline]
#[must_use]
pub fn new() -> Self {
Self::default()
}
}
impl Default for SystemRandom {
fn default() -> Self {
SYSTEM_RANDOM
}
}
impl sealed::SecureRandom for SystemRandom {
#[inline]
fn fill_impl(&self, dest: &mut [u8]) -> Result<(), Unspecified> {
fill(dest)
}
}
/// Fills `dest` with random bytes.
///
// # FIPS
// Use this for retrieving random bytes or [`SystemRandom`].
//
/// # Errors
/// `error::Unspecified` if unable to fill `dest`.
pub fn fill(dest: &mut [u8]) -> Result<(), Unspecified> {
if 1 != indicator_check!(unsafe { RAND_bytes(dest.as_mut_ptr(), dest.len()) }) {
return Err(Unspecified);
}
Ok(())
}
#[cfg(test)]
mod tests {
use crate::rand;
use core::array::IntoIter;
use crate::rand::{generate, SecureRandom, SystemRandom};
#[test]
fn test_secure_random_fill() {
let mut random_array = [0u8; 173];
let rng = SystemRandom::new();
rng.fill(&mut random_array).unwrap();
let (mean, variance) = mean_variance(&mut random_array.into_iter());
assert!((106f64..150f64).contains(&mean), "Mean: {mean}");
assert!(variance > 8f64);
println!("Mean: {mean} Variance: {variance}");
}
#[test]
fn test_rand_fill() {
let mut random_array: [u8; 173] = [0u8; 173];
rand::fill(&mut random_array).unwrap();
let (mean, variance) = mean_variance(&mut random_array.into_iter());
assert!((106f64..150f64).contains(&mean), "Mean: {mean}");
assert!(variance > 8f64);
println!("Mean: {mean} Variance: {variance}");
}
#[test]
fn test_randomly_constructable() {
let rando = SystemRandom::new();
let random_array = generate(&rando).unwrap();
let random_array: [u8; 173] = random_array.expose();
let (mean, variance) = mean_variance(&mut random_array.into_iter());
assert!((106f64..150f64).contains(&mean), "Mean: {mean}");
assert!(variance > 8f64);
println!("Mean: {mean} Variance: {variance}");
}
fn mean_variance<T: Into<f64>, const N: usize>(iterable: &mut IntoIter<T, N>) -> (f64, f64) {
let iter = iterable;
let mean: Option<T> = iter.next();
let mut mean = mean.unwrap().into();
let mut var_squared = 0f64;
let mut count = 1f64;
for value in iter.by_ref() {
count += 1f64;
let value = value.into();
let prev_mean = mean;
mean = prev_mean + (value - prev_mean) / count;
var_squared =
var_squared + ((value - prev_mean) * (value - mean) - var_squared) / count;
}
(mean, var_squared.sqrt())
}
}