aws_lc_rs/rsa/encryption/
oaep.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
// Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0 OR ISC

#![allow(clippy::module_name_repetitions)]

use super::{EncryptionAlgorithmId, PrivateDecryptingKey, PublicEncryptingKey};
use crate::{
    error::Unspecified,
    fips::indicator_check,
    ptr::{DetachableLcPtr, LcPtr},
};
use aws_lc::{
    EVP_PKEY_CTX_set0_rsa_oaep_label, EVP_PKEY_CTX_set_rsa_mgf1_md, EVP_PKEY_CTX_set_rsa_oaep_md,
    EVP_PKEY_CTX_set_rsa_padding, EVP_PKEY_decrypt, EVP_PKEY_decrypt_init, EVP_PKEY_encrypt,
    EVP_PKEY_encrypt_init, EVP_sha1, EVP_sha256, EVP_sha384, EVP_sha512, OPENSSL_malloc, EVP_MD,
    EVP_PKEY_CTX, RSA_PKCS1_OAEP_PADDING,
};
use core::{fmt::Debug, mem::size_of_val, ptr::null_mut};

/// RSA-OAEP with SHA1 Hash and SHA1 MGF1
pub const OAEP_SHA1_MGF1SHA1: OaepAlgorithm = OaepAlgorithm {
    id: EncryptionAlgorithmId::OaepSha1Mgf1sha1,
    oaep_hash_fn: EVP_sha1,
    mgf1_hash_fn: EVP_sha1,
};

/// RSA-OAEP with SHA256 Hash and SHA256 MGF1
pub const OAEP_SHA256_MGF1SHA256: OaepAlgorithm = OaepAlgorithm {
    id: EncryptionAlgorithmId::OaepSha256Mgf1sha256,
    oaep_hash_fn: EVP_sha256,
    mgf1_hash_fn: EVP_sha256,
};

/// RSA-OAEP with SHA384 Hash and SHA384  MGF1
pub const OAEP_SHA384_MGF1SHA384: OaepAlgorithm = OaepAlgorithm {
    id: EncryptionAlgorithmId::OaepSha384Mgf1sha384,
    oaep_hash_fn: EVP_sha384,
    mgf1_hash_fn: EVP_sha384,
};

/// RSA-OAEP with SHA512 Hash and SHA512 MGF1
pub const OAEP_SHA512_MGF1SHA512: OaepAlgorithm = OaepAlgorithm {
    id: EncryptionAlgorithmId::OaepSha512Mgf1sha512,
    oaep_hash_fn: EVP_sha512,
    mgf1_hash_fn: EVP_sha512,
};

type OaepHashFn = unsafe extern "C" fn() -> *const EVP_MD;
type Mgf1HashFn = unsafe extern "C" fn() -> *const EVP_MD;

/// An RSA-OAEP algorithm.
pub struct OaepAlgorithm {
    id: EncryptionAlgorithmId,
    oaep_hash_fn: OaepHashFn,
    mgf1_hash_fn: Mgf1HashFn,
}

impl OaepAlgorithm {
    /// Returns the `EncryptionAlgorithmId`.
    #[must_use]
    pub fn id(&self) -> EncryptionAlgorithmId {
        self.id
    }

    #[inline]
    fn oaep_hash_fn(&self) -> OaepHashFn {
        self.oaep_hash_fn
    }

    #[inline]
    fn mgf1_hash_fn(&self) -> Mgf1HashFn {
        self.mgf1_hash_fn
    }
}

impl Debug for OaepAlgorithm {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        Debug::fmt(&self.id, f)
    }
}

/// An RSA-OAEP public key for encryption.
pub struct OaepPublicEncryptingKey {
    public_key: PublicEncryptingKey,
}

impl OaepPublicEncryptingKey {
    /// Constructs an `OaepPublicEncryptingKey` from a `PublicEncryptingKey`.
    /// # Errors
    /// * `Unspecified`: Any error that occurs while attempting to construct an RSA-OAEP public key.
    pub fn new(public_key: PublicEncryptingKey) -> Result<Self, Unspecified> {
        Ok(Self { public_key })
    }

    /// Encrypts the contents in `plaintext` and writes the corresponding ciphertext to `ciphertext`.
    /// Returns the subslice of `ciphertext` containing the ciphertext output.
    ///
    /// # Max Plaintext Length
    /// The provided length of `plaintext` must be at most [`Self::max_plaintext_size`].
    ///
    /// # Sizing `output`
    /// For `OAEP_SHA1_MGF1SHA1`, `OAEP_SHA256_MGF1SHA256`, `OAEP_SHA384_MGF1SHA384`, `OAEP_SHA512_MGF1SHA512` The
    /// length of `output` must be greater then or equal to [`Self::ciphertext_size`].
    ///
    /// # Errors
    /// * `Unspecified` for any error that occurs while encrypting `plaintext`.
    pub fn encrypt<'ciphertext>(
        &self,
        algorithm: &'static OaepAlgorithm,
        plaintext: &[u8],
        ciphertext: &'ciphertext mut [u8],
        label: Option<&[u8]>,
    ) -> Result<&'ciphertext mut [u8], Unspecified> {
        let mut pkey_ctx = self.public_key.0.create_EVP_PKEY_CTX()?;

        if 1 != unsafe { EVP_PKEY_encrypt_init(*pkey_ctx.as_mut()) } {
            return Err(Unspecified);
        }

        configure_oaep_crypto_operation(
            &mut pkey_ctx,
            algorithm.oaep_hash_fn(),
            algorithm.mgf1_hash_fn(),
            label,
        )?;

        let mut out_len = ciphertext.len();

        if 1 != indicator_check!(unsafe {
            EVP_PKEY_encrypt(
                *pkey_ctx.as_mut(),
                ciphertext.as_mut_ptr(),
                &mut out_len,
                plaintext.as_ptr(),
                plaintext.len(),
            )
        }) {
            return Err(Unspecified);
        };

        Ok(&mut ciphertext[..out_len])
    }

    /// Returns the RSA key size in bytes.
    #[must_use]
    pub fn key_size_bytes(&self) -> usize {
        self.public_key.key_size_bytes()
    }

    /// Returns the RSA key size in bits.
    #[must_use]
    pub fn key_size_bits(&self) -> usize {
        self.public_key.key_size_bits()
    }

    /// Returns the max plaintext that could be decrypted using this key and with the provided algorithm.
    #[must_use]
    pub fn max_plaintext_size(&self, algorithm: &'static OaepAlgorithm) -> usize {
        #[allow(unreachable_patterns)]
        let hash_len: usize = match algorithm.id() {
            EncryptionAlgorithmId::OaepSha1Mgf1sha1 => 20,
            EncryptionAlgorithmId::OaepSha256Mgf1sha256 => 32,
            EncryptionAlgorithmId::OaepSha384Mgf1sha384 => 48,
            EncryptionAlgorithmId::OaepSha512Mgf1sha512 => 64,
            _ => unreachable!(),
        };

        // The RSA-OAEP algorithms we support use the hashing algorithm for the hash and mgf1 functions.
        self.key_size_bytes() - 2 * hash_len - 2
    }

    /// Returns the max ciphertext size that will be output by `Self::encrypt`.
    #[must_use]
    pub fn ciphertext_size(&self) -> usize {
        self.key_size_bytes()
    }
}

impl Debug for OaepPublicEncryptingKey {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        f.debug_struct("OaepPublicEncryptingKey")
            .finish_non_exhaustive()
    }
}

/// An RSA-OAEP private key for decryption.
pub struct OaepPrivateDecryptingKey {
    private_key: PrivateDecryptingKey,
}

impl OaepPrivateDecryptingKey {
    /// Constructs an `OaepPrivateDecryptingKey` from a `PrivateDecryptingKey`.
    /// # Errors
    /// * `Unspecified`: Any error that occurs while attempting to construct an RSA-OAEP public key.
    pub fn new(private_key: PrivateDecryptingKey) -> Result<Self, Unspecified> {
        Ok(Self { private_key })
    }

    /// Decrypts the contents in `ciphertext` and writes the corresponding plaintext to `plaintext`.
    /// Returns the subslice of `plaintext` containing the plaintext output.
    ///
    /// # Max Ciphertext Length
    /// The provided length of `ciphertext` must be [`Self::key_size_bytes`].
    ///
    /// # Sizing `output`
    /// For `OAEP_SHA1_MGF1SHA1`, `OAEP_SHA256_MGF1SHA256`, `OAEP_SHA384_MGF1SHA384`, `OAEP_SHA512_MGF1SHA512`. The
    /// length of `output` must be greater then or equal to [`Self::min_output_size`].
    ///
    /// # Errors
    /// * `Unspecified` for any error that occurs while decrypting `ciphertext`.
    pub fn decrypt<'plaintext>(
        &self,
        algorithm: &'static OaepAlgorithm,
        ciphertext: &[u8],
        plaintext: &'plaintext mut [u8],
        label: Option<&[u8]>,
    ) -> Result<&'plaintext mut [u8], Unspecified> {
        let mut pkey_ctx = self.private_key.0.create_EVP_PKEY_CTX()?;

        if 1 != unsafe { EVP_PKEY_decrypt_init(*pkey_ctx.as_mut()) } {
            return Err(Unspecified);
        }

        configure_oaep_crypto_operation(
            &mut pkey_ctx,
            algorithm.oaep_hash_fn(),
            algorithm.mgf1_hash_fn(),
            label,
        )?;

        let mut out_len = plaintext.len();

        if 1 != indicator_check!(unsafe {
            EVP_PKEY_decrypt(
                *pkey_ctx.as_mut(),
                plaintext.as_mut_ptr(),
                &mut out_len,
                ciphertext.as_ptr(),
                ciphertext.len(),
            )
        }) {
            return Err(Unspecified);
        };

        Ok(&mut plaintext[..out_len])
    }

    /// Returns the RSA key size in bytes.
    #[must_use]
    pub fn key_size_bytes(&self) -> usize {
        self.private_key.key_size_bytes()
    }

    /// Returns the RSA key size in bits.
    #[must_use]
    pub fn key_size_bits(&self) -> usize {
        self.private_key.key_size_bits()
    }

    /// Returns the minimum plaintext buffer size required for `Self::decrypt`.
    #[must_use]
    pub fn min_output_size(&self) -> usize {
        self.key_size_bytes()
    }
}

impl Debug for OaepPrivateDecryptingKey {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        f.debug_struct("OaepPrivateDecryptingKey")
            .finish_non_exhaustive()
    }
}

fn configure_oaep_crypto_operation(
    evp_pkey_ctx: &mut LcPtr<EVP_PKEY_CTX>,
    oaep_hash_fn: OaepHashFn,
    mgf1_hash_fn: Mgf1HashFn,
    label: Option<&[u8]>,
) -> Result<(), Unspecified> {
    if 1 != unsafe { EVP_PKEY_CTX_set_rsa_padding(*evp_pkey_ctx.as_mut(), RSA_PKCS1_OAEP_PADDING) }
    {
        return Err(Unspecified);
    };

    if 1 != unsafe { EVP_PKEY_CTX_set_rsa_oaep_md(*evp_pkey_ctx.as_mut(), oaep_hash_fn()) } {
        return Err(Unspecified);
    };

    if 1 != unsafe { EVP_PKEY_CTX_set_rsa_mgf1_md(*evp_pkey_ctx.as_mut(), mgf1_hash_fn()) } {
        return Err(Unspecified);
    };

    let label = label.unwrap_or(&[0u8; 0]);

    if label.is_empty() {
        // Safety: Don't pass zero-length slice pointers to C code :)
        if 1 != unsafe { EVP_PKEY_CTX_set0_rsa_oaep_label(*evp_pkey_ctx.as_mut(), null_mut(), 0) } {
            return Err(Unspecified);
        }
        return Ok(());
    }

    // AWS-LC takes ownership of the label memory, and will call OPENSSL_free, so we are forced to copy it for now.
    let mut label_ptr =
        DetachableLcPtr::<u8>::new(unsafe { OPENSSL_malloc(size_of_val(label)) }.cast())?;

    {
        // memcpy the label data into the AWS-LC allocation
        let label_ptr =
            unsafe { core::slice::from_raw_parts_mut(*label_ptr.as_mut(), label.len()) };
        label_ptr.copy_from_slice(label);
    }

    if 1 != unsafe {
        EVP_PKEY_CTX_set0_rsa_oaep_label(*evp_pkey_ctx.as_mut(), *label_ptr, label.len())
    } {
        return Err(Unspecified);
    };

    // AWS-LC owns the allocation now, so we detach it to avoid freeing it here when label_ptr goes out of scope.
    label_ptr.detach();

    Ok(())
}