aws_lc_rs/rsa/key.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
// Copyright 2015-2016 Brian Smith.
// SPDX-License-Identifier: ISC
// Modifications copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0 OR ISC
use super::{
encoding,
signature::{compute_rsa_signature, RsaEncoding, RsaPadding},
RsaParameters,
};
#[cfg(feature = "ring-io")]
use crate::io;
#[cfg(feature = "ring-io")]
use crate::ptr::ConstPointer;
use crate::{
digest::{self},
encoding::{AsDer, Pkcs8V1Der},
error::{KeyRejected, Unspecified},
fips::indicator_check,
hex,
ptr::{DetachableLcPtr, LcPtr},
rand,
rsa::PublicEncryptingKey,
sealed::Sealed,
};
#[cfg(feature = "fips")]
use aws_lc::RSA_check_fips;
use aws_lc::{
EVP_DigestSignInit, EVP_PKEY_assign_RSA, EVP_PKEY_bits, EVP_PKEY_new, EVP_PKEY_size,
RSA_generate_key_ex, RSA_generate_key_fips, RSA_new, RSA_set0_key, RSA_size, BIGNUM, EVP_PKEY,
EVP_PKEY_CTX,
};
#[cfg(feature = "ring-io")]
use aws_lc::{RSA_get0_e, RSA_get0_n};
use core::{
fmt::{self, Debug, Formatter},
ptr::null_mut,
};
// TODO: Uncomment when MSRV >= 1.64
// use core::ffi::c_int;
use std::os::raw::c_int;
#[cfg(feature = "ring-io")]
use untrusted::Input;
use zeroize::Zeroize;
/// RSA key-size.
#[allow(clippy::module_name_repetitions)]
#[non_exhaustive]
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum KeySize {
/// 2048-bit key
Rsa2048,
/// 3072-bit key
Rsa3072,
/// 4096-bit key
Rsa4096,
/// 8192-bit key
Rsa8192,
}
#[allow(clippy::len_without_is_empty)]
impl KeySize {
/// Returns the size of the key in bytes.
#[inline]
#[must_use]
pub fn len(self) -> usize {
match self {
Self::Rsa2048 => 256,
Self::Rsa3072 => 384,
Self::Rsa4096 => 512,
Self::Rsa8192 => 1024,
}
}
/// Returns the key size in bits.
#[inline]
pub(super) fn bits(self) -> i32 {
match self {
Self::Rsa2048 => 2048,
Self::Rsa3072 => 3072,
Self::Rsa4096 => 4096,
Self::Rsa8192 => 8192,
}
}
}
/// An RSA key pair, used for signing.
#[allow(clippy::module_name_repetitions)]
pub struct KeyPair {
// https://github.com/aws/aws-lc/blob/ebaa07a207fee02bd68fe8d65f6b624afbf29394/include/openssl/evp.h#L295
// An |EVP_PKEY| object represents a public or private RSA key. A given object may be
// used concurrently on multiple threads by non-mutating functions, provided no
// other thread is concurrently calling a mutating function. Unless otherwise
// documented, functions which take a |const| pointer are non-mutating and
// functions which take a non-|const| pointer are mutating.
pub(super) evp_pkey: LcPtr<EVP_PKEY>,
pub(super) serialized_public_key: PublicKey,
}
impl Sealed for KeyPair {}
unsafe impl Send for KeyPair {}
unsafe impl Sync for KeyPair {}
impl KeyPair {
fn new(evp_pkey: LcPtr<EVP_PKEY>) -> Result<Self, KeyRejected> {
KeyPair::validate_private_key(&evp_pkey)?;
let serialized_public_key = PublicKey::new(&evp_pkey)?;
Ok(KeyPair {
evp_pkey,
serialized_public_key,
})
}
/// Generate a RSA `KeyPair` of the specified key-strength.
///
/// # Errors
/// * `Unspecified`: Any key generation failure.
pub fn generate(size: KeySize) -> Result<Self, Unspecified> {
let private_key = generate_rsa_key(size.bits(), false)?;
Ok(Self::new(private_key)?)
}
/// Generate a RSA `KeyPair` of the specified key-strength.
///
/// Supports the following key sizes:
/// * `SignatureKeySize::Rsa2048`
/// * `SignatureKeySize::Rsa3072`
/// * `SignatureKeySize::Rsa4096`
///
/// # Errors
/// * `Unspecified`: Any key generation failure.
#[cfg(feature = "fips")]
pub fn generate_fips(size: KeySize) -> Result<Self, Unspecified> {
let private_key = generate_rsa_key(size.bits(), true)?;
Ok(Self::new(private_key)?)
}
/// Parses an unencrypted PKCS#8 DER encoded RSA private key.
///
/// Keys can be generated using [`KeyPair::generate`].
///
/// # *ring*-compatibility
///
/// *aws-lc-rs* does not impose the same limitations that *ring* does for
/// RSA keys. Thus signatures may be generated by keys that are not accepted
/// by *ring*. In particular:
/// * RSA private keys ranging between 2048-bit keys and 8192-bit keys are supported.
/// * The public exponent does not have a required minimum size.
///
/// # Errors
/// `error::KeyRejected` if bytes do not encode an RSA private key or if the key is otherwise
/// not acceptable.
pub fn from_pkcs8(pkcs8: &[u8]) -> Result<Self, KeyRejected> {
let key = encoding::pkcs8::decode_der(pkcs8)?;
Self::new(key)
}
/// Parses a DER-encoded `RSAPrivateKey` structure (RFC 8017).
///
/// # Errors
/// `error:KeyRejected` on error.
pub fn from_der(input: &[u8]) -> Result<Self, KeyRejected> {
let key = encoding::rfc8017::decode_private_key_der(input)?;
Self::new(key)
}
/// Returns a boolean indicator if this RSA key is an approved FIPS 140-3 key.
#[cfg(feature = "fips")]
#[must_use]
pub fn is_valid_fips_key(&self) -> bool {
is_valid_fips_key(&self.evp_pkey)
}
fn validate_private_key(key: &LcPtr<EVP_PKEY>) -> Result<(), KeyRejected> {
if !is_rsa_key(key) {
return Err(KeyRejected::unspecified());
};
match key_size_bits(key) {
2048..=8192 => Ok(()),
_ => Err(KeyRejected::unspecified()),
}
}
/// Sign `msg`. `msg` is digested using the digest algorithm from
/// `padding_alg` and the digest is then padded using the padding algorithm
/// from `padding_alg`. The signature it written into `signature`;
/// `signature`'s length must be exactly the length returned by
/// `public_modulus_len()`.
///
/// Many other crypto libraries have signing functions that takes a
/// precomputed digest as input, instead of the message to digest. This
/// function does *not* take a precomputed digest; instead, `sign`
/// calculates the digest itself.
///
/// # *ring* Compatibility
/// Our implementation ignores the `SecureRandom` parameter.
// # FIPS
// The following conditions must be met:
// * RSA Key Sizes: 2048, 3072, 4096
// * Digest Algorithms: SHA256, SHA384, SHA512
//
/// # Errors
/// `error::Unspecified` on error.
/// With "fips" feature enabled, errors if digest length is greater than `u32::MAX`.
pub fn sign(
&self,
padding_alg: &'static dyn RsaEncoding,
_rng: &dyn rand::SecureRandom,
msg: &[u8],
signature: &mut [u8],
) -> Result<(), Unspecified> {
let encoding = padding_alg.encoding();
let mut md_ctx = digest::digest_ctx::DigestContext::new_uninit();
let mut pctx = null_mut::<EVP_PKEY_CTX>();
let digest = digest::match_digest_type(&encoding.digest_algorithm().id);
if 1 != unsafe {
// EVP_DigestSignInit does not mutate |pkey| for thread-safety purposes and may be
// used concurrently with other non-mutating functions on |pkey|.
// https://github.com/aws/aws-lc/blob/9b4b5a15a97618b5b826d742419ccd54c819fa42/include/openssl/evp.h#L297-L313
EVP_DigestSignInit(
md_ctx.as_mut_ptr(),
&mut pctx,
*digest,
null_mut(),
*self.evp_pkey.as_mut_unsafe(),
)
} {
return Err(Unspecified);
}
if let RsaPadding::RSA_PKCS1_PSS_PADDING = encoding.padding() {
// AWS-LC owns pctx, check for null and then immediately detach so we don't drop it.
let pctx = DetachableLcPtr::new(pctx)?.detach();
super::signature::configure_rsa_pkcs1_pss_padding(pctx)?;
}
let max_len = super::signature::get_signature_length(&mut md_ctx)?;
debug_assert!(signature.len() >= max_len);
let computed_signature = compute_rsa_signature(&mut md_ctx, msg, signature)?;
debug_assert!(computed_signature.len() >= signature.len());
Ok(())
}
/// Returns the length in bytes of the key pair's public modulus.
///
/// A signature has the same length as the public modulus.
#[must_use]
pub fn public_modulus_len(&self) -> usize {
// This was already validated to be an RSA key so this can't fail
match self.evp_pkey.get_rsa() {
Ok(rsa) => {
// https://github.com/awslabs/aws-lc/blob/main/include/openssl/rsa.h#L99
unsafe { RSA_size(*rsa.as_const()) as usize }
}
Err(_) => unreachable!(),
}
}
}
impl Debug for KeyPair {
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), fmt::Error> {
f.write_str(&format!(
"RsaKeyPair {{ public_key: {:?} }}",
self.serialized_public_key
))
}
}
impl crate::signature::KeyPair for KeyPair {
type PublicKey = PublicKey;
fn public_key(&self) -> &Self::PublicKey {
&self.serialized_public_key
}
}
impl AsDer<Pkcs8V1Der<'static>> for KeyPair {
fn as_der(&self) -> Result<Pkcs8V1Der<'static>, Unspecified> {
Ok(Pkcs8V1Der::new(encoding::pkcs8::encode_v1_der(
&self.evp_pkey,
)?))
}
}
/// A serialized RSA public key.
#[derive(Clone)]
#[allow(clippy::module_name_repetitions)]
pub struct PublicKey {
key: Box<[u8]>,
#[cfg(feature = "ring-io")]
modulus: Box<[u8]>,
#[cfg(feature = "ring-io")]
exponent: Box<[u8]>,
}
impl Drop for PublicKey {
fn drop(&mut self) {
self.key.zeroize();
#[cfg(feature = "ring-io")]
self.modulus.zeroize();
#[cfg(feature = "ring-io")]
self.exponent.zeroize();
}
}
impl PublicKey {
pub(super) fn new(evp_pkey: &LcPtr<EVP_PKEY>) -> Result<Self, Unspecified> {
let key = encoding::rfc8017::encode_public_key_der(evp_pkey)?;
#[cfg(feature = "ring-io")]
{
let pubkey = evp_pkey.get_rsa()?;
let modulus = ConstPointer::new(unsafe { RSA_get0_n(*pubkey.as_const()) })?;
let modulus = modulus.to_be_bytes().into_boxed_slice();
let exponent = ConstPointer::new(unsafe { RSA_get0_e(*pubkey.as_const()) })?;
let exponent = exponent.to_be_bytes().into_boxed_slice();
Ok(PublicKey {
key,
modulus,
exponent,
})
}
#[cfg(not(feature = "ring-io"))]
Ok(PublicKey { key })
}
}
impl Debug for PublicKey {
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), fmt::Error> {
f.write_str(&format!(
"RsaPublicKey(\"{}\")",
hex::encode(self.key.as_ref())
))
}
}
impl AsRef<[u8]> for PublicKey {
/// DER encode a RSA public key to (RFC 8017) `RSAPublicKey` structure.
fn as_ref(&self) -> &[u8] {
self.key.as_ref()
}
}
#[cfg(feature = "ring-io")]
impl PublicKey {
/// The public modulus (n).
#[must_use]
pub fn modulus(&self) -> io::Positive<'_> {
io::Positive::new_non_empty_without_leading_zeros(Input::from(self.modulus.as_ref()))
}
/// The public exponent (e).
#[must_use]
pub fn exponent(&self) -> io::Positive<'_> {
io::Positive::new_non_empty_without_leading_zeros(Input::from(self.exponent.as_ref()))
}
}
/// Low-level API for RSA public keys.
///
/// When the public key is in DER-encoded PKCS#1 ASN.1 format, it is
/// recommended to use `aws_lc_rs::signature::verify()` with
/// `aws_lc_rs::signature::RSA_PKCS1_*`, because `aws_lc_rs::signature::verify()`
/// will handle the parsing in that case. Otherwise, this function can be used
/// to pass in the raw bytes for the public key components as
/// `untrusted::Input` arguments.
#[allow(clippy::module_name_repetitions)]
#[derive(Clone)]
pub struct PublicKeyComponents<B>
where
B: AsRef<[u8]> + Debug,
{
/// The public modulus, encoded in big-endian bytes without leading zeros.
pub n: B,
/// The public exponent, encoded in big-endian bytes without leading zeros.
pub e: B,
}
impl<B: AsRef<[u8]> + Debug> Debug for PublicKeyComponents<B> {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
f.debug_struct("RsaPublicKeyComponents")
.field("n", &self.n)
.field("e", &self.e)
.finish()
}
}
impl<B: Copy + AsRef<[u8]> + Debug> Copy for PublicKeyComponents<B> {}
impl<B> PublicKeyComponents<B>
where
B: AsRef<[u8]> + Debug,
{
#[inline]
fn build_rsa(&self) -> Result<LcPtr<EVP_PKEY>, ()> {
let n_bytes = self.n.as_ref();
if n_bytes.is_empty() || n_bytes[0] == 0u8 {
return Err(());
}
let n_bn = DetachableLcPtr::try_from(n_bytes)?;
let e_bytes = self.e.as_ref();
if e_bytes.is_empty() || e_bytes[0] == 0u8 {
return Err(());
}
let e_bn = DetachableLcPtr::try_from(e_bytes)?;
let rsa = DetachableLcPtr::new(unsafe { RSA_new() })?;
if 1 != unsafe { RSA_set0_key(*rsa, *n_bn, *e_bn, null_mut()) } {
return Err(());
}
n_bn.detach();
e_bn.detach();
let mut pkey = LcPtr::new(unsafe { EVP_PKEY_new() })?;
if 1 != unsafe { EVP_PKEY_assign_RSA(*pkey.as_mut(), *rsa) } {
return Err(());
}
rsa.detach();
Ok(pkey)
}
/// Verifies that `signature` is a valid signature of `message` using `self`
/// as the public key. `params` determine what algorithm parameters
/// (padding, digest algorithm, key length range, etc.) are used in the
/// verification.
///
/// # Errors
/// `error::Unspecified` if `message` was not verified.
pub fn verify(
&self,
params: &RsaParameters,
message: &[u8],
signature: &[u8],
) -> Result<(), Unspecified> {
let rsa = self.build_rsa()?;
super::signature::verify_rsa_signature(
params.digest_algorithm(),
params.padding(),
&rsa,
message,
signature,
params.bit_size_range(),
)
}
}
impl<B> TryInto<PublicEncryptingKey> for PublicKeyComponents<B>
where
B: AsRef<[u8]> + Debug,
{
type Error = Unspecified;
/// Try to build a `PublicEncryptingKey` from the public key components.
///
/// # Errors
/// `error::Unspecified` if the key failed to verify.
fn try_into(self) -> Result<PublicEncryptingKey, Self::Error> {
let rsa = self.build_rsa()?;
PublicEncryptingKey::new(rsa)
}
}
pub(super) fn generate_rsa_key(size: c_int, fips: bool) -> Result<LcPtr<EVP_PKEY>, Unspecified> {
// We explicitly don't use `EVP_PKEY_keygen`, as it will force usage of either the FIPS or non-FIPS
// keygen function based on the whether the build of AWS-LC had FIPS enbaled. Rather we delegate to the desired
// generation function.
const RSA_F4: u64 = 65537;
let mut rsa = DetachableLcPtr::new(unsafe { RSA_new() })?;
if 1 != if fips {
indicator_check!(unsafe { RSA_generate_key_fips(*rsa.as_mut(), size, null_mut()) })
} else {
let e: LcPtr<BIGNUM> = RSA_F4.try_into()?;
unsafe { RSA_generate_key_ex(*rsa.as_mut(), size, *e.as_const(), null_mut()) }
} {
return Err(Unspecified);
}
let mut evp_pkey = LcPtr::new(unsafe { EVP_PKEY_new() })?;
if 1 != unsafe { EVP_PKEY_assign_RSA(*evp_pkey.as_mut(), *rsa) } {
return Err(Unspecified);
};
rsa.detach();
Ok(evp_pkey)
}
#[cfg(feature = "fips")]
#[must_use]
pub(super) fn is_valid_fips_key(key: &LcPtr<EVP_PKEY>) -> bool {
// This should always be an RSA key and must-never panic.
let rsa_key = key.get_rsa().expect("RSA EVP_PKEY");
1 == unsafe { RSA_check_fips(*rsa_key.as_mut_unsafe()) }
}
pub(super) fn key_size_bytes(key: &LcPtr<EVP_PKEY>) -> usize {
// Safety: RSA modulous byte sizes supported fit an usize
unsafe { EVP_PKEY_size(*key.as_const()) }
.try_into()
.expect("modulous to fit in usize")
}
pub(super) fn key_size_bits(key: &LcPtr<EVP_PKEY>) -> usize {
// Safety: RSA modulous byte sizes supported fit an usize
unsafe { EVP_PKEY_bits(*key.as_const()) }
.try_into()
.expect("modulous to fit in usize")
}
pub(super) fn is_rsa_key(key: &LcPtr<EVP_PKEY>) -> bool {
key.get_rsa().is_ok()
}