aws_lc_rs/digest.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
// Copyright 2015-2019 Brian Smith.
// SPDX-License-Identifier: ISC
// Modifications copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0 OR ISC
//! SHA-2 and the legacy SHA-1 digest algorithm.
//!
//! If all the data is available in a single contiguous slice then the `digest`
//! function should be used. Otherwise, the digest can be calculated in
//! multiple steps using `Context`.
//! # Example
//!
//! ```
//! use aws_lc_rs::digest;
//!
//! // Using `digest::digest`
//! let one_shot = digest::digest(&digest::SHA384, b"hello, world");
//!
//! // Using `digest::Context`
//! let mut ctx = digest::Context::new(&digest::SHA384);
//! ctx.update(b"hello");
//! ctx.update(b", ");
//! ctx.update(b"world");
//! let multi_part = ctx.finish();
//!
//! assert_eq!(&one_shot.as_ref(), &multi_part.as_ref());
//! ```
#![allow(non_snake_case)]
use crate::fips::indicator_check;
use crate::{debug, derive_debug_via_id};
pub(crate) mod digest_ctx;
mod sha;
use crate::error::Unspecified;
use crate::ptr::ConstPointer;
use aws_lc::{
EVP_DigestFinal, EVP_DigestUpdate, EVP_sha1, EVP_sha224, EVP_sha256, EVP_sha384, EVP_sha3_256,
EVP_sha3_384, EVP_sha3_512, EVP_sha512, EVP_sha512_256, EVP_MD,
};
use core::mem::MaybeUninit;
use digest_ctx::DigestContext;
pub use sha::{
SHA1_FOR_LEGACY_USE_ONLY, SHA1_OUTPUT_LEN, SHA224, SHA224_OUTPUT_LEN, SHA256,
SHA256_OUTPUT_LEN, SHA384, SHA384_OUTPUT_LEN, SHA3_256, SHA3_384, SHA3_512, SHA512, SHA512_256,
SHA512_256_OUTPUT_LEN, SHA512_OUTPUT_LEN,
};
// TODO: Uncomment when MSRV >= 1.64
//use core::ffi::c_uint;
use std::os::raw::c_uint;
/// A context for multi-step (Init-Update-Finish) digest calculations.
//
// # FIPS
// Context must be used with one of the following algorithms:
// * `SHA1_FOR_LEGACY_USE_ONLY`
// * `SHA224`
// * `SHA256`
// * `SHA384`
// * `SHA512`
// * `SHA512_256`
#[derive(Clone)]
pub struct Context {
/// The context's algorithm.
pub(crate) algorithm: &'static Algorithm,
digest_ctx: DigestContext,
// The spec specifies that SHA-1 and SHA-256 support up to
// 2^64-1 bits of input. SHA-384 and SHA-512 support up to
// 2^128-1 bits.
// Implementations of `digest` only support up
// to 2^64-1 bits of input, which should be sufficient enough for
// practical use cases.
msg_len: u64,
max_input_reached: bool,
}
impl Context {
/// Constructs a new context.
///
/// # Panics
///
/// `new` panics if it fails to initialize an aws-lc digest context for the given
/// algorithm.
#[must_use]
pub fn new(algorithm: &'static Algorithm) -> Self {
Self {
algorithm,
digest_ctx: DigestContext::new(algorithm).unwrap(),
msg_len: 0u64,
max_input_reached: false,
}
}
/// Updates the message to digest with all the data in `data`.
///
/// # Panics
/// Panics if update causes total input length to exceed maximum allowed (`u64::MAX`).
#[inline]
pub fn update(&mut self, data: &[u8]) {
Self::try_update(self, data).expect("digest update failed");
}
#[inline]
fn try_update(&mut self, data: &[u8]) -> Result<(), Unspecified> {
unsafe {
// Check if the message has reached the algorithm's maximum allowed input, or overflowed
// the msg_len counter.
let (msg_len, overflowed) = self.msg_len.overflowing_add(data.len() as u64);
if overflowed || msg_len > self.algorithm.max_input_len {
return Err(Unspecified);
}
self.msg_len = msg_len;
self.max_input_reached = self.msg_len == self.algorithm.max_input_len;
// Doesn't require boundary_check! guard
if 1 != EVP_DigestUpdate(
self.digest_ctx.as_mut_ptr(),
data.as_ptr().cast(),
data.len(),
) {
return Err(Unspecified);
}
Ok(())
}
}
/// Finalizes the digest calculation and returns the digest value.
///
/// `finish` consumes the context so it cannot be (mis-)used after `finish`
/// has been called.
///
/// # Panics
/// Panics if the digest is unable to be finalized
#[inline]
#[must_use]
pub fn finish(self) -> Digest {
Self::try_finish(self).expect("EVP_DigestFinal failed")
}
#[inline]
fn try_finish(mut self) -> Result<Digest, Unspecified> {
let mut output = [0u8; MAX_OUTPUT_LEN];
let mut out_len = MaybeUninit::<c_uint>::uninit();
if 1 != indicator_check!(unsafe {
EVP_DigestFinal(
self.digest_ctx.as_mut_ptr(),
output.as_mut_ptr(),
out_len.as_mut_ptr(),
)
}) {
return Err(Unspecified);
}
Ok(Digest {
algorithm: self.algorithm,
digest_msg: output,
digest_len: self.algorithm.output_len,
})
}
/// The algorithm that this context is using.
#[inline]
#[must_use]
pub fn algorithm(&self) -> &'static Algorithm {
self.algorithm
}
}
/// Returns the digest of `data` using the given digest algorithm.
///
// # FIPS
// This function must only be used with one of the following algorithms:
// * `SHA1_FOR_LEGACY_USE_ONLY`
// * `SHA224`
// * `SHA256`
// * `SHA384`
// * `SHA512`
// * `SHA512_256`
//
/// # Examples:
///
/// ```
/// # {
/// use aws_lc_rs::{digest, test};
/// let expected_hex = "09ca7e4eaa6e8ae9c7d261167129184883644d07dfba7cbfbc4c8a2e08360d5b";
/// let expected: Vec<u8> = test::from_hex(expected_hex).unwrap();
/// let actual = digest::digest(&digest::SHA256, b"hello, world");
///
/// assert_eq!(&expected, &actual.as_ref());
/// # }
/// ```
#[inline]
#[must_use]
pub fn digest(algorithm: &'static Algorithm, data: &[u8]) -> Digest {
let mut output = [0u8; MAX_OUTPUT_LEN];
(algorithm.one_shot_hash)(data, &mut output);
Digest {
algorithm,
digest_msg: output,
digest_len: algorithm.output_len,
}
}
/// A calculated digest value.
///
/// Use [`Self::as_ref`] to get the value as a `&[u8]`.
#[derive(Clone, Copy)]
pub struct Digest {
/// The trait `Copy` can't be implemented for dynamic arrays, so we set a
/// fixed array and the appropriate length.
digest_msg: [u8; MAX_OUTPUT_LEN],
digest_len: usize,
algorithm: &'static Algorithm,
}
impl Digest {
/// The algorithm that was used to calculate the digest value.
#[inline]
#[must_use]
pub fn algorithm(&self) -> &'static Algorithm {
self.algorithm
}
}
impl AsRef<[u8]> for Digest {
#[inline]
fn as_ref(&self) -> &[u8] {
&self.digest_msg[..self.digest_len]
}
}
impl core::fmt::Debug for Digest {
fn fmt(&self, fmt: &mut core::fmt::Formatter) -> core::fmt::Result {
write!(fmt, "{:?}:", self.algorithm)?;
debug::write_hex_bytes(fmt, self.as_ref())
}
}
/// A digest algorithm.
pub struct Algorithm {
/// The length of a finalized digest.
pub output_len: usize,
/// The size of the chaining value of the digest function, in bytes. For
/// non-truncated algorithms (SHA-1, SHA-256, SHA-512), this is equal to
/// `output_len`. For truncated algorithms (e.g. SHA-224, SHA-384, SHA-512/256),
/// this is equal to the length before truncation. This is mostly helpful
/// for determining the size of an HMAC key that is appropriate for the
/// digest algorithm.
///
/// This function isn't actually used in *aws-lc-rs*, and is only
/// kept for compatibility with the original *ring* implementation.
#[deprecated]
pub chaining_len: usize,
/// The internal block length.
pub block_len: usize,
// max_input_len is computed as u64 instead of usize to prevent overflowing on 32-bit machines.
max_input_len: u64,
one_shot_hash: fn(msg: &[u8], output: &mut [u8]),
pub(crate) id: AlgorithmID,
}
unsafe impl Send for Algorithm {}
impl Algorithm {
/// The length of a finalized digest.
#[inline]
#[must_use]
pub fn output_len(&self) -> usize {
self.output_len
}
/// The size of the chaining value of the digest function, in bytes. For
/// non-truncated algorithms (SHA-1, SHA-256, SHA-512), this is equal to
/// `output_len`. For truncated algorithms (e.g. SHA-224, SHA-384, SHA-512/256),
/// this is equal to the length before truncation. This is mostly helpful
/// for determining the size of an HMAC key that is appropriate for the
/// digest algorithm.
///
/// This function isn't actually used in *aws-lc-rs*, and is only
/// kept for compatibility with the original *ring* implementation.
#[deprecated]
#[inline]
#[must_use]
pub fn chaining_len(&self) -> usize {
// clippy warns on deprecated functions accessing deprecated fields
#![allow(deprecated)]
self.chaining_len
}
/// The internal block length.
#[inline]
#[must_use]
pub fn block_len(&self) -> usize {
self.block_len
}
}
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub(crate) enum AlgorithmID {
SHA1,
SHA224,
SHA256,
SHA384,
SHA512,
SHA512_256,
SHA3_256,
SHA3_384,
SHA3_512,
}
impl PartialEq for Algorithm {
fn eq(&self, other: &Self) -> bool {
self.id == other.id
}
}
impl Eq for Algorithm {}
derive_debug_via_id!(Algorithm);
/// The maximum block length ([`Algorithm::block_len`]) of all the algorithms
/// in this module.
pub const MAX_BLOCK_LEN: usize = 1024 / 8;
/// The maximum output length ([`Algorithm::output_len`]) of all the
/// algorithms in this module.
pub const MAX_OUTPUT_LEN: usize = 512 / 8;
/// The maximum chaining length ([`Algorithm::chaining_len`]) of all the
/// algorithms in this module.
pub const MAX_CHAINING_LEN: usize = MAX_OUTPUT_LEN;
/// Match digest types for `EVP_MD` functions.
pub(crate) fn match_digest_type(algorithm_id: &AlgorithmID) -> ConstPointer<EVP_MD> {
unsafe {
ConstPointer::new(match algorithm_id {
AlgorithmID::SHA1 => EVP_sha1(),
AlgorithmID::SHA224 => EVP_sha224(),
AlgorithmID::SHA256 => EVP_sha256(),
AlgorithmID::SHA384 => EVP_sha384(),
AlgorithmID::SHA512 => EVP_sha512(),
AlgorithmID::SHA512_256 => EVP_sha512_256(),
AlgorithmID::SHA3_256 => EVP_sha3_256(),
AlgorithmID::SHA3_384 => EVP_sha3_384(),
AlgorithmID::SHA3_512 => EVP_sha3_512(),
})
.unwrap_or_else(|()| panic!("Digest algorithm not found: {algorithm_id:?}"))
}
}
#[cfg(test)]
mod tests {
#[cfg(feature = "fips")]
mod fips;
mod max_input {
extern crate alloc;
use super::super::super::digest;
use crate::digest::digest_ctx::DigestContext;
use crate::digest::Digest;
use alloc::vec;
macro_rules! max_input_tests {
( $algorithm_name:ident ) => {
mod $algorithm_name {
use super::super::super::super::digest;
#[test]
fn max_input_test() {
super::max_input_test(&digest::$algorithm_name);
}
#[test]
#[should_panic(expected = "digest update failed")]
fn too_long_input_test_block() {
super::too_long_input_test_block(&digest::$algorithm_name);
}
#[test]
#[should_panic(expected = "digest update failed")]
fn too_long_input_test_byte() {
super::too_long_input_test_byte(&digest::$algorithm_name);
}
}
};
}
fn max_input_test(alg: &'static digest::Algorithm) {
let mut context = nearly_full_context(alg);
let next_input = vec![0u8; alg.block_len - 1];
context.update(&next_input);
let _: Digest = context.finish(); // no panic
}
fn too_long_input_test_block(alg: &'static digest::Algorithm) {
let mut context = nearly_full_context(alg);
let next_input = vec![0u8; alg.block_len];
context.update(&next_input);
let _: Digest = context.finish(); // should panic
}
fn too_long_input_test_byte(alg: &'static digest::Algorithm) {
let mut context = nearly_full_context(alg);
let next_input = vec![0u8; alg.block_len - 1];
context.update(&next_input); // no panic
context.update(&[0]);
let _: Digest = context.finish(); // should panic
}
fn nearly_full_context(alg: &'static digest::Algorithm) -> digest::Context {
// Implementations of `digest` only support up
// to 2^64-1 bits of input.
let block_len = alg.block_len as u64;
digest::Context {
algorithm: alg,
digest_ctx: DigestContext::new(alg).unwrap(),
msg_len: alg.max_input_len - block_len + 1,
max_input_reached: false,
}
}
max_input_tests!(SHA1_FOR_LEGACY_USE_ONLY);
max_input_tests!(SHA224);
max_input_tests!(SHA256);
max_input_tests!(SHA384);
max_input_tests!(SHA512);
max_input_tests!(SHA3_384);
max_input_tests!(SHA3_512);
}
#[test]
fn digest_coverage() {
use crate::digest;
for alg in [
&digest::SHA1_FOR_LEGACY_USE_ONLY,
&digest::SHA224,
&digest::SHA256,
&digest::SHA384,
&digest::SHA512,
&digest::SHA3_384,
&digest::SHA3_512,
] {
// Clone after updating context with message, then check if the final Digest is the same.
let mut ctx = digest::Context::new(alg);
ctx.update(b"hello, world");
let ctx_clone = ctx.clone();
assert_eq!(ctx_clone.algorithm(), ctx.algorithm());
let orig_digest = ctx.finish();
let clone_digest = ctx_clone.finish();
assert_eq!(orig_digest.algorithm(), clone_digest.algorithm());
assert_eq!(orig_digest.as_ref(), clone_digest.as_ref());
assert_eq!(orig_digest.clone().as_ref(), clone_digest.as_ref());
}
}
}