aws_lc_rs/aead/rand_nonce.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0 OR ISC
use crate::error::Unspecified;
use core::fmt::Debug;
use super::{aead_ctx::AeadCtx, Aad, Algorithm, AlgorithmID, Nonce, Tag, UnboundKey};
/// AEAD Cipher key using a randomized nonce.
///
/// `RandomizedNonceKey` handles generation random nonce values.
///
/// The following algorithms are supported:
/// * `AES_128_GCM`
/// * `AES_256_GCM`
///
/// Prefer this type in place of `LessSafeKey`, `OpeningKey`, `SealingKey`.
pub struct RandomizedNonceKey {
key: UnboundKey,
algorithm: &'static Algorithm,
}
impl RandomizedNonceKey {
/// New Random Nonce Sequence
/// # Errors
pub fn new(algorithm: &'static Algorithm, key_bytes: &[u8]) -> Result<Self, Unspecified> {
let ctx = match algorithm.id {
AlgorithmID::AES_128_GCM => AeadCtx::aes_128_gcm_randnonce(
key_bytes,
algorithm.tag_len(),
algorithm.nonce_len(),
),
AlgorithmID::AES_256_GCM => AeadCtx::aes_256_gcm_randnonce(
key_bytes,
algorithm.tag_len(),
algorithm.nonce_len(),
),
AlgorithmID::AES_128_GCM_SIV
| AlgorithmID::AES_256_GCM_SIV
| AlgorithmID::CHACHA20_POLY1305 => return Err(Unspecified),
}?;
Ok(Self {
key: UnboundKey::from(ctx),
algorithm,
})
}
/// Authenticates and decrypts (“opens”) data in place.
//
// aad is the additional authenticated data (AAD), if any.
//
// On input, in_out must be the ciphertext followed by the tag. When open_in_place() returns Ok(plaintext),
// the input ciphertext has been overwritten by the plaintext; plaintext will refer to the plaintext without the tag.
///
/// # Errors
/// `error::Unspecified` when ciphertext is invalid.
#[inline]
#[allow(clippy::needless_pass_by_value)]
pub fn open_in_place<'in_out, A>(
&self,
nonce: Nonce,
aad: Aad<A>,
in_out: &'in_out mut [u8],
) -> Result<&'in_out mut [u8], Unspecified>
where
A: AsRef<[u8]>,
{
self.key.open_within(nonce, aad.as_ref(), in_out, 0..)
}
/// Encrypts and signs (“seals”) data in place, appending the tag to the
/// resulting ciphertext.
///
/// `key.seal_in_place_append_tag(aad, in_out)` is equivalent to:
///
/// ```skip
/// key.seal_in_place_separate_tag(aad, in_out.as_mut())
/// .map(|tag| in_out.extend(tag.as_ref()))
/// ```
///
/// The Nonce used for the operation is randomly generated, and returned to the caller.
///
/// # Errors
/// `error::Unspecified` if encryption operation fails.
#[inline]
#[allow(clippy::needless_pass_by_value)]
pub fn seal_in_place_append_tag<'a, A, InOut>(
&self,
aad: Aad<A>,
in_out: &'a mut InOut,
) -> Result<Nonce, Unspecified>
where
A: AsRef<[u8]>,
InOut: AsMut<[u8]> + for<'in_out> Extend<&'in_out u8>,
{
self.key
.seal_in_place_append_tag(None, aad.as_ref(), in_out)
}
/// Encrypts and signs (“seals”) data in place.
///
/// `aad` is the additional authenticated data (AAD), if any. This is
/// authenticated but not encrypted. The type `A` could be a byte slice
/// `&[u8]`, a byte array `[u8; N]` for some constant `N`, `Vec<u8>`, etc.
/// If there is no AAD then use `Aad::empty()`.
///
/// The plaintext is given as the input value of `in_out`. `seal_in_place()`
/// will overwrite the plaintext with the ciphertext and return the tag.
/// For most protocols, the caller must append the tag to the ciphertext.
/// The tag will be `self.algorithm.tag_len()` bytes long.
///
/// The Nonce used for the operation is randomly generated, and returned to the caller.
///
/// # Errors
/// `error::Unspecified` if encryption operation fails.
#[inline]
#[allow(clippy::needless_pass_by_value)]
pub fn seal_in_place_separate_tag<A>(
&self,
aad: Aad<A>,
in_out: &mut [u8],
) -> Result<(Nonce, Tag), Unspecified>
where
A: AsRef<[u8]>,
{
self.key
.seal_in_place_separate_tag(None, aad.as_ref(), in_out)
}
/// The key's AEAD algorithm.
#[inline]
#[must_use]
pub fn algorithm(&self) -> &'static Algorithm {
self.algorithm
}
}
#[allow(clippy::missing_fields_in_debug)]
impl Debug for RandomizedNonceKey {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
f.debug_struct("RandomizedNonceKey")
.field("algorithm", &self.algorithm)
.finish()
}
}
#[cfg(test)]
mod tests {
use super::{Aad, RandomizedNonceKey};
use crate::{
aead::{AES_128_GCM, AES_256_GCM, CHACHA20_POLY1305},
test::from_hex,
};
use paste::paste;
const TEST_128_BIT_KEY: &[u8] = &[
0xb0, 0x37, 0x9f, 0xf8, 0xfb, 0x8e, 0xa6, 0x31, 0xf4, 0x1c, 0xe6, 0x3e, 0xb5, 0xc5, 0x20,
0x7c,
];
const TEST_256_BIT_KEY: &[u8] = &[
0x56, 0xd8, 0x96, 0x68, 0xbd, 0x96, 0xeb, 0xff, 0x5e, 0xa2, 0x0b, 0x34, 0xf2, 0x79, 0x84,
0x6e, 0x2b, 0x13, 0x01, 0x3d, 0xab, 0x1d, 0xa4, 0x07, 0x5a, 0x16, 0xd5, 0x0b, 0x53, 0xb0,
0xcc, 0x88,
];
macro_rules! test_randnonce {
($name:ident, $alg:expr, $key:expr) => {
paste! {
#[test]
fn [<test_ $name _randnonce_unsupported>]() {
assert!(RandomizedNonceKey::new($alg, $key).is_err());
}
}
};
($name:ident, $alg:expr, $key:expr, $expect_tag_len:expr, $expect_nonce_len:expr) => {
paste! {
#[test]
fn [<test_ $name _randnonce>]() {
let plaintext = from_hex("00112233445566778899aabbccddeeff").unwrap();
let rand_nonce_key =
RandomizedNonceKey::new($alg, $key).unwrap();
assert_eq!($alg, rand_nonce_key.algorithm());
assert_eq!(*$expect_tag_len, $alg.tag_len());
assert_eq!(*$expect_nonce_len, $alg.nonce_len());
let mut in_out = Vec::from(plaintext.as_slice());
let nonce = rand_nonce_key
.seal_in_place_append_tag(Aad::empty(), &mut in_out)
.unwrap();
assert_ne!(plaintext, in_out[..plaintext.len()]);
rand_nonce_key
.open_in_place(nonce, Aad::empty(), &mut in_out)
.unwrap();
assert_eq!(plaintext, in_out[..plaintext.len()]);
let mut in_out = Vec::from(plaintext.as_slice());
let (nonce, tag) = rand_nonce_key
.seal_in_place_separate_tag(Aad::empty(), &mut in_out)
.unwrap();
assert_ne!(plaintext, in_out[..plaintext.len()]);
in_out.extend(tag.as_ref());
rand_nonce_key
.open_in_place(nonce, Aad::empty(), &mut in_out)
.unwrap();
assert_eq!(plaintext, in_out[..plaintext.len()]);
}
}
};
}
test_randnonce!(aes_128_gcm, &AES_128_GCM, TEST_128_BIT_KEY, &16, &12);
test_randnonce!(aes_256_gcm, &AES_256_GCM, TEST_256_BIT_KEY, &16, &12);
test_randnonce!(chacha20_poly1305, &CHACHA20_POLY1305, TEST_256_BIT_KEY);
}