1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
use std::{ sync::{Arc, Mutex, Weak, atomic::{AtomicUsize, Ordering}}, thread::{self, JoinHandle}, time::{Duration, Instant}, }; use crate::{ FastHashMap, callbacks::{ Redraw, DontRedraw, TimerCallback, TimerCallbackInfo, RefAny, TimerCallbackReturn, TimerCallbackType, UpdateScreen, }, app_resources::AppResources, }; /// Should a timer terminate or not - used to remove active timers #[derive(Debug, Copy, Clone, PartialEq, Eq)] pub enum TerminateTimer { /// Remove the timer from the list of active timers Terminate, /// Do nothing and let the timers continue to run Continue, } static MAX_DAEMON_ID: AtomicUsize = AtomicUsize::new(0); /// ID for uniquely identifying a timer #[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)] pub struct TimerId { id: usize } impl TimerId { /// Generates a new, unique `TimerId`. pub fn new() -> Self { TimerId { id: MAX_DAEMON_ID.fetch_add(1, Ordering::SeqCst) } } } /// A `Timer` is a function that is run on every frame. /// /// There are often a lot of visual tasks such as animations or fetching the /// next frame for a GIF or video, etc. - that need to run every frame or every X milliseconds, /// but they aren't heavy enough to warrant creating a thread - otherwise the framework /// would create too many threads, which leads to a lot of context switching and bad performance. /// /// The callback of a `Timer` should be fast enough to run under 16ms, /// otherwise running timers will block the main UI thread. #[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)] pub struct Timer { /// Stores when the timer was created (usually acquired by `Instant::now()`) pub created: Instant, /// When the timer was last called (`None` only when the timer hasn't been called yet). pub last_run: Option<Instant>, /// If the timer shouldn't start instantly, but rather be delayed by a certain timeframe pub delay: Option<Duration>, /// How frequently the timer should run, i.e. set this to `Some(Duration::from_millis(16))` /// to run the timer every 16ms. If this value is set to `None`, (the default), the timer /// will execute the timer as-fast-as-possible (i.e. at a faster framerate /// than the framework itself) - which might be performance intensive. pub interval: Option<Duration>, /// When to stop the timer (for example, you can stop the /// execution after 5s using `Some(Duration::from_secs(5))`). pub timeout: Option<Duration>, /// Callback to be called for this timer pub callback: TimerCallback, } impl Timer { /// Create a new timer pub fn new(callback: TimerCallbackType) -> Self { Timer { created: Instant::now(), last_run: None, delay: None, interval: None, timeout: None, callback: TimerCallback(callback), } } /// Delays the timer to not start immediately but rather /// start after a certain time frame has elapsed. #[inline] pub fn with_delay(mut self, delay: Duration) -> Self { self.delay = Some(delay); self } /// Converts the timer into a timer, running the function only /// if the given `Duration` has elapsed since the last run #[inline] pub fn with_interval(mut self, interval: Duration) -> Self { self.interval = Some(interval); self } /// Converts the timer into a countdown, by giving it a maximum duration /// (counted from the creation of the Timer, not the first use). #[inline] pub fn with_timeout(mut self, timeout: Duration) -> Self { self.timeout = Some(timeout); self } /// Crate-internal: Invokes the timer if the timer and /// the `self.timeout` allow it to pub fn invoke<'a>(&mut self, info: TimerCallbackInfo<'a>) -> TimerCallbackReturn { let instant_now = Instant::now(); let delay = self.delay.unwrap_or_else(|| Duration::from_millis(0)); // Check if the timers timeout is reached if let Some(timeout) = self.timeout { if instant_now - self.created > timeout { return (DontRedraw, TerminateTimer::Terminate); } } if let Some(interval) = self.interval { let last_run = match self.last_run { Some(s) => s, None => self.created + delay, }; if instant_now - last_run < interval { return (DontRedraw, TerminateTimer::Continue); } } let res = (self.callback.0)(info); self.last_run = Some(instant_now); res } } /// Simple struct that is used by Azul internally to determine when the thread has finished executing. /// When this struct goes out of scope, Azul will call `.join()` on the thread (so in order to not /// block the main thread, simply let it go out of scope naturally. pub struct DropCheck(Arc<()>); /// A `Task` is a seperate thread that is owned by the framework. /// /// In difference to a `Thread`, you don't have to `await()` the result of a `Task`, /// you can just hand the task to the framework (via `AppResources::add_task`) and /// the framework will automatically update the UI when the task is finished. /// This is useful to offload actions such as loading long files, etc. to a background thread. /// /// Azul will join the thread automatically after it is finished (joining won't block the UI). pub struct Task { // Thread handle of the currently in-progress task join_handle: Option<JoinHandle<UpdateScreen>>, dropcheck: Weak<()>, /// Timer that will run directly after this task is completed. pub after_completion_timer: Option<Timer>, } pub type TaskCallback<U> = fn(Arc<Mutex<U>>, DropCheck) -> UpdateScreen; impl Task { /// Creates a new task from a callback and a set of input data - which has to be wrapped in an `Arc<Mutex<T>>>`. pub fn new<U: Send + 'static>(data: Arc<Mutex<U>>, callback: TaskCallback<U>) -> Self { let thread_check = Arc::new(()); let thread_weak = Arc::downgrade(&thread_check); let thread_handle = thread::spawn(move || callback(data, DropCheck(thread_check))); Self { join_handle: Some(thread_handle), dropcheck: thread_weak, after_completion_timer: None, } } /// Stores a `Timer` that will run after the task has finished. /// /// Often necessary to "clean up" or copy data from the background task into the UI. #[inline] pub fn then(mut self, timer: Timer) -> Self { self.after_completion_timer = Some(timer); self } /// Returns true if the task has been finished, false otherwise pub fn is_finished(&self) -> bool { self.dropcheck.upgrade().is_none() } } impl Drop for Task { fn drop(&mut self) { if let Some(thread_handle) = self.join_handle.take() { let _ = thread_handle.join().unwrap(); } } } /// A `Thread` is a simple abstraction over `std::thread` that allows to offload a pure /// function to a different thread (essentially emulating async / await for older compilers). /// /// # Warning /// /// `Thread` panics if it goes out of scope before `.block()` was called. pub struct Thread<T> { join_handle: Option<JoinHandle<T>>, } /// Error that can happen while calling `.block()` #[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)] pub enum BlockError { /// Arc::into_inner() failed ArcUnlockError, /// The background thread panicked ThreadJoinError, /// Mutex::into_inner() failed MutexIntoInnerError, } impl<T> Thread<T> { /// Creates a new thread that spawns a certain (pure) function on a separate thread. /// This is a workaround until `await` is implemented. Note that invoking this function /// will create an OS-level thread. /// /// **Warning**: You *must* call `.await()`, otherwise the `Thread` will panic when it is dropped! /// /// # Example /// /// ```rust /// # extern crate azul_core; /// # use azul_core::task::Thread; /// # /// fn pure_function(input: usize) -> usize { input + 1 } /// /// let thread_1 = Thread::new(5, pure_function); /// let thread_2 = Thread::new(10, pure_function); /// let thread_3 = Thread::new(20, pure_function); /// /// // thread_1, thread_2 and thread_3 run in parallel here... /// /// let result_1 = thread_1.block(); /// let result_2 = thread_2.block(); /// let result_3 = thread_3.block(); /// /// assert_eq!(result_1, Ok(6)); /// assert_eq!(result_2, Ok(11)); /// assert_eq!(result_3, Ok(21)); /// ``` pub fn new<U>(initial_data: U, callback: fn(U) -> T) -> Self where T: Send + 'static, U: Send + 'static { Self { join_handle: Some(thread::spawn(move || callback(initial_data))), } } /// Block until the internal thread has finished and return T pub fn block(mut self) -> Result<T, BlockError> { // .block() can only be called once, so these .unwrap()s are safe let handle = self.join_handle.take().unwrap(); let data = handle.join().map_err(|_| BlockError::ThreadJoinError)?; Ok(data) } } impl<T> Drop for Thread<T> { fn drop(&mut self) { if self.join_handle.take().is_some() { panic!("Thread has not been await()-ed correctly!"); } } } /// Run all currently registered timers #[must_use] pub fn run_all_timers( timers: &mut FastHashMap<TimerId, Timer>, data: &mut RefAny, resources: &mut AppResources, ) -> UpdateScreen { let mut should_update_screen = DontRedraw; let mut timers_to_terminate = Vec::new(); for (key, timer) in timers.iter_mut() { let (should_update, should_terminate) = timer.invoke(TimerCallbackInfo { state: data, app_resources: resources, }); if should_update == Redraw { should_update_screen = Redraw; } if should_terminate == TerminateTimer::Terminate { timers_to_terminate.push(key.clone()); } } for key in timers_to_terminate { timers.remove(&key); } should_update_screen } /// Remove all tasks that have finished executing #[must_use] pub fn clean_up_finished_tasks<T>( tasks: &mut Vec<Task>, timers: &mut FastHashMap<TimerId, Timer>, ) -> UpdateScreen { let old_count = tasks.len(); let mut timers_to_add = Vec::new(); tasks.retain(|task| { if task.is_finished() { if let Some(timer) = task.after_completion_timer { timers_to_add.push((TimerId::new(), timer)); } false } else { true } }); let timers_is_empty = timers_to_add.is_empty(); let new_count = tasks.len(); // Start all the timers that should run after the completion of the task for (timer_id, timer) in timers_to_add { timers.insert(timer_id, timer); } if old_count == new_count && timers_is_empty { DontRedraw } else { Redraw } }