aws_lc_rs/pbkdf2.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
// Copyright 2015-2022 Brian Smith.
// SPDX-License-Identifier: ISC
// Modifications copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0 OR ISC
//! PBKDF2 derivation and verification.
//!
//! Use `derive` to derive PBKDF2 outputs. Use `verify` to verify secret
//! against previously-derived outputs.
//!
//! PBKDF2 is specified in [RFC 2898 Section 5.2] with test vectors given in
//! [RFC 6070]. See also [NIST Special Publication 800-132].
//!
//! [RFC 2898 Section 5.2]: https://tools.ietf.org/html/rfc2898#section-5.2
//! [RFC 6070]: https://tools.ietf.org/html/rfc6070
//! [NIST Special Publication 800-132]:
//! http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-132.pdf
//!
//! # Examples
//!
//! ## Password Database Example
//!
//! ```
//! use aws_lc_rs::{digest, pbkdf2};
//! use std::{collections::HashMap, num::NonZeroU32};
//!
//! static PBKDF2_ALG: pbkdf2::Algorithm = pbkdf2::PBKDF2_HMAC_SHA256;
//! const CREDENTIAL_LEN: usize = digest::SHA256_OUTPUT_LEN;
//! pub type Credential = [u8; CREDENTIAL_LEN];
//!
//! enum Error {
//! WrongUsernameOrPassword
//! }
//!
//! struct PasswordDatabase {
//! pbkdf2_iterations: NonZeroU32,
//! db_salt_component: [u8; 16],
//!
//! // Normally this would be a persistent database.
//! storage: HashMap<String, Credential>,
//! }
//!
//! impl PasswordDatabase {
//! pub fn store_password(&mut self, username: &str, password: &str) {
//! let salt = self.salt(username);
//! let mut to_store: Credential = [0u8; CREDENTIAL_LEN];
//! pbkdf2::derive(PBKDF2_ALG, self.pbkdf2_iterations, &salt,
//! password.as_bytes(), &mut to_store);
//! self.storage.insert(String::from(username), to_store);
//! }
//!
//! pub fn verify_password(&self, username: &str, attempted_password: &str)
//! -> Result<(), Error> {
//! match self.storage.get(username) {
//! Some(actual_password) => {
//! let salt = self.salt(username);
//! pbkdf2::verify(PBKDF2_ALG, self.pbkdf2_iterations, &salt,
//! attempted_password.as_bytes(),
//! actual_password)
//! .map_err(|_| Error::WrongUsernameOrPassword)
//! },
//!
//! None => Err(Error::WrongUsernameOrPassword)
//! }
//! }
//!
//! // The salt should have a user-specific component so that an attacker
//! // cannot crack one password for multiple users in the database. It
//! // should have a database-unique component so that an attacker cannot
//! // crack the same user's password across databases in the unfortunate
//! // but common case that the user has used the same password for
//! // multiple systems.
//! fn salt(&self, username: &str) -> Vec<u8> {
//! let mut salt = Vec::with_capacity(self.db_salt_component.len() +
//! username.as_bytes().len());
//! salt.extend(self.db_salt_component.as_ref());
//! salt.extend(username.as_bytes());
//! salt
//! }
//! }
//!
//! fn main() {
//! // Normally these parameters would be loaded from a configuration file.
//! let mut db = PasswordDatabase {
//! pbkdf2_iterations: NonZeroU32::new(100_000).unwrap(),
//! db_salt_component: [
//! // This value was generated from a secure PRNG.
//! 0xd6, 0x26, 0x98, 0xda, 0xf4, 0xdc, 0x50, 0x52,
//! 0x24, 0xf2, 0x27, 0xd1, 0xfe, 0x39, 0x01, 0x8a
//! ],
//! storage: HashMap::new(),
//! };
//!
//! db.store_password("alice", "@74d7]404j|W}6u");
//!
//! // An attempt to log in with the wrong password fails.
//! assert!(db.verify_password("alice", "wrong password").is_err());
//!
//! // Normally there should be an expoentially-increasing delay between
//! // attempts to further protect against online attacks.
//!
//! // An attempt to log in with the right password succeeds.
//! assert!(db.verify_password("alice", "@74d7]404j|W}6u").is_ok());
//! }
use crate::error::Unspecified;
use crate::fips::indicator_check;
use crate::{constant_time, digest, hmac};
use aws_lc::PKCS5_PBKDF2_HMAC;
use core::num::NonZeroU32;
use zeroize::Zeroize;
/// A PBKDF2 algorithm.
///
/// `max_output_len` is computed as u64 instead of usize to prevent overflowing on 32-bit machines.
#[derive(Clone, Copy, PartialEq, Eq)]
pub struct Algorithm {
algorithm: hmac::Algorithm,
max_output_len: u64,
}
/// PBKDF2 using HMAC-SHA1.
pub static PBKDF2_HMAC_SHA1: Algorithm = Algorithm {
algorithm: hmac::HMAC_SHA1_FOR_LEGACY_USE_ONLY,
max_output_len: MAX_USIZE32 * digest::SHA1_OUTPUT_LEN as u64,
};
/// PBKDF2 using HMAC-SHA256.
pub static PBKDF2_HMAC_SHA256: Algorithm = Algorithm {
algorithm: hmac::HMAC_SHA256,
max_output_len: MAX_USIZE32 * digest::SHA256_OUTPUT_LEN as u64,
};
/// PBKDF2 using HMAC-SHA384.
pub static PBKDF2_HMAC_SHA384: Algorithm = Algorithm {
algorithm: hmac::HMAC_SHA384,
max_output_len: MAX_USIZE32 * digest::SHA384_OUTPUT_LEN as u64,
};
/// PBKDF2 using HMAC-SHA512.
pub static PBKDF2_HMAC_SHA512: Algorithm = Algorithm {
algorithm: hmac::HMAC_SHA512,
max_output_len: MAX_USIZE32 * digest::SHA512_OUTPUT_LEN as u64,
};
const MAX_USIZE32: u64 = u32::MAX as u64;
/// Fills `out` with the key derived using PBKDF2 with the given inputs.
///
/// Do not use `derive` as part of verifying a secret; use `verify` instead, to
/// minimize the effectiveness of timing attacks.
///
/// `out.len()` must be no larger than the digest length * (2**32 - 1), per the
/// PBKDF2 specification.
///
/// | Parameter | RFC 2898 Section 5.2 Term
/// |-------------|-------------------------------------------
/// | `digest_alg` | PRF (HMAC with the given digest algorithm)
/// | `iterations` | c (iteration count)
/// | `salt` | S (salt)
/// | `secret` | P (password)
/// | `out` | dk (derived key)
/// | `out.len()` | dkLen (derived key length)
///
/// # Panics
///
/// `derive` panics if `out.len()` is larger than (2**32 - 1) * the digest
/// algorithm's output length, per the PBKDF2 specification.
//
// # FIPS
// The following conditions must be met:
// * Algorithm is one of the following:
// * `PBKDF2_HMAC_SHA1`
// * `PBKDF2_HMAC_SHA256`
// * `PBKDF2_HMAC_SHA384`
// * `PBKDF2_HMAC_SHA512`
// * `salt.len()` >= 16
// * `sercet.len()` >= 14
// * `iterations` >= 1000
#[inline]
pub fn derive(
algorithm: Algorithm,
iterations: NonZeroU32,
salt: &[u8],
secret: &[u8],
out: &mut [u8],
) {
try_derive(algorithm, iterations, salt, secret, out).expect("pbkdf2 derive failed");
}
#[inline]
fn try_derive(
algorithm: Algorithm,
iterations: NonZeroU32,
salt: &[u8],
secret: &[u8],
out: &mut [u8],
) -> Result<(), Unspecified> {
assert!(
out.len() as u64 <= algorithm.max_output_len,
"derived key too long"
);
if 1 != indicator_check!(unsafe {
PKCS5_PBKDF2_HMAC(
secret.as_ptr().cast(),
secret.len(),
salt.as_ptr(),
salt.len(),
iterations.get(),
*digest::match_digest_type(&algorithm.algorithm.digest_algorithm().id),
out.len(),
out.as_mut_ptr(),
)
}) {
return Err(Unspecified);
}
Ok(())
}
/// Verifies that a previously-derived (e.g., using `derive`) PBKDF2 value
/// matches the PBKDF2 value derived from the other inputs.
///
/// The comparison is done in constant time to prevent timing attacks. The
/// comparison will fail if `previously_derived` is empty (has a length of
/// zero).
///
/// | Parameter | RFC 2898 Section 5.2 Term
/// |----------------------------|--------------------------------------------
/// | `digest_alg` | PRF (HMAC with the given digest algorithm).
/// | `iterations` | c (iteration count)
/// | `salt` | S (salt)
/// | `secret` | P (password)
/// | `previously_derived` | dk (derived key)
/// | `previously_derived.len()` | dkLen (derived key length)
///
/// # Errors
/// `error::Unspecified` is the inputs were not verified.
///
/// # Panics
///
/// `verify` panics if `previously_derived.len()` is larger than (2**32 - 1) * the digest
/// algorithm's output length, per the PBKDF2 specification.
//
// # FIPS
// The following conditions must be met:
// * Algorithm is one of the following:
// * `PBKDF2_HMAC_SHA1`
// * `PBKDF2_HMAC_SHA256`
// * `PBKDF2_HMAC_SHA384`
// * `PBKDF2_HMAC_SHA512`
// * `salt.len()` >= 16
// * `secret.len()` >= 14
// * `iterations` >= 1000
#[inline]
pub fn verify(
algorithm: Algorithm,
iterations: NonZeroU32,
salt: &[u8],
secret: &[u8],
previously_derived: &[u8],
) -> Result<(), Unspecified> {
if previously_derived.is_empty() {
return Err(Unspecified);
}
assert!(
previously_derived.len() as u64 <= algorithm.max_output_len,
"derived key too long"
);
// Create a vector with the expected output length.
let mut derived_buf = vec![0u8; previously_derived.len()];
try_derive(algorithm, iterations, salt, secret, &mut derived_buf)?;
let result = constant_time::verify_slices_are_equal(&derived_buf, previously_derived);
derived_buf.zeroize();
result
}
#[cfg(test)]
mod tests {
use crate::pbkdf2;
use core::num::NonZeroU32;
#[cfg(feature = "fips")]
mod fips;
#[test]
fn pbkdf2_coverage() {
// Coverage sanity check.
assert!(pbkdf2::PBKDF2_HMAC_SHA256 == pbkdf2::PBKDF2_HMAC_SHA256);
assert!(pbkdf2::PBKDF2_HMAC_SHA256 != pbkdf2::PBKDF2_HMAC_SHA384);
let iterations = NonZeroU32::new(100_u32).unwrap();
for &alg in &[
pbkdf2::PBKDF2_HMAC_SHA1,
pbkdf2::PBKDF2_HMAC_SHA256,
pbkdf2::PBKDF2_HMAC_SHA384,
pbkdf2::PBKDF2_HMAC_SHA512,
] {
let mut out = vec![0u8; 64];
pbkdf2::derive(alg, iterations, b"salt", b"password", &mut out);
let alg_clone = alg;
let mut out2 = vec![0u8; 64];
pbkdf2::derive(alg_clone, iterations, b"salt", b"password", &mut out2);
assert_eq!(out, out2);
}
}
}