azul_core/id_tree.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
use std::{
ops::{Index, IndexMut},
slice::{Iter, IterMut},
};
pub use self::node_id::NodeId;
pub type NodeDepths = Vec<(usize, NodeId)>;
// Since private fields are module-based, this prevents any module from accessing
// `NodeId.index` directly. To get the correct node index is by using `NodeId::index()`,
// which subtracts 1 from the ID (because of Option<NodeId> optimizations)
mod node_id {
use std::{
fmt,
num::NonZeroUsize,
ops::{Add, AddAssign},
};
/// A node identifier within a particular `Arena`.
#[derive(Copy, Clone, PartialOrd, Ord, PartialEq, Eq, Hash)]
pub struct NodeId {
index: NonZeroUsize,
}
impl NodeId {
pub const ZERO: NodeId = NodeId { index: unsafe { NonZeroUsize::new_unchecked(1) } };
/// **NOTE**: In debug mode, it panics on overflow, since having a
/// pointer that is zero is undefined behaviour (it would basically be
/// cast to a `None`), which is incorrect, so we rather panic on overflow
/// to prevent that.
///
/// To trigger an overflow however, you'd need more that 4 billion DOM nodes -
/// it is more likely that you run out of RAM before you do that. The only thing
/// that could lead to an overflow would be a bug. Therefore, overflow-checking is
/// disabled in release mode.
#[inline(always)]
pub fn new(value: usize) -> Self {
NodeId { index: unsafe { NonZeroUsize::new_unchecked(value + 1) } }
}
#[inline(always)]
pub fn index(&self) -> usize {
self.index.get() - 1
}
/// Return an iterator of references to this node’s children.
#[inline]
pub fn range(start: Self, end: Self) -> Vec<NodeId> {
(start.index()..end.index()).map(NodeId::new).collect()
}
}
impl Add<usize> for NodeId {
type Output = NodeId;
#[inline(always)]
fn add(self, other: usize) -> NodeId {
NodeId::new(self.index() + other)
}
}
impl AddAssign<usize> for NodeId {
#[inline(always)]
fn add_assign(&mut self, other: usize) {
*self = *self + other;
}
}
impl fmt::Display for NodeId {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", self.index())
}
}
impl fmt::Debug for NodeId {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "NodeId({})", self.index())
}
}
}
/// Hierarchical information about a node (stores the indicies of the parent / child nodes).
#[derive(Debug, Default, Copy, Clone, PartialOrd, Ord, PartialEq, Eq, Hash)]
pub struct Node {
pub parent: Option<NodeId>,
pub previous_sibling: Option<NodeId>,
pub next_sibling: Option<NodeId>,
pub first_child: Option<NodeId>,
pub last_child: Option<NodeId>,
}
// Node that initializes a Dom
pub const ROOT_NODE: Node = Node {
parent: None,
previous_sibling: None,
next_sibling: None,
first_child: None,
last_child: None,
};
impl Node {
pub const ROOT: Node = ROOT_NODE;
#[inline]
pub fn has_parent(&self) -> bool { self.parent.is_some() }
#[inline]
pub fn has_previous_sibling(&self) -> bool { self.previous_sibling.is_some() }
#[inline]
pub fn has_next_sibling(&self) -> bool { self.next_sibling.is_some() }
#[inline]
pub fn has_first_child(&self) -> bool { self.first_child.is_some() }
#[inline]
pub fn has_last_child(&self) -> bool { self.last_child.is_some() }
}
#[derive(Debug, Default, Clone, PartialEq, Hash, Eq)]
pub struct Arena<T> {
pub node_hierarchy: NodeHierarchy,
pub node_data: NodeDataContainer<T>,
}
/// The hierarchy of nodes is stored separately from the actual node content in order
/// to save on memory, since the hierarchy can be re-used across several DOM trees even
/// if the content changes.
#[derive(Debug, Default, Clone, PartialEq, Hash, Eq)]
pub struct NodeHierarchy {
pub internal: Vec<Node>,
}
impl NodeHierarchy {
#[inline]
pub const fn new(data: Vec<Node>) -> Self {
Self {
internal: data,
}
}
#[inline]
pub fn len(&self) -> usize {
self.internal.len()
}
#[inline]
pub fn get(&self, id: NodeId) -> Option<&Node> {
self.internal.get(id.index())
}
#[inline]
pub fn linear_iter(&self) -> LinearIterator {
LinearIterator {
arena_len: self.len(),
position: 0,
}
}
/// Returns the `(depth, NodeId)` of all parent nodes (i.e. nodes that have a
/// `first_child`), in depth sorted order, (i.e. `NodeId(0)` with a depth of 0) is
/// the first element.
///
/// Runtime: O(n) max
pub fn get_parents_sorted_by_depth(&self) -> NodeDepths {
let mut non_leaf_nodes = Vec::new();
let mut current_children = vec![(0, NodeId::new(0))];
let mut next_children = Vec::new();
let mut depth = 1;
loop {
for id in ¤t_children {
for child_id in id.1.children(self).filter(|id| self[*id].first_child.is_some()) {
next_children.push((depth, child_id));
}
}
non_leaf_nodes.extend(&mut current_children.drain(..));
if next_children.is_empty() {
break;
} else {
current_children.extend(&mut next_children.drain(..));
depth += 1;
}
}
non_leaf_nodes
}
/// Returns the number of all subtree items - runtime O(1)
#[inline]
pub fn subtree_len(&self, parent_id: NodeId) -> usize {
let self_item_index = parent_id.index();
let next_item_index = match self[parent_id].next_sibling {
None => self.len(),
Some(s) => s.index(),
};
next_item_index - self_item_index - 1
}
/// Returns the index in the parent node of a certain NodeId
/// (starts at 0, i.e. the first node has the index of 0).
#[inline]
pub fn get_index_in_parent(&self, node_id: NodeId) -> usize {
node_id.preceding_siblings(&self).count() - 1
}
}
#[derive(Debug, Clone, PartialEq, Hash, Eq, PartialOrd, Ord)]
pub struct NodeDataContainer<T> {
pub internal: Vec<T>,
}
impl<T> Default for NodeDataContainer<T> {
fn default() -> Self {
Self { internal: Vec::new() }
}
}
impl Index<NodeId> for NodeHierarchy {
type Output = Node;
#[inline]
fn index(&self, node_id: NodeId) -> &Node {
unsafe { self.internal.get_unchecked(node_id.index()) }
}
}
impl IndexMut<NodeId> for NodeHierarchy {
#[inline]
fn index_mut(&mut self, node_id: NodeId) -> &mut Node {
unsafe { self.internal.get_unchecked_mut(node_id.index()) }
}
}
impl<T> NodeDataContainer<T> {
#[inline]
pub const fn new(data: Vec<T>) -> Self {
Self { internal: data }
}
pub fn len(&self) -> usize { self.internal.len() }
pub fn transform<U, F>(&self, mut closure: F) -> NodeDataContainer<U> where F: FnMut(&T, NodeId) -> U {
// TODO if T: Send (which is usually the case), then we could use rayon here!
NodeDataContainer {
internal: self.internal.iter().enumerate().map(|(node_id, node)| closure(node, NodeId::new(node_id))).collect(),
}
}
pub fn get(&self, id: NodeId) -> Option<&T> {
self.internal.get(id.index())
}
pub fn iter(&self) -> Iter<T> {
self.internal.iter()
}
pub fn iter_mut(&mut self) -> IterMut<T> {
self.internal.iter_mut()
}
pub fn linear_iter(&self) -> LinearIterator {
LinearIterator {
arena_len: self.len(),
position: 0,
}
}
}
impl<T> Index<NodeId> for NodeDataContainer<T> {
type Output = T;
#[inline]
fn index(&self, node_id: NodeId) -> &T {
unsafe { self.internal.get_unchecked(node_id.index()) }
}
}
impl<T> IndexMut<NodeId> for NodeDataContainer<T> {
#[inline]
fn index_mut(&mut self, node_id: NodeId) -> &mut T {
unsafe { self.internal.get_unchecked_mut(node_id.index()) }
}
}
impl<T> Arena<T> {
#[inline]
pub fn new() -> Arena<T> {
// NOTE: This is a separate function, since Vec::new() is a const fn (so this function doesn't allocate)
Arena {
node_hierarchy: NodeHierarchy { internal: Vec::new() },
node_data: NodeDataContainer { internal: Vec::<T>::new() },
}
}
#[inline]
pub fn with_capacity(cap: usize) -> Arena<T> {
Arena {
node_hierarchy: NodeHierarchy { internal: Vec::with_capacity(cap) },
node_data: NodeDataContainer { internal: Vec::<T>::with_capacity(cap) },
}
}
/// Create a new node from its associated data.
#[inline]
pub fn new_node(&mut self, data: T) -> NodeId {
let next_index = self.node_hierarchy.len();
self.node_hierarchy.internal.push(Node {
parent: None,
first_child: None,
last_child: None,
previous_sibling: None,
next_sibling: None,
});
self.node_data.internal.push(data);
NodeId::new(next_index)
}
// Returns how many nodes there are in the arena
#[inline]
pub fn len(&self) -> usize {
self.node_hierarchy.len()
}
#[inline]
pub fn is_empty(&self) -> bool {
self.len() == 0
}
/// Return an iterator over the indices in the internal arenas Vec<T>
#[inline]
pub fn linear_iter(&self) -> LinearIterator {
LinearIterator {
arena_len: self.node_hierarchy.len(),
position: 0,
}
}
/// Appends another arena to the end of the current arena
/// (by simply appending the two Vec of nodes)
/// Can potentially mess up internal IDs, only use this if you
/// know what you're doing
#[inline]
pub fn append_arena(&mut self, other: &mut Arena<T>) {
self.node_hierarchy.internal.append(&mut other.node_hierarchy.internal);
self.node_data.internal.append(&mut other.node_data.internal);
}
/// Transform keeps the relative order of parents / children
/// but transforms an Arena<T> into an Arena<U>, by running the closure on each of the
/// items. The `NodeId` for the root is then valid for the newly created `Arena<U>`, too.
#[inline]
pub fn transform<U, F>(&self, closure: F) -> Arena<U> where F: Fn(&T, NodeId) -> U {
// TODO if T: Send (which is usually the case), then we could use rayon here!
Arena {
node_hierarchy: self.node_hierarchy.clone(),
node_data: self.node_data.transform(closure),
}
}
}
impl NodeId {
/// Return an iterator of references to this node and its ancestors.
///
/// Call `.next().unwrap()` once on the iterator to skip the node itself.
#[inline]
pub const fn ancestors(self, node_hierarchy: &NodeHierarchy) -> Ancestors {
Ancestors {
node_hierarchy,
node: Some(self),
}
}
/// Return an iterator of references to this node and the siblings before it.
///
/// Call `.next().unwrap()` once on the iterator to skip the node itself.
#[inline]
pub const fn preceding_siblings(self, node_hierarchy: &NodeHierarchy) -> PrecedingSiblings {
PrecedingSiblings {
node_hierarchy,
node: Some(self),
}
}
/// Return an iterator of references to this node and the siblings after it.
///
/// Call `.next().unwrap()` once on the iterator to skip the node itself.
#[inline]
pub const fn following_siblings(self, node_hierarchy: &NodeHierarchy) -> FollowingSiblings {
FollowingSiblings {
node_hierarchy,
node: Some(self),
}
}
/// Return an iterator of references to this node’s children.
#[inline]
pub fn children(self, node_hierarchy: &NodeHierarchy) -> Children {
Children {
node_hierarchy,
node: node_hierarchy[self].first_child,
}
}
/// Return an iterator of references to this node’s children, in reverse order.
#[inline]
pub fn reverse_children(self, node_hierarchy: &NodeHierarchy) -> ReverseChildren {
ReverseChildren {
node_hierarchy,
node: node_hierarchy[self].last_child,
}
}
/// Return an iterator of references to this node and its descendants, in tree order.
///
/// Parent nodes appear before the descendants.
/// Call `.next().unwrap()` once on the iterator to skip the node itself.
#[inline]
pub const fn descendants(self, node_hierarchy: &NodeHierarchy) -> Descendants {
Descendants(self.traverse(node_hierarchy))
}
/// Return an iterator of references to this node and its descendants, in tree order.
#[inline]
pub const fn traverse(self, node_hierarchy: &NodeHierarchy) -> Traverse {
Traverse {
node_hierarchy,
root: self,
next: Some(NodeEdge::Start(self)),
}
}
/// Return an iterator of references to this node and its descendants, in tree order.
#[inline]
pub const fn reverse_traverse(self, node_hierarchy: &NodeHierarchy) -> ReverseTraverse {
ReverseTraverse {
node_hierarchy,
root: self,
next: Some(NodeEdge::End(self)),
}
}
}
macro_rules! impl_node_iterator {
($name: ident, $next: expr) => {
impl<'a> Iterator for $name<'a> {
type Item = NodeId;
fn next(&mut self) -> Option<NodeId> {
match self.node.take() {
Some(node) => {
self.node = $next(&self.node_hierarchy[node]);
Some(node)
}
None => None
}
}
}
}
}
/// An linear iterator, does not respect the DOM in any way,
/// it just iterates over the nodes like a Vec
#[derive(Debug, Copy, Clone)]
pub struct LinearIterator {
arena_len: usize,
position: usize,
}
impl Iterator for LinearIterator {
type Item = NodeId;
fn next(&mut self) -> Option<NodeId> {
if self.arena_len < 1 || self.position > (self.arena_len - 1){
None
} else {
let new_id = Some(NodeId::new(self.position));
self.position += 1;
new_id
}
}
}
/// An iterator of references to the ancestors a given node.
pub struct Ancestors<'a> {
node_hierarchy: &'a NodeHierarchy,
node: Option<NodeId>,
}
impl_node_iterator!(Ancestors, |node: &Node| node.parent);
/// An iterator of references to the siblings before a given node.
pub struct PrecedingSiblings<'a> {
node_hierarchy: &'a NodeHierarchy,
node: Option<NodeId>,
}
impl_node_iterator!(PrecedingSiblings, |node: &Node| node.previous_sibling);
/// An iterator of references to the siblings after a given node.
pub struct FollowingSiblings<'a> {
node_hierarchy: &'a NodeHierarchy,
node: Option<NodeId>,
}
impl_node_iterator!(FollowingSiblings, |node: &Node| node.next_sibling);
/// An iterator of references to the children of a given node.
pub struct Children<'a> {
node_hierarchy: &'a NodeHierarchy,
node: Option<NodeId>,
}
impl_node_iterator!(Children, |node: &Node| node.next_sibling);
/// An iterator of references to the children of a given node, in reverse order.
pub struct ReverseChildren<'a> {
node_hierarchy: &'a NodeHierarchy,
node: Option<NodeId>,
}
impl_node_iterator!(ReverseChildren, |node: &Node| node.previous_sibling);
/// An iterator of references to a given node and its descendants, in tree order.
pub struct Descendants<'a>(Traverse<'a>);
impl<'a> Iterator for Descendants<'a> {
type Item = NodeId;
fn next(&mut self) -> Option<NodeId> {
loop {
match self.0.next() {
Some(NodeEdge::Start(node)) => return Some(node),
Some(NodeEdge::End(_)) => {}
None => return None
}
}
}
}
#[derive(Debug, Clone)]
pub enum NodeEdge<T> {
/// Indicates that start of a node that has children.
/// Yielded by `Traverse::next` before the node’s descendants.
/// In HTML or XML, this corresponds to an opening tag like `<div>`
Start(T),
/// Indicates that end of a node that has children.
/// Yielded by `Traverse::next` after the node’s descendants.
/// In HTML or XML, this corresponds to a closing tag like `</div>`
End(T),
}
impl<T> NodeEdge<T> {
pub fn inner_value(self) -> T {
use self::NodeEdge::*;
match self {
Start(t) => t,
End(t) => t,
}
}
}
/// An iterator of references to a given node and its descendants, in tree order.
pub struct Traverse<'a> {
node_hierarchy: &'a NodeHierarchy,
root: NodeId,
next: Option<NodeEdge<NodeId>>,
}
impl<'a> Iterator for Traverse<'a> {
type Item = NodeEdge<NodeId>;
fn next(&mut self) -> Option<NodeEdge<NodeId>> {
match self.next.take() {
Some(item) => {
self.next = match item {
NodeEdge::Start(node) => {
match self.node_hierarchy[node].first_child {
Some(first_child) => Some(NodeEdge::Start(first_child)),
None => Some(NodeEdge::End(node.clone()))
}
}
NodeEdge::End(node) => {
if node == self.root {
None
} else {
match self.node_hierarchy[node].next_sibling {
Some(next_sibling) => Some(NodeEdge::Start(next_sibling)),
None => match self.node_hierarchy[node].parent {
Some(parent) => Some(NodeEdge::End(parent)),
// `node.parent()` here can only be `None`
// if the tree has been modified during iteration,
// but silently stopping iteration
// seems a more sensible behavior than panicking.
None => None
}
}
}
}
};
Some(item)
}
None => None
}
}
}
/// An iterator of references to a given node and its descendants, in reverse tree order.
pub struct ReverseTraverse<'a> {
node_hierarchy: &'a NodeHierarchy,
root: NodeId,
next: Option<NodeEdge<NodeId>>,
}
impl<'a> Iterator for ReverseTraverse<'a> {
type Item = NodeEdge<NodeId>;
fn next(&mut self) -> Option<NodeEdge<NodeId>> {
match self.next.take() {
Some(item) => {
self.next = match item {
NodeEdge::End(node) => {
match self.node_hierarchy[node].last_child {
Some(last_child) => Some(NodeEdge::End(last_child)),
None => Some(NodeEdge::Start(node.clone()))
}
}
NodeEdge::Start(node) => {
if node == self.root {
None
} else {
match self.node_hierarchy[node].previous_sibling {
Some(previous_sibling) => Some(NodeEdge::End(previous_sibling)),
None => match self.node_hierarchy[node].parent {
Some(parent) => Some(NodeEdge::Start(parent)),
// `node.parent()` here can only be `None`
// if the tree has been modified during iteration,
// but silently stopping iteration
// seems a more sensible behavior than panicking.
None => None
}
}
}
}
};
Some(item)
}
None => None
}
}
}