aws_lc_rs/aead.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
// Copyright 2015-2016 Brian Smith.
// SPDX-License-Identifier: ISC
// Modifications copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0 OR ISC
//! Authenticated Encryption with Associated Data (AEAD).
//!
//! See [Authenticated encryption: relations among notions and analysis of the
//! generic composition paradigm][AEAD] for an introduction to the concept of
//! AEADs.
//!
//! [AEAD]: https://eprint.iacr.org/2000/025
//! [`crypto.cipher.AEAD`]: https://golang.org/pkg/crypto/cipher/#AEAD
//!
//! # Randomized Nonce API
//!
//! [`RandomizedNonceKey`] provides a simplified API interface that doesn't
//! require the caller to handle construction of a `NonceSequence` or `Nonce` values
//! themselves.
//!
//! ```rust
//! # use std::error::Error;
//! #
//! # fn main() -> Result<(), Box<dyn Error>> {
//! use aws_lc_rs::aead::{Aad, RandomizedNonceKey, AES_128_GCM};
//!
//! let key_bytes = &[
//! 0xa5, 0xf3, 0x8d, 0x0d, 0x2d, 0x7c, 0x48, 0x56, 0xe7, 0xf3, 0xc3, 0x63, 0x0d, 0x40, 0x5b,
//! 0x9e,
//! ];
//!
//! // Create AES-128-GCM key
//! let key = RandomizedNonceKey::new(&AES_128_GCM, key_bytes)?;
//!
//! let message = "test message";
//! let mut in_out = Vec::from(message);
//!
//! // Seal the plaintext message (in_out) and append the tag to the ciphertext.
//! // The randomized nonce used for encryption will be returned.
//! let nonce = key.seal_in_place_append_tag(Aad::empty(), &mut in_out)?;
//!
//! // Open the ciphertext message (in_out), using the provided nonce, and validating the tag.
//! let plaintext = key.open_in_place(nonce, Aad::empty(), &mut in_out)?;
//!
//! assert_eq!(message.as_bytes(), plaintext);
//! # Ok(())
//! # }
//! ```
//!
//! # TLS AEAD APIs
//!
//! Systems developers creating TLS protocol implementations should use
//! [`TlsRecordSealingKey`] and [`TlsRecordOpeningKey`] respectively for AEAD.
//!
//! # Nonce Sequence APIs
//!
//! The [`UnboundKey`], [`OpeningKey`], [`SealingKey`], and [`LessSafeKey`] types are the
//! AEAD API's provided for compatability with the original *ring* API.
//!
//! Users should prefer [`RandomizedNonceKey`] which provides a simplified experience around
//! Nonce construction.
//!
//! ```
//! use aws_lc_rs::aead::{
//! nonce_sequence, Aad, BoundKey, OpeningKey, SealingKey, UnboundKey, AES_128_GCM,
//! };
//! use aws_lc_rs::rand;
//! use aws_lc_rs::test::from_hex;
//!
//! let plaintext = "plaintext value";
//!
//! // Generate random bytes for secret key
//! let mut key_bytes = [0u8; 16];
//! rand::fill(&mut key_bytes).expect("Unable to generate key");
//!
//! // Contextual information must match between encryption and decryption
//! let aad_content = "aws-lc-rs documentation";
//! let sequence_id = 0xabcdef01u32.to_be_bytes();
//!
//! // Buffer containing plaintext. This will be modified to contain the ciphertext.
//! let mut in_out_buffer = Vec::from(plaintext);
//!
//! // Construct a SealingKey for encryption
//! let unbound_key = UnboundKey::new(&AES_128_GCM, &key_bytes).unwrap();
//! let nonce_sequence = nonce_sequence::Counter64Builder::new()
//! .identifier(sequence_id)
//! .build();
//! let mut sealing_key = SealingKey::new(unbound_key, nonce_sequence);
//!
//! // Encrypt a value using the SealingKey
//! let aad = Aad::from(aad_content);
//! sealing_key
//! .seal_in_place_append_tag(aad, &mut in_out_buffer)
//! .expect("Encryption failed");
//!
//! // The buffer now contains the ciphertext followed by a "tag" value.
//! let plaintext_len = in_out_buffer.len() - AES_128_GCM.tag_len();
//!
//! // Construct an OpeningKey for decryption
//! let unbound_key = UnboundKey::new(&AES_128_GCM, &key_bytes).unwrap();
//! let nonce_sequence = nonce_sequence::Counter64Builder::new()
//! .identifier(sequence_id)
//! .build();
//! let mut opening_key = OpeningKey::new(unbound_key, nonce_sequence);
//!
//! // Decrypt the value using the OpeningKey
//! let aad = Aad::from(aad_content);
//! opening_key
//! .open_in_place(aad, &mut in_out_buffer)
//! .expect("Decryption failed");
//!
//! let decrypted_plaintext = core::str::from_utf8(&in_out_buffer[0..plaintext_len]).unwrap();
//!
//! assert_eq!(plaintext, decrypted_plaintext);
//! ```
use crate::{derive_debug_via_id, error::Unspecified, hkdf};
use aead_ctx::AeadCtx;
use core::{fmt::Debug, ops::RangeFrom};
mod aead_ctx;
mod aes_gcm;
mod chacha;
pub mod chacha20_poly1305_openssh;
mod nonce;
pub mod nonce_sequence;
mod poly1305;
pub mod quic;
mod rand_nonce;
mod tls;
mod unbound_key;
pub use self::{
aes_gcm::{AES_128_GCM, AES_128_GCM_SIV, AES_256_GCM, AES_256_GCM_SIV},
chacha::CHACHA20_POLY1305,
nonce::{Nonce, NONCE_LEN},
rand_nonce::RandomizedNonceKey,
tls::{TlsProtocolId, TlsRecordOpeningKey, TlsRecordSealingKey},
unbound_key::UnboundKey,
};
/// A sequences of unique nonces.
///
/// A given `NonceSequence` must never return the same `Nonce` twice from
/// `advance()`.
///
/// A simple counter is a reasonable (but probably not ideal) `NonceSequence`.
///
/// Intentionally not `Clone` or `Copy` since cloning would allow duplication
/// of the sequence.
pub trait NonceSequence {
/// Returns the next nonce in the sequence.
///
/// # Errors
/// `error::Unspecified` if "too many" nonces have been requested, where how many
/// is too many is up to the implementation of `NonceSequence`. An
/// implementation may that enforce a maximum number of records are
/// sent/received under a key this way. Once `advance()` fails, it must
/// fail for all subsequent calls.
fn advance(&mut self) -> Result<Nonce, Unspecified>;
}
/// An AEAD key bound to a nonce sequence.
pub trait BoundKey<N: NonceSequence>: Debug {
/// Constructs a new key from the given `UnboundKey` and `NonceSequence`.
fn new(key: UnboundKey, nonce_sequence: N) -> Self;
/// The key's AEAD algorithm.
fn algorithm(&self) -> &'static Algorithm;
}
/// An AEAD key for authenticating and decrypting ("opening"), bound to a nonce
/// sequence.
///
/// Intentionally not `Clone` or `Copy` since cloning would allow duplication
/// of the nonce sequence.
///
/// Prefer [`RandomizedNonceKey`] for opening operations.
pub struct OpeningKey<N: NonceSequence> {
key: UnboundKey,
nonce_sequence: N,
}
impl<N: NonceSequence> BoundKey<N> for OpeningKey<N> {
fn new(key: UnboundKey, nonce_sequence: N) -> Self {
Self {
key,
nonce_sequence,
}
}
#[inline]
fn algorithm(&self) -> &'static Algorithm {
self.key.algorithm()
}
}
impl<N: NonceSequence> Debug for OpeningKey<N> {
fn fmt(&self, f: &mut core::fmt::Formatter) -> Result<(), core::fmt::Error> {
f.debug_struct("OpeningKey")
.field("algorithm", &self.algorithm())
.finish()
}
}
impl<N: NonceSequence> OpeningKey<N> {
/// Authenticates and decrypts (“opens”) data in place.
///
/// `aad` is the additional authenticated data (AAD), if any.
///
/// On input, `in_out` must be the ciphertext followed by the tag. When
/// `open_in_place()` returns `Ok(plaintext)`, the input ciphertext
/// has been overwritten by the plaintext; `plaintext` will refer to the
/// plaintext without the tag.
///
/// Prefer [`RandomizedNonceKey::open_in_place`].
///
// # FIPS
// Use this method with one of the following algorithms:
// * `AES_128_GCM`
// * `AES_256_GCM`
//
/// # Errors
/// `error::Unspecified` when ciphertext is invalid. In this case, `in_out` may have been
/// overwritten in an unspecified way.
#[inline]
#[allow(clippy::needless_pass_by_value)]
pub fn open_in_place<'in_out, A>(
&mut self,
aad: Aad<A>,
in_out: &'in_out mut [u8],
) -> Result<&'in_out mut [u8], Unspecified>
where
A: AsRef<[u8]>,
{
self.key
.open_within(self.nonce_sequence.advance()?, aad.as_ref(), in_out, 0..)
}
/// Authenticates and decrypts (“opens”) data in place, with a shift.
///
/// `aad` is the additional authenticated data (AAD), if any.
///
/// On input, `in_out[ciphertext_and_tag]` must be the ciphertext followed
/// by the tag. When `open_within()` returns `Ok(plaintext)`, the plaintext
/// will be at `in_out[0..plaintext.len()]`. In other words, the following
/// two code fragments are equivalent for valid values of
/// `ciphertext_and_tag`, except `open_within` will often be more efficient:
///
///
/// ```skip
/// let plaintext = key.open_within(aad, in_out, cipertext_and_tag)?;
/// ```
///
/// ```skip
/// let ciphertext_and_tag_len = in_out[ciphertext_and_tag].len();
/// in_out.copy_within(ciphertext_and_tag, 0);
/// let plaintext = key.open_in_place(aad, &mut in_out[..ciphertext_and_tag_len])?;
/// ```
///
/// Similarly, `key.open_within(aad, in_out, 0..)` is equivalent to
/// `key.open_in_place(aad, in_out)`.
///
///
/// The shifting feature is useful in the case where multiple packets are
/// being reassembled in place. Consider this example where the peer has
/// sent the message “Split stream reassembled in place” split into
/// three sealed packets:
///
/// ```ascii-art
/// Packet 1 Packet 2 Packet 3
/// Input: [Header][Ciphertext][Tag][Header][Ciphertext][Tag][Header][Ciphertext][Tag]
/// | +--------------+ |
/// +------+ +-----+ +----------------------------------+
/// v v v
/// Output: [Plaintext][Plaintext][Plaintext]
/// “Split stream reassembled in place”
/// ```
///
/// This reassembly be accomplished with three calls to `open_within()`.
///
/// Prefer [`RandomizedNonceKey::open_in_place`].
///
// # FIPS
// Use this method with one of the following algorithms:
// * `AES_128_GCM`
// * `AES_256_GCM`
//
/// # Errors
/// `error::Unspecified` when ciphertext is invalid. In this case, `in_out` may have been
/// overwritten in an unspecified way.
#[inline]
#[allow(clippy::needless_pass_by_value)]
pub fn open_within<'in_out, A>(
&mut self,
aad: Aad<A>,
in_out: &'in_out mut [u8],
ciphertext_and_tag: RangeFrom<usize>,
) -> Result<&'in_out mut [u8], Unspecified>
where
A: AsRef<[u8]>,
{
self.key.open_within(
self.nonce_sequence.advance()?,
aad.as_ref(),
in_out,
ciphertext_and_tag,
)
}
}
/// An AEAD key for encrypting and signing ("sealing"), bound to a nonce
/// sequence.
///
/// Intentionally not `Clone` or `Copy` since cloning would allow duplication
/// of the nonce sequence.
///
/// Prefer [`RandomizedNonceKey`] for sealing operations.
pub struct SealingKey<N: NonceSequence> {
key: UnboundKey,
nonce_sequence: N,
}
impl<N: NonceSequence> BoundKey<N> for SealingKey<N> {
fn new(key: UnboundKey, nonce_sequence: N) -> Self {
Self {
key,
nonce_sequence,
}
}
#[inline]
fn algorithm(&self) -> &'static Algorithm {
self.key.algorithm()
}
}
impl<N: NonceSequence> Debug for SealingKey<N> {
fn fmt(&self, f: &mut core::fmt::Formatter) -> Result<(), core::fmt::Error> {
f.debug_struct("SealingKey")
.field("algorithm", &self.algorithm())
.finish()
}
}
impl<N: NonceSequence> SealingKey<N> {
/// Deprecated. Renamed to `seal_in_place_append_tag`.
///
/// Prefer [`RandomizedNonceKey::seal_in_place_append_tag`].
///
// # FIPS
// This method must not be used.
//
/// # Errors
/// See `seal_in_place_append_tag`
#[deprecated(note = "Renamed to `seal_in_place_append_tag`.")]
#[inline]
pub fn seal_in_place<A, InOut>(
&mut self,
aad: Aad<A>,
in_out: &mut InOut,
) -> Result<(), Unspecified>
where
A: AsRef<[u8]>,
InOut: AsMut<[u8]> + for<'in_out> Extend<&'in_out u8>,
{
self.seal_in_place_append_tag(aad, in_out)
}
/// Encrypts and signs (“seals”) data in place, appending the tag to the
/// resulting ciphertext.
///
/// `key.seal_in_place_append_tag(aad, in_out)` is equivalent to:
///
/// ```skip
/// key.seal_in_place_separate_tag(aad, in_out.as_mut())
/// .map(|tag| in_out.extend(tag.as_ref()))
/// ```
///
/// Prefer [`RandomizedNonceKey::seal_in_place_append_tag`].
///
// # FIPS
// This method must not be used.
//
/// # Errors
/// `error::Unspecified` when `nonce_sequence` cannot be advanced.
#[inline]
#[allow(clippy::needless_pass_by_value)]
pub fn seal_in_place_append_tag<A, InOut>(
&mut self,
aad: Aad<A>,
in_out: &mut InOut,
) -> Result<(), Unspecified>
where
A: AsRef<[u8]>,
InOut: AsMut<[u8]> + for<'in_out> Extend<&'in_out u8>,
{
self.key
.seal_in_place_append_tag(Some(self.nonce_sequence.advance()?), aad.as_ref(), in_out)
.map(|_| ())
}
/// Encrypts and signs (“seals”) data in place.
///
/// `aad` is the additional authenticated data (AAD), if any. This is
/// authenticated but not encrypted. The type `A` could be a byte slice
/// `&[u8]`, a byte array `[u8; N]` for some constant `N`, `Vec<u8>`, etc.
/// If there is no AAD then use `Aad::empty()`.
///
/// The plaintext is given as the input value of `in_out`. `seal_in_place()`
/// will overwrite the plaintext with the ciphertext and return the tag.
/// For most protocols, the caller must append the tag to the ciphertext.
/// The tag will be `self.algorithm.tag_len()` bytes long.
///
/// Prefer [`RandomizedNonceKey::seal_in_place_separate_tag`].
///
// # FIPS
// This method must not be used.
//
/// # Errors
/// `error::Unspecified` when `nonce_sequence` cannot be advanced.
#[inline]
#[allow(clippy::needless_pass_by_value)]
pub fn seal_in_place_separate_tag<A>(
&mut self,
aad: Aad<A>,
in_out: &mut [u8],
) -> Result<Tag, Unspecified>
where
A: AsRef<[u8]>,
{
self.key
.seal_in_place_separate_tag(Some(self.nonce_sequence.advance()?), aad.as_ref(), in_out)
.map(|(_, tag)| tag)
}
}
/// The additionally authenticated data (AAD) for an opening or sealing
/// operation. This data is authenticated but is **not** encrypted.
///
/// The type `A` could be a byte slice `&[u8]`, a byte array `[u8; N]`
/// for some constant `N`, `Vec<u8>`, etc.
pub struct Aad<A: AsRef<[u8]>>(A);
impl<A: AsRef<[u8]>> Aad<A> {
/// Construct the `Aad` from the given bytes.
#[inline]
pub fn from(aad: A) -> Self {
Aad(aad)
}
}
impl<A> AsRef<[u8]> for Aad<A>
where
A: AsRef<[u8]>,
{
fn as_ref(&self) -> &[u8] {
self.0.as_ref()
}
}
impl Aad<[u8; 0]> {
/// Construct an empty `Aad`.
#[must_use]
pub fn empty() -> Self {
Self::from([])
}
}
impl hkdf::KeyType for &'static Algorithm {
#[inline]
fn len(&self) -> usize {
self.key_len()
}
}
/// Immutable keys for use in situations where `OpeningKey`/`SealingKey` and
/// `NonceSequence` cannot reasonably be used.
///
/// Prefer [`RandomizedNonceKey`] when practical.
///
// # FIPS
// The following conditions must be met:
// * `UnboundKey`'s algorithm is one of:
// * `AES_128_GCM`
// * `AES_256_GCM`
// * Use `open_in_place` or `open_within` only.
pub struct LessSafeKey {
key: UnboundKey,
}
impl LessSafeKey {
/// Constructs a `LessSafeKey` from an `UnboundKey`.
#[must_use]
pub fn new(key: UnboundKey) -> Self {
Self { key }
}
/// Like [`OpeningKey::open_in_place()`], except it accepts an arbitrary nonce.
///
/// `nonce` must be unique for every use of the key to open data.
///
/// Prefer [`RandomizedNonceKey::open_in_place`].
///
// # FIPS
// Use this method with one of the following algorithms:
// * `AES_128_GCM`
// * `AES_256_GCM`
//
/// # Errors
/// `error::Unspecified` when ciphertext is invalid.
#[inline]
pub fn open_in_place<'in_out, A>(
&self,
nonce: Nonce,
aad: Aad<A>,
in_out: &'in_out mut [u8],
) -> Result<&'in_out mut [u8], Unspecified>
where
A: AsRef<[u8]>,
{
self.open_within(nonce, aad, in_out, 0..)
}
/// Like [`OpeningKey::open_within()`], except it accepts an arbitrary nonce.
///
/// `nonce` must be unique for every use of the key to open data.
///
/// Prefer [`RandomizedNonceKey::open_in_place`].
///
// # FIPS
// Use this method with one of the following algorithms:
// * `AES_128_GCM`
// * `AES_256_GCM`
//
/// # Errors
/// `error::Unspecified` when ciphertext is invalid.
#[inline]
#[allow(clippy::needless_pass_by_value)]
pub fn open_within<'in_out, A>(
&self,
nonce: Nonce,
aad: Aad<A>,
in_out: &'in_out mut [u8],
ciphertext_and_tag: RangeFrom<usize>,
) -> Result<&'in_out mut [u8], Unspecified>
where
A: AsRef<[u8]>,
{
self.key
.open_within(nonce, aad.as_ref(), in_out, ciphertext_and_tag)
}
/// Authenticates and decrypts (“opens”) data into another provided slice.
///
/// `aad` is the additional authenticated data (AAD), if any.
///
/// On input, `in_ciphertext` must be the ciphertext. The tag must be provided in
/// `in_tag`.
///
/// The `out_plaintext` length must match the provided `in_ciphertext`.
///
/// # Errors
/// `error::Unspecified` when ciphertext is invalid. In this case, `out_plaintext` may
/// have been overwritten in an unspecified way.
///
#[inline]
#[allow(clippy::needless_pass_by_value)]
pub fn open_separate_gather<A>(
&self,
nonce: Nonce,
aad: Aad<A>,
in_ciphertext: &[u8],
in_tag: &[u8],
out_plaintext: &mut [u8],
) -> Result<(), Unspecified>
where
A: AsRef<[u8]>,
{
self.key
.open_separate_gather(&nonce, aad.as_ref(), in_ciphertext, in_tag, out_plaintext)
}
/// Deprecated. Renamed to `seal_in_place_append_tag()`.
///
/// Prefer [`RandomizedNonceKey::seal_in_place_append_tag`].
///
// # FIPS
// This method must not be used.
//
#[deprecated(note = "Renamed to `seal_in_place_append_tag`.")]
#[inline]
#[allow(clippy::missing_errors_doc)]
pub fn seal_in_place<A, InOut>(
&self,
nonce: Nonce,
aad: Aad<A>,
in_out: &mut InOut,
) -> Result<(), Unspecified>
where
A: AsRef<[u8]>,
InOut: AsMut<[u8]> + for<'in_out> Extend<&'in_out u8>,
{
self.seal_in_place_append_tag(nonce, aad, in_out)
}
/// Like [`SealingKey::seal_in_place_append_tag()`], except it accepts an
/// arbitrary nonce.
///
/// `nonce` must be unique for every use of the key to seal data.
///
/// Prefer [`RandomizedNonceKey::seal_in_place_append_tag`].
///
// # FIPS
// This method must not be used.
//
/// # Errors
/// `error::Unspecified` if encryption operation fails.
#[inline]
#[allow(clippy::needless_pass_by_value)]
pub fn seal_in_place_append_tag<A, InOut>(
&self,
nonce: Nonce,
aad: Aad<A>,
in_out: &mut InOut,
) -> Result<(), Unspecified>
where
A: AsRef<[u8]>,
InOut: AsMut<[u8]> + for<'in_out> Extend<&'in_out u8>,
{
self.key
.seal_in_place_append_tag(Some(nonce), aad.as_ref(), in_out)
.map(|_| ())
}
/// Like `SealingKey::seal_in_place_separate_tag()`, except it accepts an
/// arbitrary nonce.
///
/// `nonce` must be unique for every use of the key to seal data.
///
/// Prefer [`RandomizedNonceKey::seal_in_place_separate_tag`].
///
// # FIPS
// This method must not be used.
//
/// # Errors
/// `error::Unspecified` if encryption operation fails.
#[inline]
#[allow(clippy::needless_pass_by_value)]
pub fn seal_in_place_separate_tag<A>(
&self,
nonce: Nonce,
aad: Aad<A>,
in_out: &mut [u8],
) -> Result<Tag, Unspecified>
where
A: AsRef<[u8]>,
{
self.key
.seal_in_place_separate_tag(Some(nonce), aad.as_ref(), in_out)
.map(|(_, tag)| tag)
}
/// Encrypts and signs (“seals”) data in place with extra plaintext.
///
/// `aad` is the additional authenticated data (AAD), if any. This is
/// authenticated but not encrypted. The type `A` could be a byte slice
/// `&[u8]`, a byte array `[u8; N]` for some constant `N`, `Vec<u8>`, etc.
/// If there is no AAD then use `Aad::empty()`.
///
/// The plaintext is given as the input value of `in_out` and `extra_in`. `seal_in_place()`
/// will overwrite the plaintext contained in `in_out` with the ciphertext. The `extra_in` will
/// be encrypted into the `extra_out_and_tag`, along with the tag.
/// The `extra_out_and_tag` length must be equal to the `extra_len` and `self.algorithm.tag_len()`.
///
/// `nonce` must be unique for every use of the key to seal data.
///
// # FIPS
// This method must not be used.
//
/// # Errors
/// `error::Unspecified` if encryption operation fails.
#[inline]
#[allow(clippy::needless_pass_by_value)]
pub fn seal_in_place_scatter<A>(
&self,
nonce: Nonce,
aad: Aad<A>,
in_out: &mut [u8],
extra_in: &[u8],
extra_out_and_tag: &mut [u8],
) -> Result<(), Unspecified>
where
A: AsRef<[u8]>,
{
self.key.seal_in_place_separate_scatter(
nonce,
aad.as_ref(),
in_out,
extra_in,
extra_out_and_tag,
)
}
/// The key's AEAD algorithm.
#[inline]
#[must_use]
pub fn algorithm(&self) -> &'static Algorithm {
self.key.algorithm()
}
}
impl Debug for LessSafeKey {
fn fmt(&self, f: &mut core::fmt::Formatter) -> Result<(), core::fmt::Error> {
f.debug_struct("LessSafeKey")
.field("algorithm", self.algorithm())
.finish()
}
}
/// An AEAD Algorithm.
pub struct Algorithm {
init: fn(key: &[u8], tag_len: usize) -> Result<AeadCtx, Unspecified>,
key_len: usize,
id: AlgorithmID,
// /// Use `max_input_len!()` to initialize this.
// TODO: Make this `usize`.
max_input_len: u64,
}
impl Algorithm {
/// The length of the key.
#[inline]
#[must_use]
pub fn key_len(&self) -> usize {
self.key_len
}
/// The length of a tag.
///
/// See also `MAX_TAG_LEN`.
#[inline]
#[must_use]
pub fn tag_len(&self) -> usize {
TAG_LEN
}
/// The length of the nonces.
#[inline]
#[must_use]
pub fn nonce_len(&self) -> usize {
NONCE_LEN
}
}
derive_debug_via_id!(Algorithm);
#[derive(Debug, Eq, PartialEq, Copy, Clone)]
#[allow(non_camel_case_types)]
enum AlgorithmID {
AES_128_GCM,
AES_256_GCM,
AES_128_GCM_SIV,
AES_256_GCM_SIV,
CHACHA20_POLY1305,
}
impl PartialEq for Algorithm {
#[inline]
fn eq(&self, other: &Self) -> bool {
self.id == other.id
}
}
impl Eq for Algorithm {}
/// An authentication tag.
#[must_use]
#[repr(C)]
pub struct Tag([u8; MAX_TAG_LEN], usize);
impl AsRef<[u8]> for Tag {
fn as_ref(&self) -> &[u8] {
self.0[..self.1].as_ref()
}
}
#[allow(dead_code)]
const MAX_KEY_LEN: usize = 32;
// All the AEADs we support use 128-bit tags.
const TAG_LEN: usize = 16;
/// The maximum length of a tag for the algorithms in this module.
pub const MAX_TAG_LEN: usize = TAG_LEN;
#[cfg(test)]
mod tests {
use super::*;
use crate::{iv::FixedLength, test::from_hex};
#[cfg(feature = "fips")]
mod fips;
#[test]
fn test_aes_128() {
let key = from_hex("000102030405060708090a0b0c0d0e0f").unwrap();
let og_nonce = from_hex("5bf11a0951f0bfc7ea5c9e58").unwrap();
let plaintext = from_hex("00112233445566778899aabbccddeeff").unwrap();
let unbound_key = UnboundKey::new(&AES_128_GCM, &key).unwrap();
assert_eq!(&AES_128_GCM, unbound_key.algorithm());
assert_eq!(16, AES_128_GCM.tag_len());
assert_eq!(12, AES_128_GCM.nonce_len());
let less_safe_key = LessSafeKey::new(unbound_key);
let nonce: [u8; NONCE_LEN] = og_nonce.as_slice().try_into().unwrap();
let mut in_out = Vec::from(plaintext.as_slice());
#[allow(deprecated)]
less_safe_key
// Test coverage for `seal_in_place`, which calls `seal_in_place_append_tag`.
.seal_in_place(Nonce(FixedLength::from(nonce)), Aad::empty(), &mut in_out)
.unwrap();
let mut in_out_clone = in_out.clone();
let nonce: [u8; NONCE_LEN] = og_nonce.as_slice().try_into().unwrap();
assert!(less_safe_key
.open_in_place(
Nonce(FixedLength::from(nonce)),
Aad::from("test"),
&mut in_out_clone
)
.is_err());
let mut in_out_clone = in_out.clone();
let mut nonce: [u8; NONCE_LEN] = og_nonce.as_slice().try_into().unwrap();
nonce[0] = 0;
assert!(less_safe_key
.open_in_place(
Nonce(FixedLength::from(nonce)),
Aad::empty(),
&mut in_out_clone
)
.is_err());
let nonce: [u8; NONCE_LEN] = og_nonce.as_slice().try_into().unwrap();
less_safe_key
.open_in_place(Nonce(FixedLength::from(nonce)), Aad::empty(), &mut in_out)
.unwrap();
assert_eq!(plaintext, in_out[..plaintext.len()]);
}
}