aws_lc_rs/hmac.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
// Copyright 2015-2022 Brian Smith.
// SPDX-License-Identifier: ISC
// Modifications copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0 OR ISC
//! HMAC is specified in [RFC 2104].
//!
//! After a `Key` is constructed, it can be used for multiple signing or
//! verification operations. Separating the construction of the key from the
//! rest of the HMAC operation allows the per-key precomputation to be done
//! only once, instead of it being done in every HMAC operation.
//!
//! Frequently all the data to be signed in a message is available in a single
//! contiguous piece. In that case, the module-level `sign` function can be
//! used. Otherwise, if the input is in multiple parts, `Context` should be
//! used.
//!
//! # Examples:
//!
//! ## Signing a value and verifying it wasn't tampered with
//!
//! ```
//! use aws_lc_rs::{hmac, rand};
//!
//! let rng = rand::SystemRandom::new();
//! let key = hmac::Key::generate(hmac::HMAC_SHA256, &rng)?;
//!
//! let msg = "hello, world";
//!
//! let tag = hmac::sign(&key, msg.as_bytes());
//!
//! // [We give access to the message to an untrusted party, and they give it
//! // back to us. We need to verify they didn't tamper with it.]
//!
//! hmac::verify(&key, msg.as_bytes(), tag.as_ref())?;
//!
//! # Ok::<(), aws_lc_rs::error::Unspecified>(())
//! ```
//!
//! ## Using the one-shot API:
//!
//! ```
//! use aws_lc_rs::rand::SecureRandom;
//! use aws_lc_rs::{digest, hmac, rand};
//!
//! let msg = "hello, world";
//!
//! // The sender generates a secure key value and signs the message with it.
//! // Note that in a real protocol, a key agreement protocol would be used to
//! // derive `key_value`.
//! let rng = rand::SystemRandom::new();
//! let key_value: [u8; digest::SHA256_OUTPUT_LEN] = rand::generate(&rng)?.expose();
//!
//! let s_key = hmac::Key::new(hmac::HMAC_SHA256, key_value.as_ref());
//! let tag = hmac::sign(&s_key, msg.as_bytes());
//!
//! // The receiver (somehow!) knows the key value, and uses it to verify the
//! // integrity of the message.
//! let v_key = hmac::Key::new(hmac::HMAC_SHA256, key_value.as_ref());
//! hmac::verify(&v_key, msg.as_bytes(), tag.as_ref())?;
//!
//! # Ok::<(), aws_lc_rs::error::Unspecified>(())
//! ```
//!
//! ## Using the multi-part API:
//! ```
//! use aws_lc_rs::rand::SecureRandom;
//! use aws_lc_rs::{digest, hmac, rand};
//!
//! let parts = ["hello", ", ", "world"];
//!
//! // The sender generates a secure key value and signs the message with it.
//! // Note that in a real protocol, a key agreement protocol would be used to
//! // derive `key_value`.
//! let rng = rand::SystemRandom::new();
//! let mut key_value: [u8; digest::SHA384_OUTPUT_LEN] = rand::generate(&rng)?.expose();
//!
//! let s_key = hmac::Key::new(hmac::HMAC_SHA384, key_value.as_ref());
//! let mut s_ctx = hmac::Context::with_key(&s_key);
//! for part in &parts {
//! s_ctx.update(part.as_bytes());
//! }
//! let tag = s_ctx.sign();
//!
//! // The receiver (somehow!) knows the key value, and uses it to verify the
//! // integrity of the message.
//! let v_key = hmac::Key::new(hmac::HMAC_SHA384, key_value.as_ref());
//! let mut msg = Vec::<u8>::new();
//! for part in &parts {
//! msg.extend(part.as_bytes());
//! }
//! hmac::verify(&v_key, &msg.as_ref(), tag.as_ref())?;
//!
//! # Ok::<(), aws_lc_rs::error::Unspecified>(())
//! ```
//! [RFC 2104]: https://tools.ietf.org/html/rfc2104
use crate::error::Unspecified;
use crate::fips::indicator_check;
use crate::{constant_time, digest, hkdf};
use aws_lc::{
HMAC_CTX_cleanup, HMAC_CTX_copy_ex, HMAC_CTX_init, HMAC_Final, HMAC_Init_ex, HMAC_Update,
HMAC_CTX,
};
use core::mem::MaybeUninit;
use core::ptr::null_mut;
// TODO: Uncomment when MSRV >= 1.64
// use core::ffi::c_uint;
use std::os::raw::c_uint;
/// A deprecated alias for `Tag`.
#[deprecated]
pub type Signature = Tag;
/// Renamed to `Context`.
#[deprecated]
pub type SigningContext = Context;
/// Renamed to `Key`.
#[deprecated]
pub type SigningKey = Key;
/// Merged into `Key`.
#[deprecated]
pub type VerificationKey = Key;
/// An HMAC algorithm.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct Algorithm(&'static digest::Algorithm);
impl Algorithm {
/// The digest algorithm this HMAC algorithm is based on.
#[inline]
#[must_use]
pub fn digest_algorithm(&self) -> &'static digest::Algorithm {
self.0
}
}
/// HMAC using SHA-1. Obsolete.
pub static HMAC_SHA1_FOR_LEGACY_USE_ONLY: Algorithm = Algorithm(&digest::SHA1_FOR_LEGACY_USE_ONLY);
/// HMAC using SHA-224.
pub static HMAC_SHA224: Algorithm = Algorithm(&digest::SHA224);
/// HMAC using SHA-256.
pub static HMAC_SHA256: Algorithm = Algorithm(&digest::SHA256);
/// HMAC using SHA-384.
pub static HMAC_SHA384: Algorithm = Algorithm(&digest::SHA384);
/// HMAC using SHA-512.
pub static HMAC_SHA512: Algorithm = Algorithm(&digest::SHA512);
/// An HMAC tag.
///
/// For a given tag `t`, use `t.as_ref()` to get the tag value as a byte slice.
#[derive(Clone, Copy, Debug)]
pub struct Tag {
msg: [u8; digest::MAX_OUTPUT_LEN],
msg_len: usize,
}
impl AsRef<[u8]> for Tag {
#[inline]
fn as_ref(&self) -> &[u8] {
&self.msg[..self.msg_len]
}
}
struct LcHmacCtx(HMAC_CTX);
impl LcHmacCtx {
fn as_mut_ptr(&mut self) -> *mut HMAC_CTX {
&mut self.0
}
fn as_ptr(&self) -> *const HMAC_CTX {
&self.0
}
fn try_clone(&self) -> Result<Self, Unspecified> {
unsafe {
let mut hmac_ctx = MaybeUninit::<HMAC_CTX>::uninit();
HMAC_CTX_init(hmac_ctx.as_mut_ptr());
let mut hmac_ctx = hmac_ctx.assume_init();
if 1 != HMAC_CTX_copy_ex(&mut hmac_ctx, self.as_ptr()) {
return Err(Unspecified);
}
Ok(LcHmacCtx(hmac_ctx))
}
}
}
unsafe impl Send for LcHmacCtx {}
impl Drop for LcHmacCtx {
fn drop(&mut self) {
unsafe { HMAC_CTX_cleanup(self.as_mut_ptr()) }
}
}
impl Clone for LcHmacCtx {
fn clone(&self) -> Self {
self.try_clone().expect("Unable to clone LcHmacCtx")
}
}
/// A key to use for HMAC signing.
//
// # FIPS
// Use this type with one of the following algorithms:
// * `HMAC_SHA1_FOR_LEGACY_USE_ONLY`
// * `HMAC_SHA224`
// * `HMAC_SHA256`
// * `HMAC_SHA384`
// * `HMAC_SHA512`
#[derive(Clone)]
pub struct Key {
pub(crate) algorithm: Algorithm,
ctx: LcHmacCtx,
}
unsafe impl Send for Key {}
// All uses of *mut HMAC_CTX require the creation of a Context, which will clone the Key.
unsafe impl Sync for Key {}
#[allow(clippy::missing_fields_in_debug)]
impl core::fmt::Debug for Key {
fn fmt(&self, f: &mut core::fmt::Formatter) -> Result<(), core::fmt::Error> {
f.debug_struct("Key")
.field("algorithm", &self.algorithm.digest_algorithm())
.finish()
}
}
impl Key {
/// Generate an HMAC signing key using the given digest algorithm with a
/// random value generated from `rng`.
///
/// The key will be `digest_alg.output_len` bytes long, based on the
/// recommendation in [RFC 2104 Section 3].
///
/// [RFC 2104 Section 3]: https://tools.ietf.org/html/rfc2104#section-3
///
//
// # FIPS
// Use this function with one of the following algorithms:
// * `HMAC_SHA1_FOR_LEGACY_USE_ONLY`
// * `HMAC_SHA224`
// * `HMAC_SHA256`
// * `HMAC_SHA384`
// * `HMAC_SHA512`
//
/// # Errors
/// `error::Unspecified` is the `rng` fails.
pub fn generate(
algorithm: Algorithm,
rng: &dyn crate::rand::SecureRandom,
) -> Result<Self, Unspecified> {
Self::construct(algorithm, |buf| rng.fill(buf))
}
fn construct<F>(algorithm: Algorithm, fill: F) -> Result<Self, Unspecified>
where
F: FnOnce(&mut [u8]) -> Result<(), Unspecified>,
{
let mut key_bytes = [0; digest::MAX_OUTPUT_LEN];
let key_bytes = &mut key_bytes[..algorithm.0.output_len];
fill(key_bytes)?;
Ok(Self::new(algorithm, key_bytes))
}
/// Construct an HMAC signing key using the given digest algorithm and key
/// value.
///
/// `key_value` should be a value generated using a secure random number
/// generator (e.g. the `key_value` output by
/// `SealingKey::generate_serializable()`) or derived from a random key by
/// a key derivation function (e.g. `aws_lc_rs::hkdf`). In particular,
/// `key_value` shouldn't be a password.
///
/// As specified in RFC 2104, if `key_value` is shorter than the digest
/// algorithm's block length (as returned by `digest::Algorithm::block_len`,
/// not the digest length returned by `digest::Algorithm::output_len`) then
/// it will be padded with zeros. Similarly, if it is longer than the block
/// length then it will be compressed using the digest algorithm.
///
/// You should not use keys larger than the `digest_alg.block_len` because
/// the truncation described above reduces their strength to only
/// `digest_alg.output_len * 8` bits.
///
/// # Panics
/// Panics if the HMAC context cannot be constructed
#[inline]
#[must_use]
pub fn new(algorithm: Algorithm, key_value: &[u8]) -> Self {
Key::try_new(algorithm, key_value).expect("Unable to create HmacContext")
}
fn try_new(algorithm: Algorithm, key_value: &[u8]) -> Result<Self, Unspecified> {
unsafe {
let mut ctx = MaybeUninit::<HMAC_CTX>::uninit();
HMAC_CTX_init(ctx.as_mut_ptr());
let evp_md_type = digest::match_digest_type(&algorithm.digest_algorithm().id);
if 1 != HMAC_Init_ex(
ctx.as_mut_ptr(),
key_value.as_ptr().cast(),
key_value.len(),
*evp_md_type,
null_mut(),
) {
return Err(Unspecified);
};
let result = Self {
algorithm,
ctx: LcHmacCtx(ctx.assume_init()),
};
Ok(result)
}
}
unsafe fn get_hmac_ctx_ptr(&mut self) -> *mut HMAC_CTX {
self.ctx.as_mut_ptr()
}
/// The digest algorithm for the key.
#[inline]
#[must_use]
pub fn algorithm(&self) -> Algorithm {
Algorithm(self.algorithm.digest_algorithm())
}
}
impl hkdf::KeyType for Algorithm {
#[inline]
fn len(&self) -> usize {
self.digest_algorithm().output_len
}
}
impl From<hkdf::Okm<'_, Algorithm>> for Key {
fn from(okm: hkdf::Okm<Algorithm>) -> Self {
Self::construct(*okm.len(), |buf| okm.fill(buf)).unwrap()
}
}
/// A context for multi-step (Init-Update-Finish) HMAC signing.
///
/// Use `sign` for single-step HMAC signing.
pub struct Context {
key: Key,
}
impl Clone for Context {
fn clone(&self) -> Self {
Self {
key: self.key.clone(),
}
}
}
unsafe impl Send for Context {}
impl core::fmt::Debug for Context {
fn fmt(&self, f: &mut core::fmt::Formatter) -> Result<(), core::fmt::Error> {
f.debug_struct("Context")
.field("algorithm", &self.key.algorithm.digest_algorithm())
.finish()
}
}
impl Context {
/// Constructs a new HMAC signing context using the given digest algorithm
/// and key.
#[inline]
#[must_use]
pub fn with_key(signing_key: &Key) -> Self {
Self {
key: signing_key.clone(),
}
}
/// Updates the HMAC with all the data in `data`. `update` may be called
/// zero or more times until `finish` is called.
///
/// # Panics
/// Panics if the HMAC cannot be updated
#[inline]
pub fn update(&mut self, data: &[u8]) {
Self::try_update(self, data).expect("HMAC_Update failed");
}
#[inline]
fn try_update(&mut self, data: &[u8]) -> Result<(), Unspecified> {
unsafe {
if 1 != HMAC_Update(self.key.get_hmac_ctx_ptr(), data.as_ptr(), data.len()) {
return Err(Unspecified);
}
}
Ok(())
}
/// Finalizes the HMAC calculation and returns the HMAC value. `sign`
/// consumes the context so it cannot be (mis-)used after `sign` has been
/// called.
///
/// It is generally not safe to implement HMAC verification by comparing
/// the return value of `sign` to a tag. Use `verify` for verification
/// instead.
///
// # FIPS
// Use this method with one of the following algorithms:
// * `HMAC_SHA1_FOR_LEGACY_USE_ONLY`
// * `HMAC_SHA224`
// * `HMAC_SHA256`
// * `HMAC_SHA384`
// * `HMAC_SHA512`
//
/// # Panics
/// Panics if the HMAC calculation cannot be finalized
#[inline]
#[must_use]
pub fn sign(self) -> Tag {
Self::try_sign(self).expect("HMAC_Final failed")
}
#[inline]
fn try_sign(mut self) -> Result<Tag, Unspecified> {
let mut output = [0u8; digest::MAX_OUTPUT_LEN];
let mut out_len = MaybeUninit::<c_uint>::uninit();
unsafe {
if 1 != indicator_check!(HMAC_Final(
self.key.get_hmac_ctx_ptr(),
output.as_mut_ptr(),
out_len.as_mut_ptr(),
)) {
return Err(Unspecified);
}
Ok(Tag {
msg: output,
msg_len: out_len.assume_init() as usize,
})
}
}
}
/// Calculates the HMAC of `data` using the key `key` in one step.
///
/// Use `Context` to calculate HMACs where the input is in multiple parts.
///
/// It is generally not safe to implement HMAC verification by comparing the
/// return value of `sign` to a tag. Use `verify` for verification instead.
//
// # FIPS
// Use this function with one of the following algorithms:
// * `HMAC_SHA1_FOR_LEGACY_USE_ONLY`
// * `HMAC_SHA224`
// * `HMAC_SHA256`
// * `HMAC_SHA384`
// * `HMAC_SHA512`
#[inline]
#[must_use]
pub fn sign(key: &Key, data: &[u8]) -> Tag {
let mut ctx = Context::with_key(key);
ctx.update(data);
ctx.sign()
}
/// Calculates the HMAC of `data` using the signing key `key`, and verifies
/// whether the resultant value equals `tag`, in one step.
///
/// This is logically equivalent to, but more efficient than, constructing a
/// `Key` with the same value as `key` and then using `verify`.
///
/// The verification will be done in constant time to prevent timing attacks.
///
/// # Errors
/// `error::Unspecified` if the inputs are not verified.
//
// # FIPS
// Use this function with one of the following algorithms:
// * `HMAC_SHA1_FOR_LEGACY_USE_ONLY`
// * `HMAC_SHA224`
// * `HMAC_SHA256`
// * `HMAC_SHA384`
// * `HMAC_SHA512`
#[inline]
pub fn verify(key: &Key, data: &[u8], tag: &[u8]) -> Result<(), Unspecified> {
constant_time::verify_slices_are_equal(sign(key, data).as_ref(), tag)
}
#[cfg(test)]
mod tests {
use crate::{hmac, rand};
#[cfg(feature = "fips")]
mod fips;
// Make sure that `Key::generate` and `verify_with_own_key` aren't
// completely wacky.
#[test]
pub fn hmac_signing_key_coverage() {
const HELLO_WORLD_GOOD: &[u8] = b"hello, world";
const HELLO_WORLD_BAD: &[u8] = b"hello, worle";
let rng = rand::SystemRandom::new();
for algorithm in &[
hmac::HMAC_SHA1_FOR_LEGACY_USE_ONLY,
hmac::HMAC_SHA224,
hmac::HMAC_SHA256,
hmac::HMAC_SHA384,
hmac::HMAC_SHA512,
] {
let key = hmac::Key::generate(*algorithm, &rng).unwrap();
let tag = hmac::sign(&key, HELLO_WORLD_GOOD);
println!("{key:?}");
assert!(hmac::verify(&key, HELLO_WORLD_GOOD, tag.as_ref()).is_ok());
assert!(hmac::verify(&key, HELLO_WORLD_BAD, tag.as_ref()).is_err());
}
}
#[test]
fn hmac_coverage() {
// Something would have gone horribly wrong for this to not pass, but we test this so our
// coverage reports will look better.
assert_ne!(hmac::HMAC_SHA256, hmac::HMAC_SHA384);
for &alg in &[
hmac::HMAC_SHA1_FOR_LEGACY_USE_ONLY,
hmac::HMAC_SHA224,
hmac::HMAC_SHA256,
hmac::HMAC_SHA384,
hmac::HMAC_SHA512,
] {
// Clone after updating context with message, then check if the final Tag is the same.
let key = hmac::Key::new(alg, &[0; 32]);
let mut ctx = hmac::Context::with_key(&key);
ctx.update(b"hello, world");
let ctx_clone = ctx.clone();
let orig_tag = ctx.sign();
let clone_tag = ctx_clone.sign();
assert_eq!(orig_tag.as_ref(), clone_tag.as_ref());
assert_eq!(orig_tag.clone().as_ref(), clone_tag.as_ref());
}
}
}