aws_sdk_kms/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
#![allow(deprecated)]
#![allow(unknown_lints)]
#![allow(clippy::module_inception)]
#![allow(clippy::upper_case_acronyms)]
#![allow(clippy::large_enum_variant)]
#![allow(clippy::wrong_self_convention)]
#![allow(clippy::should_implement_trait)]
#![allow(clippy::disallowed_names)]
#![allow(clippy::vec_init_then_push)]
#![allow(clippy::type_complexity)]
#![allow(clippy::needless_return)]
#![allow(clippy::derive_partial_eq_without_eq)]
#![allow(clippy::result_large_err)]
#![allow(clippy::unnecessary_map_on_constructor)]
#![allow(rustdoc::bare_urls)]
#![allow(rustdoc::redundant_explicit_links)]
#![forbid(unsafe_code)]
#![warn(missing_docs)]
#![cfg_attr(docsrs, feature(doc_auto_cfg))]
//! Key Management Service (KMS) is an encryption and key management web service. This guide describes the KMS operations that you can call programmatically. For general information about KMS, see the [_Key Management Service Developer Guide_](https://docs.aws.amazon.com/kms/latest/developerguide/).
//!
//! We recommend that you use the Amazon Web Services SDKs to make programmatic API calls to KMS.
//!
//! If you need to use FIPS 140-2 validated cryptographic modules when communicating with Amazon Web Services, use the FIPS endpoint in your preferred Amazon Web Services Region. For more information about the available FIPS endpoints, see [Service endpoints](https://docs.aws.amazon.com/general/latest/gr/kms.html#kms_region) in the Key Management Service topic of the _Amazon Web Services General Reference_.
//!
//! All KMS API calls must be signed and be transmitted using Transport Layer Security (TLS). KMS recommends you always use the latest supported TLS version. Clients must also support cipher suites with Perfect Forward Secrecy (PFS) such as Ephemeral Diffie-Hellman (DHE) or Elliptic Curve Ephemeral Diffie-Hellman (ECDHE). Most modern systems such as Java 7 and later support these modes.
//!
//! __Signing Requests__
//!
//! Requests must be signed using an access key ID and a secret access key. We strongly recommend that you do not use your Amazon Web Services account root access key ID and secret access key for everyday work. You can use the access key ID and secret access key for an IAM user or you can use the Security Token Service (STS) to generate temporary security credentials and use those to sign requests.
//!
//! All KMS requests must be signed with [Signature Version 4](https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html).
//!
//! __Logging API Requests__
//!
//! KMS supports CloudTrail, a service that logs Amazon Web Services API calls and related events for your Amazon Web Services account and delivers them to an Amazon S3 bucket that you specify. By using the information collected by CloudTrail, you can determine what requests were made to KMS, who made the request, when it was made, and so on. To learn more about CloudTrail, including how to turn it on and find your log files, see the [CloudTrail User Guide](https://docs.aws.amazon.com/awscloudtrail/latest/userguide/).
//!
//! __Additional Resources__
//!
//! For more information about credentials and request signing, see the following:
//! - [Amazon Web Services Security Credentials](https://docs.aws.amazon.com/general/latest/gr/aws-security-credentials.html) - This topic provides general information about the types of credentials used to access Amazon Web Services.
//! - [Temporary Security Credentials](https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html) - This section of the _IAM User Guide_ describes how to create and use temporary security credentials.
//! - [Signature Version 4 Signing Process](https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html) - This set of topics walks you through the process of signing a request using an access key ID and a secret access key.
//!
//! __Commonly Used API Operations__
//!
//! Of the API operations discussed in this guide, the following will prove the most useful for most applications. You will likely perform operations other than these, such as creating keys and assigning policies, by using the console.
//! - Encrypt
//! - Decrypt
//! - GenerateDataKey
//! - GenerateDataKeyWithoutPlaintext
//!
//! ## Getting Started
//!
//! > Examples are available for many services and operations, check out the
//! > [examples folder in GitHub](https://github.com/awslabs/aws-sdk-rust/tree/main/examples).
//!
//! The SDK provides one crate per AWS service. You must add [Tokio](https://crates.io/crates/tokio)
//! as a dependency within your Rust project to execute asynchronous code. To add `aws-sdk-kms` to
//! your project, add the following to your **Cargo.toml** file:
//!
//! ```toml
//! [dependencies]
//! aws-config = { version = "1.1.7", features = ["behavior-version-latest"] }
//! aws-sdk-kms = "1.50.0"
//! tokio = { version = "1", features = ["full"] }
//! ```
//!
//! Then in code, a client can be created with the following:
//!
//! ```rust,no_run
//! use aws_sdk_kms as kms;
//!
//! #[::tokio::main]
//! async fn main() -> Result<(), kms::Error> {
//! let config = aws_config::load_from_env().await;
//! let client = aws_sdk_kms::Client::new(&config);
//!
//! // ... make some calls with the client
//!
//! Ok(())
//! }
//! ```
//!
//! See the [client documentation](https://docs.rs/aws-sdk-kms/latest/aws_sdk_kms/client/struct.Client.html)
//! for information on what calls can be made, and the inputs and outputs for each of those calls.
//!
//! ## Using the SDK
//!
//! Until the SDK is released, we will be adding information about using the SDK to the
//! [Developer Guide](https://docs.aws.amazon.com/sdk-for-rust/latest/dg/welcome.html). Feel free to suggest
//! additional sections for the guide by opening an issue and describing what you are trying to do.
//!
//! ## Getting Help
//!
//! * [GitHub discussions](https://github.com/awslabs/aws-sdk-rust/discussions) - For ideas, RFCs & general questions
//! * [GitHub issues](https://github.com/awslabs/aws-sdk-rust/issues/new/choose) - For bug reports & feature requests
//! * [Generated Docs (latest version)](https://awslabs.github.io/aws-sdk-rust/)
//! * [Usage examples](https://github.com/awslabs/aws-sdk-rust/tree/main/examples)
//!
//!
//! # Crate Organization
//!
//! The entry point for most customers will be [`Client`], which exposes one method for each API
//! offered by AWS Key Management Service. The return value of each of these methods is a "fluent builder",
//! where the different inputs for that API are added by builder-style function call chaining,
//! followed by calling `send()` to get a [`Future`](std::future::Future) that will result in
//! either a successful output or a [`SdkError`](crate::error::SdkError).
//!
//! Some of these API inputs may be structs or enums to provide more complex structured information.
//! These structs and enums live in [`types`](crate::types). There are some simpler types for
//! representing data such as date times or binary blobs that live in [`primitives`](crate::primitives).
//!
//! All types required to configure a client via the [`Config`](crate::Config) struct live
//! in [`config`](crate::config).
//!
//! The [`operation`](crate::operation) module has a submodule for every API, and in each submodule
//! is the input, output, and error type for that API, as well as builders to construct each of those.
//!
//! There is a top-level [`Error`](crate::Error) type that encompasses all the errors that the
//! client can return. Any other error type can be converted to this `Error` type via the
//! [`From`](std::convert::From) trait.
//!
//! The other modules within this crate are not required for normal usage.
// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
pub use error_meta::Error;
#[doc(inline)]
pub use config::Config;
/// Client for calling AWS Key Management Service.
/// ## Constructing a `Client`
///
/// A [`Config`] is required to construct a client. For most use cases, the [`aws-config`]
/// crate should be used to automatically resolve this config using
/// [`aws_config::load_from_env()`], since this will resolve an [`SdkConfig`] which can be shared
/// across multiple different AWS SDK clients. This config resolution process can be customized
/// by calling [`aws_config::from_env()`] instead, which returns a [`ConfigLoader`] that uses
/// the [builder pattern] to customize the default config.
///
/// In the simplest case, creating a client looks as follows:
/// ```rust,no_run
/// # async fn wrapper() {
/// let config = aws_config::load_from_env().await;
/// let client = aws_sdk_kms::Client::new(&config);
/// # }
/// ```
///
/// Occasionally, SDKs may have additional service-specific values that can be set on the [`Config`] that
/// is absent from [`SdkConfig`], or slightly different settings for a specific client may be desired.
/// The [`Builder`](crate::config::Builder) struct implements `From<&SdkConfig>`, so setting these specific settings can be
/// done as follows:
///
/// ```rust,no_run
/// # async fn wrapper() {
/// let sdk_config = ::aws_config::load_from_env().await;
/// let config = aws_sdk_kms::config::Builder::from(&sdk_config)
/// # /*
/// .some_service_specific_setting("value")
/// # */
/// .build();
/// # }
/// ```
///
/// See the [`aws-config` docs] and [`Config`] for more information on customizing configuration.
///
/// _Note:_ Client construction is expensive due to connection thread pool initialization, and should
/// be done once at application start-up.
///
/// [`Config`]: crate::Config
/// [`ConfigLoader`]: https://docs.rs/aws-config/*/aws_config/struct.ConfigLoader.html
/// [`SdkConfig`]: https://docs.rs/aws-config/*/aws_config/struct.SdkConfig.html
/// [`aws-config` docs]: https://docs.rs/aws-config/*
/// [`aws-config`]: https://crates.io/crates/aws-config
/// [`aws_config::from_env()`]: https://docs.rs/aws-config/*/aws_config/fn.from_env.html
/// [`aws_config::load_from_env()`]: https://docs.rs/aws-config/*/aws_config/fn.load_from_env.html
/// [builder pattern]: https://rust-lang.github.io/api-guidelines/type-safety.html#builders-enable-construction-of-complex-values-c-builder
/// # Using the `Client`
///
/// A client has a function for every operation that can be performed by the service.
/// For example, the [`CancelKeyDeletion`](crate::operation::cancel_key_deletion) operation has
/// a [`Client::cancel_key_deletion`], function which returns a builder for that operation.
/// The fluent builder ultimately has a `send()` function that returns an async future that
/// returns a result, as illustrated below:
///
/// ```rust,ignore
/// let result = client.cancel_key_deletion()
/// .key_id("example")
/// .send()
/// .await;
/// ```
///
/// The underlying HTTP requests that get made by this can be modified with the `customize_operation`
/// function on the fluent builder. See the [`customize`](crate::client::customize) module for more
/// information.
pub mod client;
/// Configuration for AWS Key Management Service.
pub mod config;
/// Common errors and error handling utilities.
pub mod error;
mod error_meta;
/// Information about this crate.
pub mod meta;
/// All operations that this crate can perform.
pub mod operation;
/// Primitives such as `Blob` or `DateTime` used by other types.
pub mod primitives;
/// Data structures used by operation inputs/outputs.
pub mod types;
mod auth_plugin;
pub(crate) mod protocol_serde;
mod serialization_settings;
mod endpoint_lib;
mod lens;
mod sdk_feature_tracker;
mod json_errors;
mod serde_util;
#[doc(inline)]
pub use client::Client;