1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
/*
 * Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
 * SPDX-License-Identifier: Apache-2.0
 */

//! Provides types to support stream-like operations for paginators.

use crate::future::pagination_stream::collect::sealed::Collectable;
use std::future::Future;
use std::pin::Pin;
use std::task::{Context, Poll};

pub mod collect;
pub mod fn_stream;
use fn_stream::FnStream;

/// Stream specifically made to support paginators.
///
/// `PaginationStream` provides two primary mechanisms for accessing stream of data.
/// 1. With [`.next()`](PaginationStream::next) (or [`try_next()`](PaginationStream::try_next)):
///
/// ```no_run
/// # async fn docs() {
/// # use aws_smithy_async::future::pagination_stream::PaginationStream;
/// # fn operation_to_yield_paginator<T>() -> PaginationStream<T> {
/// #     todo!()
/// # }
/// # struct Page;
/// let mut stream: PaginationStream<Page> = operation_to_yield_paginator();
/// while let Some(page) = stream.next().await {
///     // process `page`
/// }
/// # }
/// ```
/// 2. With [`.collect()`](PaginationStream::collect) (or [`try_collect()`](PaginationStream::try_collect)):
///
/// ```no_run
/// # async fn docs() {
/// # use aws_smithy_async::future::pagination_stream::PaginationStream;
/// # fn operation_to_yield_paginator<T>() -> PaginationStream<T> {
/// #     todo!()
/// # }
/// # struct Page;
/// let mut stream: PaginationStream<Page> = operation_to_yield_paginator();
/// let result = stream.collect::<Vec<Page>>().await;
/// # }
/// ```
///
/// [`PaginationStream`] is implemented in terms of [`FnStream`], but the latter is meant to be
/// used internally and not by external users.
#[derive(Debug)]
pub struct PaginationStream<Item>(FnStream<Item>);

impl<Item> PaginationStream<Item> {
    /// Creates a `PaginationStream` from the given [`FnStream`].
    pub fn new(stream: FnStream<Item>) -> Self {
        Self(stream)
    }

    /// Consumes and returns the next `Item` from this stream.
    pub async fn next(&mut self) -> Option<Item> {
        self.0.next().await
    }

    /// Poll an item from the stream
    pub fn poll_next(&mut self, cx: &mut Context<'_>) -> Poll<Option<Item>> {
        Pin::new(&mut self.0).poll_next(cx)
    }

    /// Consumes this stream and gathers elements into a collection.
    pub async fn collect<T: Collectable<Item>>(self) -> T {
        self.0.collect().await
    }
}

impl<T, E> PaginationStream<Result<T, E>> {
    /// Yields the next item in the stream or returns an error if an error is encountered.
    pub async fn try_next(&mut self) -> Result<Option<T>, E> {
        self.next().await.transpose()
    }

    /// Convenience method for `.collect::<Result<Vec<_>, _>()`.
    pub async fn try_collect(self) -> Result<Vec<T>, E> {
        self.collect::<Result<Vec<T>, E>>().await
    }
}

/// Utility wrapper to flatten paginated results
///
/// When flattening paginated results, it's most convenient to produce an iterator where the `Result`
/// is present in each item. This provides `items()` which can wrap an stream of `Result<Page, Err>`
/// and produce a stream of `Result<Item, Err>`.
#[derive(Debug)]
pub struct TryFlatMap<Page, Err>(PaginationStream<Result<Page, Err>>);

impl<Page, Err> TryFlatMap<Page, Err> {
    /// Creates a `TryFlatMap` that wraps the input.
    pub fn new(stream: PaginationStream<Result<Page, Err>>) -> Self {
        Self(stream)
    }

    /// Produces a new [`PaginationStream`] by mapping this stream with `map` then flattening the result.
    pub fn flat_map<M, Item, Iter>(mut self, map: M) -> PaginationStream<Result<Item, Err>>
    where
        Page: Send + 'static,
        Err: Send + 'static,
        M: Fn(Page) -> Iter + Send + 'static,
        Item: Send + 'static,
        Iter: IntoIterator<Item = Item> + Send,
        <Iter as IntoIterator>::IntoIter: Send,
    {
        PaginationStream::new(FnStream::new(|tx| {
            Box::pin(async move {
                while let Some(page) = self.0.next().await {
                    match page {
                        Ok(page) => {
                            let mapped = map(page);
                            for item in mapped.into_iter() {
                                let _ = tx.send(Ok(item)).await;
                            }
                        }
                        Err(e) => {
                            let _ = tx.send(Err(e)).await;
                            break;
                        }
                    }
                }
            }) as Pin<Box<dyn Future<Output = ()> + Send>>
        }))
    }
}

#[cfg(test)]
mod test {
    use crate::future::pagination_stream::{FnStream, PaginationStream, TryFlatMap};
    use std::sync::{Arc, Mutex};
    use std::time::Duration;

    /// basic test of FnStream functionality
    #[tokio::test]
    async fn fn_stream_returns_results() {
        tokio::time::pause();
        let mut stream = FnStream::new(|tx| {
            Box::pin(async move {
                tx.send("1").await.expect("failed to send");
                tokio::time::sleep(Duration::from_secs(1)).await;
                tokio::time::sleep(Duration::from_secs(1)).await;
                tx.send("2").await.expect("failed to send");
                tokio::time::sleep(Duration::from_secs(1)).await;
                tx.send("3").await.expect("failed to send");
            })
        });
        let mut out = vec![];
        while let Some(value) = stream.next().await {
            out.push(value);
        }
        assert_eq!(vec!["1", "2", "3"], out);
    }

    #[tokio::test]
    async fn fn_stream_try_next() {
        tokio::time::pause();
        let mut stream = FnStream::new(|tx| {
            Box::pin(async move {
                tx.send(Ok(1)).await.unwrap();
                tx.send(Ok(2)).await.unwrap();
                tx.send(Err("err")).await.unwrap();
            })
        });
        let mut out = vec![];
        while let Ok(value) = stream.try_next().await {
            out.push(value);
        }
        assert_eq!(vec![Some(1), Some(2)], out);
    }

    // smithy-rs#1902: there was a bug where we could continue to poll the generator after it
    // had returned Poll::Ready. This test case leaks the tx half so that the channel stays open
    // but the send side generator completes. By calling `poll` multiple times on the resulting future,
    // we can trigger the bug and validate the fix.
    #[tokio::test]
    async fn fn_stream_doesnt_poll_after_done() {
        let mut stream = FnStream::new(|tx| {
            Box::pin(async move {
                assert!(tx.send("blah").await.is_ok());
                Box::leak(Box::new(tx));
            })
        });
        assert_eq!(Some("blah"), stream.next().await);
        let mut test_stream = tokio_test::task::spawn(stream);
        // `tokio_test::task::Spawn::poll_next` can only be invoked when the wrapped
        // type implements the `Stream` trait. Here, `FnStream` does not implement it,
        // so we work around it by using the `enter` method.
        test_stream.enter(|ctx, pin| {
            let polled = pin.poll_next(ctx);
            assert!(polled.is_pending());
        });
        test_stream.enter(|ctx, pin| {
            let polled = pin.poll_next(ctx);
            assert!(polled.is_pending());
        });
    }

    /// Tests that the generator will not advance until demand exists
    #[tokio::test]
    async fn waits_for_reader() {
        let progress = Arc::new(Mutex::new(0));
        let mut stream = FnStream::new(|tx| {
            let progress = progress.clone();
            Box::pin(async move {
                *progress.lock().unwrap() = 1;
                tx.send("1").await.expect("failed to send");
                *progress.lock().unwrap() = 2;
                tx.send("2").await.expect("failed to send");
                *progress.lock().unwrap() = 3;
                tx.send("3").await.expect("failed to send");
                *progress.lock().unwrap() = 4;
            })
        });
        assert_eq!(*progress.lock().unwrap(), 0);
        stream.next().await.expect("ready");
        assert_eq!(*progress.lock().unwrap(), 1);

        assert_eq!("2", stream.next().await.expect("ready"));
        assert_eq!(2, *progress.lock().unwrap());

        let _ = stream.next().await.expect("ready");
        assert_eq!(3, *progress.lock().unwrap());
        assert_eq!(None, stream.next().await);
        assert_eq!(4, *progress.lock().unwrap());
    }

    #[tokio::test]
    async fn generator_with_errors() {
        let mut stream = FnStream::new(|tx| {
            Box::pin(async move {
                for i in 0..5 {
                    if i != 2 {
                        if tx.send(Ok(i)).await.is_err() {
                            return;
                        }
                    } else {
                        tx.send(Err(i)).await.unwrap();
                        return;
                    }
                }
            })
        });
        let mut out = vec![];
        while let Some(Ok(value)) = stream.next().await {
            out.push(value);
        }
        assert_eq!(vec![0, 1], out);
    }

    #[tokio::test]
    async fn flatten_items_ok() {
        #[derive(Debug)]
        struct Output {
            items: Vec<u8>,
        }
        let stream: FnStream<Result<_, &str>> = FnStream::new(|tx| {
            Box::pin(async move {
                tx.send(Ok(Output {
                    items: vec![1, 2, 3],
                }))
                .await
                .unwrap();
                tx.send(Ok(Output {
                    items: vec![4, 5, 6],
                }))
                .await
                .unwrap();
            })
        });
        assert_eq!(
            Ok(vec![1, 2, 3, 4, 5, 6]),
            TryFlatMap::new(PaginationStream::new(stream))
                .flat_map(|output| output.items.into_iter())
                .try_collect()
                .await,
        );
    }

    #[tokio::test]
    async fn flatten_items_error() {
        #[derive(Debug)]
        struct Output {
            items: Vec<u8>,
        }
        let stream = FnStream::new(|tx| {
            Box::pin(async move {
                tx.send(Ok(Output {
                    items: vec![1, 2, 3],
                }))
                .await
                .unwrap();
                tx.send(Err("bummer")).await.unwrap();
            })
        });
        assert_eq!(
            Err("bummer"),
            TryFlatMap::new(PaginationStream::new(stream))
                .flat_map(|output| output.items.into_iter())
                .try_collect()
                .await
        )
    }
}