aws_lc_rs/aead/
rand_nonce.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0 OR ISC

use crate::error::Unspecified;
use core::fmt::Debug;

use super::{aead_ctx::AeadCtx, Aad, Algorithm, AlgorithmID, Nonce, Tag, UnboundKey};

/// AEAD Cipher key using a randomized nonce.
///
/// `RandomizedNonceKey` handles generation random nonce values.
///
/// The following algorithms are supported:
/// * `AES_128_GCM`
/// * `AES_256_GCM`
///
/// Prefer this type in place of `LessSafeKey`, `OpeningKey`, `SealingKey`.
pub struct RandomizedNonceKey {
    key: UnboundKey,
    algorithm: &'static Algorithm,
}

impl RandomizedNonceKey {
    /// New Random Nonce Sequence
    /// # Errors
    pub fn new(algorithm: &'static Algorithm, key_bytes: &[u8]) -> Result<Self, Unspecified> {
        let ctx = match algorithm.id {
            AlgorithmID::AES_128_GCM => AeadCtx::aes_128_gcm_randnonce(
                key_bytes,
                algorithm.tag_len(),
                algorithm.nonce_len(),
            ),
            AlgorithmID::AES_256_GCM => AeadCtx::aes_256_gcm_randnonce(
                key_bytes,
                algorithm.tag_len(),
                algorithm.nonce_len(),
            ),
            AlgorithmID::AES_128_GCM_SIV
            | AlgorithmID::AES_256_GCM_SIV
            | AlgorithmID::CHACHA20_POLY1305 => return Err(Unspecified),
        }?;
        Ok(Self {
            key: UnboundKey::from(ctx),
            algorithm,
        })
    }

    /// Authenticates and decrypts (“opens”) data in place.
    //
    // aad is the additional authenticated data (AAD), if any.
    //
    // On input, in_out must be the ciphertext followed by the tag. When open_in_place() returns Ok(plaintext),
    // the input ciphertext has been overwritten by the plaintext; plaintext will refer to the plaintext without the tag.
    ///
    /// # Errors
    /// `error::Unspecified` when ciphertext is invalid.
    #[inline]
    #[allow(clippy::needless_pass_by_value)]
    pub fn open_in_place<'in_out, A>(
        &self,
        nonce: Nonce,
        aad: Aad<A>,
        in_out: &'in_out mut [u8],
    ) -> Result<&'in_out mut [u8], Unspecified>
    where
        A: AsRef<[u8]>,
    {
        self.key.open_within(nonce, aad.as_ref(), in_out, 0..)
    }

    /// Encrypts and signs (“seals”) data in place, appending the tag to the
    /// resulting ciphertext.
    ///
    /// `key.seal_in_place_append_tag(aad, in_out)` is equivalent to:
    ///
    /// ```skip
    /// key.seal_in_place_separate_tag(aad, in_out.as_mut())
    ///     .map(|tag| in_out.extend(tag.as_ref()))
    /// ```
    ///
    /// The Nonce used for the operation is randomly generated, and returned to the caller.
    ///
    /// # Errors
    /// `error::Unspecified` if encryption operation fails.
    #[inline]
    #[allow(clippy::needless_pass_by_value)]
    pub fn seal_in_place_append_tag<'a, A, InOut>(
        &self,
        aad: Aad<A>,
        in_out: &'a mut InOut,
    ) -> Result<Nonce, Unspecified>
    where
        A: AsRef<[u8]>,
        InOut: AsMut<[u8]> + for<'in_out> Extend<&'in_out u8>,
    {
        self.key
            .seal_in_place_append_tag(None, aad.as_ref(), in_out)
    }

    /// Encrypts and signs (“seals”) data in place.
    ///
    /// `aad` is the additional authenticated data (AAD), if any. This is
    /// authenticated but not encrypted. The type `A` could be a byte slice
    /// `&[u8]`, a byte array `[u8; N]` for some constant `N`, `Vec<u8>`, etc.
    /// If there is no AAD then use `Aad::empty()`.
    ///
    /// The plaintext is given as the input value of `in_out`. `seal_in_place()`
    /// will overwrite the plaintext with the ciphertext and return the tag.
    /// For most protocols, the caller must append the tag to the ciphertext.
    /// The tag will be `self.algorithm.tag_len()` bytes long.
    ///
    /// The Nonce used for the operation is randomly generated, and returned to the caller.
    ///
    /// # Errors
    /// `error::Unspecified` if encryption operation fails.
    #[inline]
    #[allow(clippy::needless_pass_by_value)]
    pub fn seal_in_place_separate_tag<A>(
        &self,
        aad: Aad<A>,
        in_out: &mut [u8],
    ) -> Result<(Nonce, Tag), Unspecified>
    where
        A: AsRef<[u8]>,
    {
        self.key
            .seal_in_place_separate_tag(None, aad.as_ref(), in_out)
    }

    /// The key's AEAD algorithm.
    #[inline]
    #[must_use]
    pub fn algorithm(&self) -> &'static Algorithm {
        self.algorithm
    }
}

#[allow(clippy::missing_fields_in_debug)]
impl Debug for RandomizedNonceKey {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        f.debug_struct("RandomizedNonceKey")
            .field("algorithm", &self.algorithm)
            .finish()
    }
}

#[cfg(test)]
mod tests {
    use super::{Aad, RandomizedNonceKey};
    use crate::{
        aead::{AES_128_GCM, AES_256_GCM, CHACHA20_POLY1305},
        test::from_hex,
    };
    use paste::paste;

    const TEST_128_BIT_KEY: &[u8] = &[
        0xb0, 0x37, 0x9f, 0xf8, 0xfb, 0x8e, 0xa6, 0x31, 0xf4, 0x1c, 0xe6, 0x3e, 0xb5, 0xc5, 0x20,
        0x7c,
    ];

    const TEST_256_BIT_KEY: &[u8] = &[
        0x56, 0xd8, 0x96, 0x68, 0xbd, 0x96, 0xeb, 0xff, 0x5e, 0xa2, 0x0b, 0x34, 0xf2, 0x79, 0x84,
        0x6e, 0x2b, 0x13, 0x01, 0x3d, 0xab, 0x1d, 0xa4, 0x07, 0x5a, 0x16, 0xd5, 0x0b, 0x53, 0xb0,
        0xcc, 0x88,
    ];

    macro_rules! test_randnonce {
        ($name:ident, $alg:expr, $key:expr) => {
            paste! {
                #[test]
                fn [<test_ $name _randnonce_unsupported>]() {
                    assert!(RandomizedNonceKey::new($alg, $key).is_err());
                }
            }
        };
        ($name:ident, $alg:expr, $key:expr, $expect_tag_len:expr, $expect_nonce_len:expr) => {
            paste! {
                #[test]
                fn [<test_ $name _randnonce>]() {
                    let plaintext = from_hex("00112233445566778899aabbccddeeff").unwrap();
                    let rand_nonce_key =
                        RandomizedNonceKey::new($alg, $key).unwrap();

                    assert_eq!($alg, rand_nonce_key.algorithm());
                    assert_eq!(*$expect_tag_len, $alg.tag_len());
                    assert_eq!(*$expect_nonce_len, $alg.nonce_len());

                    let mut in_out = Vec::from(plaintext.as_slice());

                    let nonce = rand_nonce_key
                        .seal_in_place_append_tag(Aad::empty(), &mut in_out)
                        .unwrap();

                    assert_ne!(plaintext, in_out[..plaintext.len()]);

                    rand_nonce_key
                        .open_in_place(nonce, Aad::empty(), &mut in_out)
                        .unwrap();

                    assert_eq!(plaintext, in_out[..plaintext.len()]);

                    let mut in_out = Vec::from(plaintext.as_slice());

                    let (nonce, tag) = rand_nonce_key
                        .seal_in_place_separate_tag(Aad::empty(), &mut in_out)
                        .unwrap();

                    assert_ne!(plaintext, in_out[..plaintext.len()]);

                    in_out.extend(tag.as_ref());

                    rand_nonce_key
                        .open_in_place(nonce, Aad::empty(), &mut in_out)
                        .unwrap();

                    assert_eq!(plaintext, in_out[..plaintext.len()]);
                }
            }
        };
    }

    test_randnonce!(aes_128_gcm, &AES_128_GCM, TEST_128_BIT_KEY, &16, &12);
    test_randnonce!(aes_256_gcm, &AES_256_GCM, TEST_256_BIT_KEY, &16, &12);
    test_randnonce!(chacha20_poly1305, &CHACHA20_POLY1305, TEST_256_BIT_KEY);
}