azul_core/callbacks.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
use std::{
fmt,
sync::atomic::{AtomicUsize, Ordering},
collections::BTreeMap,
rc::Rc,
any::Any,
hash::Hash,
cell::{Ref as StdRef, RefMut as StdRefMut, RefCell},
ffi::c_void,
};
use azul_css::{LayoutPoint, LayoutRect, LayoutSize, CssPath};
#[cfg(feature = "css_parser")]
use azul_css_parser::CssPathParseError;
use crate::{
FastHashMap,
app_resources::{AppResources, IdNamespace, Words, WordPositions, ScaledWords, LayoutedGlyphs},
dom::{Dom, DomPtr, DomId, TagId, NodeType, NodeData},
display_list::CachedDisplayList,
ui_state::UiState,
ui_description::UiDescription,
ui_solver::{PositionedRectangle, LayoutedRectangle, ScrolledNodes, LayoutResult},
id_tree::{NodeId, Node, NodeHierarchy},
window::{
WindowSize, WindowState, FullWindowState, CallbacksOfHitTest,
KeyboardState, MouseState, LogicalSize, PhysicalSize,
UpdateFocusWarning, CallCallbacksResult, ScrollStates,
},
task::{Timer, TerminateTimer, Task, TimerId},
};
#[cfg(feature = "opengl")]
use crate::gl::Texture;
#[cfg(feature = "opengl")]
use gleam::gl::Gl;
/// A callback function has to return if the screen should be updated after the
/// function has run.
///
/// NOTE: This is currently a typedef for `Option<()>`, so that you can use
/// the `?` operator in callbacks (to simply not redraw if there is an error).
/// This was an enum previously, but since Rust doesn't have a "custom try" operator,
/// this led to a lot of usability problems. In the future, this might change back
/// to an enum therefore the constants "Redraw" and "DontRedraw" are not capitalized,
/// to minimize breakage.
pub type UpdateScreen = Option<()>;
/// After the callback is called, the screen needs to redraw
/// (layout() function being called again).
#[allow(non_upper_case_globals)]
pub const Redraw: Option<()> = Some(());
/// The screen does not need to redraw after the callback has been called.
#[allow(non_upper_case_globals)]
pub const DontRedraw: Option<()> = None;
/// # The two-way binding system
///
/// A fundamental problem in UI development is where and how to store
/// states of widgets, without impacting reusability, extensability or
/// performance. Azul solves this problem using a type-erased
/// `Rc<RefCell<Box<Any>>>` type (`RefAny`), whic can be up and downcasted to
/// a `Rc<RefCell<Box<T>>>` type (`Ref<T>`). `Ref` and `RefAny` exist mostly to
/// reduce typing and to prevent multiple mutable access to the inner
/// `RefCell` at compile time. Azul stores all `RefAny`s inside the `Dom` tree
/// and does NOT clone or mutate them at all. Only user-defined callbacks
/// or the default callbacks have access to the `RefAny` data.
///
/// # Overriding the default behaviour of widgets
///
/// While Rust does not support inheritance with language constructs such
/// as `@override` (Java) or the `override` keyword in C#, emulating structs
/// that can change their behaviour at runtime is quite easy. Imagine a
/// struct in which all methods are stored as public function pointers
/// inside the struct itself:
///
/// ```rust
/// // The struct has all methods as function pointers,
/// // so that they can be "overridden" and exchanged with other
/// // implementations if necessary
/// struct A {
/// pub function_a: fn(&A, i32) -> i32,
/// pub function_b: fn(&A) -> &'static str,
/// }
///
/// impl A {
/// pub fn default_impl_a(&self, num: i32) -> i32 { num + num }
/// pub fn default_impl_b(&self) -> &'static str { "default b method!" }
///
/// // Don't call default_impl_a() directly, just the function pointer
/// pub fn do_a(&self, num: i32) -> i32 { (self.function_a)(self, num) }
/// pub fn do_b(&self) -> &'static str { (self.function_b)(self) }
/// }
///
/// // Here we provide the default ("base class") implementation
/// impl Default for A {
/// fn default() -> A {
/// A {
/// function_a: A::default_impl_a,
/// function_b: A::default_impl_b,
/// }
/// }
/// }
///
/// // Alternative function that will override the original method
/// fn override_a(_: &A, num: i32) -> i32 { num * num }
///
/// fn main() {
/// let mut a = A::default();
/// println!("{}", a.do_a(5)); // prints "10" (5 + 5)
/// println!("{}", a.do_b()); // prints "default b method"
///
/// a.function_a = override_a; // Here we override the behaviour
/// println!("{}", a.do_a(5)); // prints "25" (5 * 5)
/// println!("{}", a.do_b()); // still prints "default b method", since method isn't overridden
/// }
/// ```
///
/// Applied to widgets, the "A" class (a placeholder for a "Button", "Table" or other widget)
/// can look something like this:
///
/// ```rust,no_run
/// fn layout(&self, _: &LayoutInfo) -> Dom {
/// Spreadsheet::new()
/// .override_oncellchange(my_func_1)
/// .override_onworkspacechange(my_func_2)
/// .override_oncellselect(my_func_3)
/// .dom()
/// }
/// ```
///
/// The spreadsheet has some "default" event handlers, which can be exchanged for custom
/// implementations via an open API. The benefit is that functions can be mixed and matched,
/// and widgets can be composed of sub-widgets as well as be re-used. Another benefit is that
/// now the widget can react to "custom" events such as "oncellchange" or "oncellselect",
/// without Azul knowing that such events even exist. The downside is that this coding style
/// requires more work on behalf of the widget designer (but not the user).
#[derive(Default, Debug, PartialEq, Eq, PartialOrd, Ord)]
pub struct Ref<T: 'static>(Rc<RefCell<T>>);
impl<T: 'static> Clone for Ref<T> {
fn clone(&self) -> Self {
Ref(self.0.clone())
}
}
impl<T: 'static + Hash> Hash for Ref<T> {
fn hash<H>(&self, state: &mut H) where H: ::std::hash::Hasher {
let self_ptr = Rc::into_raw(self.0.clone()) as *const c_void as usize;
state.write_usize(self_ptr);
self.0.borrow().hash(state)
}
}
impl<T: 'static> Ref<T> {
pub fn new(data: T) -> Self {
Ref(Rc::new(RefCell::new(data)))
}
pub fn borrow(&self) -> StdRef<T> {
self.0.borrow()
}
pub fn borrow_mut(&mut self) -> StdRefMut<T> {
self.0.borrow_mut()
}
pub fn get_type_name(&self) -> &'static str {
use std::any;
any::type_name::<T>()
}
pub fn upcast(self) -> RefAny {
use std::any;
RefAny {
ptr: self.0 as Rc<dyn Any>,
type_name: any::type_name::<T>(),
}
}
}
impl<T: 'static> From<Ref<T>> for RefAny {
fn from(r: Ref<T>) -> Self {
r.upcast()
}
}
#[derive(Debug)]
pub struct RefAny {
ptr: Rc<dyn Any>,
type_name: &'static str,
}
impl Clone for RefAny {
fn clone(&self) -> Self {
RefAny {
ptr: self.ptr.clone(),
type_name: self.type_name,
}
}
}
/// Pointer to rust-allocated `Box<RefAny>` struct
#[no_mangle] #[repr(C)] pub struct RefAnyPtr { pub ptr: *mut c_void }
impl ::std::hash::Hash for RefAny {
fn hash<H>(&self, state: &mut H) where H: ::std::hash::Hasher {
let self_ptr = Rc::into_raw(self.ptr.clone()) as *const c_void as usize;
state.write_usize(self_ptr);
}
}
impl PartialEq for RefAny {
fn eq(&self, rhs: &Self) -> bool {
Rc::ptr_eq(&self.ptr, &rhs.ptr)
}
}
impl PartialOrd for RefAny {
fn partial_cmp(&self, rhs: &Self) -> Option<::std::cmp::Ordering> {
Some(self.cmp(rhs))
}
}
impl Ord for RefAny {
fn cmp(&self, rhs: &Self) -> ::std::cmp::Ordering {
let self_ptr = Rc::into_raw(self.ptr.clone()) as *const c_void as usize;
let rhs_ptr = Rc::into_raw(rhs.ptr.clone()) as *const c_void as usize;
self_ptr.cmp(&rhs_ptr)
}
}
impl Eq for RefAny { }
impl RefAny {
/// Casts the type-erased pointer back to a `RefCell<T>`
pub fn downcast<T: 'static>(&self) -> Option<&RefCell<T>> {
self.ptr.downcast_ref::<RefCell<T>>()
}
/// Returns the compiler-generated string of the type (`std::any::type_name`).
/// Very useful for debugging
pub fn get_type_name(&self) -> &'static str {
self.type_name
}
}
/// This type carries no valuable semantics for WR. However, it reflects the fact that
/// clients (Servo) may generate pipelines by different semi-independent sources.
/// These pipelines still belong to the same `IdNamespace` and the same `DocumentId`.
/// Having this extra Id field enables them to generate `PipelineId` without collision.
pub type PipelineSourceId = u32;
/// Callback function pointer (has to be a function pointer in
/// order to be compatible with C APIs later on).
///
/// NOTE: The original callback was `fn(&self, LayoutInfo) -> Dom`
/// which then evolved to `fn(&RefAny, LayoutInfo) -> Dom`.
/// The indirection is necessary because of the memory management
/// around the C API
///
/// See azul-core/ui_state.rs:298 for how the memory is managed
/// across the callback boundary.
pub type LayoutCallback = fn(RefAnyPtr, LayoutInfoPtr) -> DomPtr;
/// Information about a scroll frame, given to the user by the framework
#[derive(Debug, Copy, Clone, PartialEq, PartialOrd)]
pub struct ScrollPosition {
/// How big is the scroll rect (i.e. the union of all children)?
pub scroll_frame_rect: LayoutRect,
/// How big is the parent container (so that things like "scroll to left edge" can be implemented)?
pub parent_rect: LayoutedRectangle,
/// Where (measured from the top left corner) is the frame currently scrolled to?
pub scroll_location: LayoutPoint,
}
#[derive(Copy, Clone, Eq, Hash, PartialEq, PartialOrd, Ord)]
pub struct DocumentId {
pub namespace_id: IdNamespace,
pub id: u32
}
impl ::std::fmt::Display for DocumentId {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "DocumentId {{ ns: {}, id: {} }}", self.namespace_id, self.id)
}
}
impl ::std::fmt::Debug for DocumentId {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", self)
}
}
#[derive(Copy, Clone, Eq, Hash, PartialEq, PartialOrd, Ord)]
pub struct PipelineId(pub PipelineSourceId, pub u32);
impl ::std::fmt::Display for PipelineId {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "PipelineId({}, {})", self.0, self.1)
}
}
impl ::std::fmt::Debug for PipelineId {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", self)
}
}
static LAST_PIPELINE_ID: AtomicUsize = AtomicUsize::new(0);
impl PipelineId {
pub const DUMMY: PipelineId = PipelineId(0, 0);
pub fn new() -> Self {
PipelineId(LAST_PIPELINE_ID.fetch_add(1, Ordering::SeqCst) as u32, 0)
}
}
#[derive(Debug, Copy, Clone, PartialEq, PartialOrd)]
pub struct HitTestItem {
/// The pipeline that the display item that was hit belongs to.
pub pipeline: PipelineId,
/// The tag of the hit display item.
pub tag: TagId,
/// The hit point in the coordinate space of the "viewport" of the display item.
/// The viewport is the scroll node formed by the root reference frame of the display item's pipeline.
pub point_in_viewport: LayoutPoint,
/// The coordinates of the original hit test point relative to the origin of this item.
/// This is useful for calculating things like text offsets in the client.
pub point_relative_to_item: LayoutPoint,
}
/// Implements `Display, Debug, Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord, Hash`
/// for a Callback with a `.0` field:
///
/// ```
/// struct MyCallback(fn (&T));
///
/// // impl Display, Debug, etc. for MyCallback
/// impl_callback!(MyCallback);
/// ```
///
/// This is necessary to work around for https://github.com/rust-lang/rust/issues/54508
#[macro_export]
macro_rules! impl_callback {($callback_value:ident) => (
impl ::std::fmt::Display for $callback_value {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{:?}", self)
}
}
impl ::std::fmt::Debug for $callback_value {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let callback = stringify!($callback_value);
write!(f, "{} @ 0x{:x}", callback, self.0 as usize)
}
}
impl Clone for $callback_value {
fn clone(&self) -> Self {
$callback_value(self.0.clone())
}
}
impl ::std::hash::Hash for $callback_value {
fn hash<H>(&self, state: &mut H) where H: ::std::hash::Hasher {
state.write_usize(self.0 as usize);
}
}
impl PartialEq for $callback_value {
fn eq(&self, rhs: &Self) -> bool {
self.0 as usize == rhs.0 as usize
}
}
impl PartialOrd for $callback_value {
fn partial_cmp(&self, other: &Self) -> Option<::std::cmp::Ordering> {
Some((self.0 as usize).cmp(&(other.0 as usize)))
}
}
impl Ord for $callback_value {
fn cmp(&self, other: &Self) -> ::std::cmp::Ordering {
(self.0 as usize).cmp(&(other.0 as usize))
}
}
impl Eq for $callback_value { }
impl Copy for $callback_value { }
)}
macro_rules! impl_get_gl_context {() => {
/// Returns a reference-counted pointer to the OpenGL context
#[cfg(feature = "opengl")]
pub fn get_gl_context(&self) -> Rc<dyn Gl> {
self.gl_context.clone()
}
};}
// -- normal callback
/// Stores a function pointer that is executed when the given UI element is hit
///
/// Must return an `UpdateScreen` that denotes if the screen should be redrawn.
/// The style is not affected by this, so if you make changes to the window's style
/// inside the function, the screen will not be automatically redrawn, unless you return
/// an `UpdateScreen::Redraw` from the function
pub struct Callback(pub CallbackType);
impl_callback!(Callback);
/// Information about the callback that is passed to the callback whenever a callback is invoked
pub struct CallbackInfo<'a> {
/// Your data (the global struct which all callbacks will have access to)
pub state: &'a RefAny,
/// State of the current window that the callback was called on (read only!)
pub current_window_state: &'a FullWindowState,
/// User-modifiable state of the window that the callback was called on
pub modifiable_window_state: &'a mut WindowState,
/// Currently active, layouted rectangles
pub layout_result: &'a BTreeMap<DomId, LayoutResult>,
/// Nodes that overflow their parents and are able to scroll
pub scrolled_nodes: &'a BTreeMap<DomId, ScrolledNodes>,
/// Current display list active in this window (useful for debugging)
pub cached_display_list: &'a CachedDisplayList,
/// An Rc to the OpenGL context, in order to be able to render to OpenGL textures
#[cfg(feature = "opengl")]
pub gl_context: Rc<dyn Gl>,
/// See [`AppState.resources`](./struct.AppState.html#structfield.resources)
pub resources : &'a mut AppResources,
/// Currently running timers (polling functions, run on the main thread)
pub timers: &'a mut FastHashMap<TimerId, Timer>,
/// Currently running tasks (asynchronous functions running each on a different thread)
pub tasks: &'a mut Vec<Task>,
/// UiState containing the necessary data for testing what
pub ui_state: &'a BTreeMap<DomId, UiState>,
/// Sets whether the event should be propagated to the parent hit node or not
pub stop_propagation: &'a mut bool,
/// The callback can change the focus_target - note that the focus_target is set before the
/// next frames' layout() function is invoked, but the current frames callbacks are not affected.
pub focus_target: &'a mut Option<FocusTarget>,
/// Immutable (!) reference to where the nodes are currently scrolled (current position)
pub current_scroll_states: &'a BTreeMap<DomId, BTreeMap<NodeId, ScrollPosition>>,
/// Mutable map where a user can set where he wants the nodes to be scrolled to (for the next frame)
pub nodes_scrolled_in_callback: &'a mut BTreeMap<DomId, BTreeMap<NodeId, LayoutPoint>>,
/// The ID of the DOM + the node that was hit. You can use this to query
/// information about the node, but please don't hard-code any if / else
/// statements based on the `NodeId`
pub hit_dom_node: (DomId, NodeId),
/// The (x, y) position of the mouse cursor, **relative to top left of the element that was hit**.
pub cursor_relative_to_item: Option<(f32, f32)>,
/// The (x, y) position of the mouse cursor, **relative to top left of the window**.
pub cursor_in_viewport: Option<(f32, f32)>,
}
pub type CallbackReturn = UpdateScreen;
pub type CallbackType = fn(CallbackInfo) -> CallbackReturn;
impl<'a> fmt::Debug for CallbackInfo<'a> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "CallbackInfo {{
data: {{ .. }}, \
current_window_state: {:?}, \
modifiable_window_state: {:?}, \
layout_result: {:?}, \
scrolled_nodes: {:?}, \
cached_display_list: {:?}, \
gl_context: {{ .. }}, \
resources: {{ .. }}, \
timers: {{ .. }}, \
tasks: {{ .. }}, \
ui_state: {:?}, \
focus_target: {:?}, \
current_scroll_states: {:?}, \
nodes_scrolled_in_callback: {:?}, \
hit_dom_node: {:?}, \
cursor_relative_to_item: {:?}, \
cursor_in_viewport: {:?}, \
}}",
self.current_window_state,
self.modifiable_window_state,
self.layout_result,
self.scrolled_nodes,
self.cached_display_list,
self.ui_state,
self.focus_target,
self.current_scroll_states,
self.nodes_scrolled_in_callback,
self.hit_dom_node,
self.cursor_relative_to_item,
self.cursor_in_viewport,
)
}
}
impl<'a> CallbackInfo<'a> {
/// Sets whether the event should be propagated to the parent hit node or not
///
/// Similar to `e.stopPropagation()` in JavaScript
pub fn stop_propagation(&mut self) {
*self.stop_propagation = true;
}
}
// -- opengl callback
/// Callbacks that returns a rendered OpenGL texture
#[cfg(feature = "opengl")]
pub struct GlCallback(pub GlCallbackType);
#[cfg(feature = "opengl")]
impl_callback!(GlCallback);
pub struct GlCallbackInfo<'a> {
pub state: &'a RefAny,
pub layout_info: LayoutInfo<'a>,
pub bounds: HidpiAdjustedBounds,
}
#[cfg(feature = "opengl")]
pub type GlCallbackReturn = Option<Texture>;
#[cfg(feature = "opengl")]
pub type GlCallbackType = fn(GlCallbackInfo) -> GlCallbackReturn;
// -- iframe callback
/// Callback that, given a rectangle area on the screen, returns the DOM
/// appropriate for that bounds (useful for infinite lists)
pub struct IFrameCallback(pub IFrameCallbackType);
impl_callback!(IFrameCallback);
pub struct IFrameCallbackInfo<'a> {
pub state: &'a RefAny,
pub layout_info: LayoutInfo<'a>,
pub bounds: HidpiAdjustedBounds,
}
pub type IFrameCallbackReturn = Option<Dom>; // todo: return virtual scrolling frames!
pub type IFrameCallbackType = fn(IFrameCallbackInfo) -> IFrameCallbackReturn;
// -- timer callback
/// Callback that can runs on every frame on the main thread - can modify the app data model
pub struct TimerCallback(pub TimerCallbackType);
impl_callback!(TimerCallback);
pub struct TimerCallbackInfo<'a> {
pub state: &'a mut RefAny,
pub app_resources: &'a mut AppResources,
}
pub type TimerCallbackReturn = (UpdateScreen, TerminateTimer);
pub type TimerCallbackType = fn(TimerCallbackInfo) -> TimerCallbackReturn;
/// Pointer to rust-allocated `Box<LayoutInfo<'a>>` struct
#[no_mangle] #[repr(C)] pub struct LayoutInfoPtr { pub ptr: *mut c_void }
/// Gives the `layout()` function access to the `AppResources` and the `Window`
/// (for querying images and fonts, as well as width / height)
pub struct LayoutInfo<'a> {
/// Window size (so that apps can return a different UI depending on
/// the window size - mobile / desktop view). Should be later removed
/// in favor of "resize" handlers and @media queries.
pub window_size: &'a WindowSize,
/// Optimization for resizing: If a DOM has no Iframes and the window size
/// does not change the state of the UI, then resizing the window will not
/// result in calls to the .layout() function (since the resulting UI would
/// stay the same).
///
/// Stores "stops" in logical pixels where the UI needs to be re-generated
/// should the width of the window change.
pub window_size_width_stops: &'a mut Vec<f32>,
/// Same as `window_size_width_stops` but for the height of the window.
pub window_size_height_stops: &'a mut Vec<f32>,
/// An Rc to the original OpenGL context - this is only so that
/// the user can create textures and other OpenGL content in the window
#[cfg(feature = "opengl")]
pub gl_context: Rc<dyn Gl>,
/// Allows the layout() function to reference app resources such as FontIDs or ImageIDs
pub resources: &'a AppResources,
}
impl<'a> LayoutInfo<'a> {
impl_get_gl_context!();
}
impl<'a> LayoutInfo<'a> {
/// Returns whether the window width is larger than `width`,
/// but sets an internal "dirty" flag - so that the UI is re-generated when
/// the window is resized above or below `width`.
///
/// For example:
///
/// ```rust,no_run,ignore
/// fn layout(info: LayoutInfo<T>) -> Dom {
/// if info.window_width_larger_than(720.0) {
/// render_desktop_ui()
/// } else {
/// render_mobile_ui()
/// }
/// }
/// ```
///
/// Here, the UI is dependent on the width of the window, so if the window
/// resizes above or below 720px, the `layout()` function needs to be called again.
/// Internally Azul stores the `720.0` and only calls the `.layout()` function
/// again if the window resizes above or below the value.
///
/// NOTE: This should be later depreceated into `On::Resize` handlers and
/// `@media` queries.
pub fn window_width_larger_than(&mut self, width: f32) -> bool {
self.window_size_width_stops.push(width);
self.window_size.get_logical_size().width > width
}
pub fn window_width_smaller_than(&mut self, width: f32) -> bool {
self.window_size_width_stops.push(width);
self.window_size.get_logical_size().width < width
}
pub fn window_height_larger_than(&mut self, height: f32) -> bool {
self.window_size_height_stops.push(height);
self.window_size.get_logical_size().height > height
}
pub fn window_height_smaller_than(&mut self, height: f32) -> bool {
self.window_size_height_stops.push(height);
self.window_size.get_logical_size().height < height
}
}
/// Information about the bounds of a laid-out div rectangle.
///
/// Necessary when invoking `IFrameCallbacks` and `GlCallbacks`, so
/// that they can change what their content is based on their size.
#[derive(Debug, Copy, Clone)]
pub struct HidpiAdjustedBounds {
pub logical_size: LogicalSize,
pub hidpi_factor: f32,
}
impl HidpiAdjustedBounds {
#[inline(always)]
pub fn from_bounds(bounds: LayoutSize, hidpi_factor: f32) -> Self {
let logical_size = LogicalSize::new(bounds.width, bounds.height);
Self {
logical_size,
hidpi_factor,
}
}
pub fn get_physical_size(&self) -> PhysicalSize<u32> {
self.get_logical_size().to_physical(self.hidpi_factor)
}
pub fn get_logical_size(&self) -> LogicalSize {
// NOTE: hidpi factor, not winit_hidpi_factor!
LogicalSize::new(
self.logical_size.width * self.hidpi_factor,
self.logical_size.height * self.hidpi_factor
)
}
pub fn get_hidpi_factor(&self) -> f32 {
self.hidpi_factor
}
}
/// Defines the focus_targeted node ID for the next frame
#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub enum FocusTarget {
Id((DomId, NodeId)),
Path((DomId, CssPath)),
NoFocus,
}
impl FocusTarget {
pub fn resolve(
&self,
ui_descriptions: &BTreeMap<DomId, UiDescription>,
ui_states: &BTreeMap<DomId, UiState>,
) -> Result<Option<(DomId, NodeId)>, UpdateFocusWarning> {
use crate::callbacks::FocusTarget::*;
use crate::style::matches_html_element;
match self {
Id((dom_id, node_id)) => {
let ui_state = ui_states.get(&dom_id).ok_or(UpdateFocusWarning::FocusInvalidDomId(dom_id.clone()))?;
let _ = ui_state.dom.arena.node_data.get(*node_id).ok_or(UpdateFocusWarning::FocusInvalidNodeId(*node_id))?;
Ok(Some((dom_id.clone(), *node_id)))
},
NoFocus => Ok(None),
Path((dom_id, css_path)) => {
let ui_state = ui_states.get(&dom_id).ok_or(UpdateFocusWarning::FocusInvalidDomId(dom_id.clone()))?;
let ui_description = ui_descriptions.get(&dom_id).ok_or(UpdateFocusWarning::FocusInvalidDomId(dom_id.clone()))?;
let html_node_tree = &ui_description.html_tree;
let node_hierarchy = &ui_state.dom.arena.node_hierarchy;
let node_data = &ui_state.dom.arena.node_data;
let resolved_node_id = html_node_tree
.linear_iter()
.find(|node_id| matches_html_element(css_path, *node_id, &node_hierarchy, &node_data, &html_node_tree))
.ok_or(UpdateFocusWarning::CouldNotFindFocusNode(css_path.clone()))?;
Ok(Some((dom_id.clone(), resolved_node_id)))
},
}
}
}
impl<'a> CallbackInfo<'a> {
impl_callback_info_api!();
impl_task_api!();
impl_get_gl_context!();
}
/// Iterator that, starting from a certain starting point, returns the
/// parent node until it gets to the root node.
pub struct ParentNodesIterator<'a> {
ui_state: &'a BTreeMap<DomId, UiState>,
current_item: (DomId, NodeId),
}
impl<'a> ParentNodesIterator<'a> {
/// Returns what node ID the iterator is currently processing
pub fn current_node(&self) -> (DomId, NodeId) {
self.current_item.clone()
}
/// Returns the offset into the parent of the current node or None if the item has no parent
pub fn current_index_in_parent(&self) -> Option<usize> {
let node_layout = &self.ui_state[&self.current_item.0].dom.arena.node_hierarchy;
if node_layout[self.current_item.1].parent.is_some() {
Some(node_layout.get_index_in_parent(self.current_item.1))
} else {
None
}
}
}
impl<'a> Iterator for ParentNodesIterator<'a> {
type Item = (DomId, NodeId);
/// For each item in the current item path, returns the index of the item in the parent
fn next(&mut self) -> Option<(DomId, NodeId)> {
let parent_node_id = self.ui_state[&self.current_item.0].dom.arena.node_hierarchy[self.current_item.1].parent?;
self.current_item.1 = parent_node_id;
Some((self.current_item.0.clone(), parent_node_id))
}
}
/// The actual function that calls the callback in their proper hierarchy and order
#[cfg(feature = "opengl")]
pub fn call_callbacks(
callbacks_filter_list: &BTreeMap<DomId, CallbacksOfHitTest>,
ui_state_map: &BTreeMap<DomId, UiState>,
ui_description_map: &BTreeMap<DomId, UiDescription>,
timers: &mut FastHashMap<TimerId, Timer>,
tasks: &mut Vec<Task>,
scroll_states: &BTreeMap<DomId, BTreeMap<NodeId, ScrollPosition>>,
modifiable_scroll_states: &mut ScrollStates,
full_window_state: &mut FullWindowState,
layout_result: &BTreeMap<DomId, LayoutResult>,
scrolled_nodes: &BTreeMap<DomId, ScrolledNodes>,
cached_display_list: &CachedDisplayList,
gl_context: Rc<dyn Gl>,
resources: &mut AppResources,
) -> CallCallbacksResult {
let mut ret = CallCallbacksResult {
needs_restyle_hover_active: callbacks_filter_list.values().any(|v| v.needs_redraw_anyways),
needs_relayout_hover_active: callbacks_filter_list.values().any(|v| v.needs_relayout_anyways),
needs_restyle_focus_changed: false,
should_scroll_render: false,
callbacks_update_screen: DontRedraw,
modified_window_state: full_window_state.clone().into(),
};
let mut new_focus_target = None;
let mut nodes_scrolled_in_callbacks = BTreeMap::new();
// Run all callbacks (front to back)
for (dom_id, callbacks_of_hit_test) in callbacks_filter_list.iter() {
let ui_state = match ui_state_map.get(dom_id) {
Some(s) => s,
None => continue,
};
// In order to implement bubbling properly, the events have to be re-sorted a bit
// TODO: Put this in the CallbacksOfHitTest construction
let mut callbacks_grouped_by_event_type = BTreeMap::new();
for (node_id, determine_callback_result) in callbacks_of_hit_test.nodes_with_callbacks.iter() {
for (event_filter, callback) in determine_callback_result.normal_callbacks.iter() {
callbacks_grouped_by_event_type
.entry(event_filter)
.or_insert_with(|| Vec::new())
.push((node_id, callback));
}
}
'outer: for (event_filter, callback_nodes) in callbacks_grouped_by_event_type {
// The (node_id, callback)s are sorted by depth from top to bottom.
// If one event wants to prevent bubbling, the entire event is canceled.
// It is assumed that there aren't any two nodes that have the same event filter.
for (node_id, _) in callback_nodes {
let mut new_focus = None;
let mut stop_propagation = false;
let hit_item = &callbacks_of_hit_test.nodes_with_callbacks[&node_id].hit_test_item;
let callback = ui_state.get_dom().arena.node_data
.get(*node_id)
.map(|nd| nd.get_callbacks())
.and_then(|dc| dc.iter().find_map(|(evt, cb)| if evt == event_filter { Some(cb) } else { None }));
let (callback, callback_ptr) = match callback {
Some(s) => s,
None => continue,
};
// Invoke callback
let callback_return = (callback.0)(CallbackInfo {
state: callback_ptr,
current_window_state: &full_window_state,
modifiable_window_state: &mut ret.modified_window_state,
layout_result,
scrolled_nodes,
cached_display_list,
gl_context: gl_context.clone(),
resources,
timers,
tasks,
ui_state: ui_state_map,
stop_propagation: &mut stop_propagation,
focus_target: &mut new_focus,
current_scroll_states: scroll_states,
nodes_scrolled_in_callback: &mut nodes_scrolled_in_callbacks,
hit_dom_node: (dom_id.clone(), *node_id),
cursor_relative_to_item: hit_item.as_ref().map(|hi| (hi.point_relative_to_item.x, hi.point_relative_to_item.y)),
cursor_in_viewport: hit_item.as_ref().map(|hi| (hi.point_in_viewport.x, hi.point_in_viewport.y)),
});
if callback_return == Redraw {
ret.callbacks_update_screen = Redraw;
}
if let Some(new_focus) = new_focus.clone() {
new_focus_target = Some(new_focus);
}
if stop_propagation {
continue 'outer;
}
}
}
}
// Scroll nodes from programmatic callbacks
for (dom_id, callback_scrolled_nodes) in nodes_scrolled_in_callbacks {
let scrolled_nodes = match scrolled_nodes.get(&dom_id) {
Some(s) => s,
None => continue,
};
for (scroll_node_id, scroll_position) in &callback_scrolled_nodes {
let overflowing_node = match scrolled_nodes.overflowing_nodes.get(&scroll_node_id) {
Some(s) => s,
None => continue,
};
modifiable_scroll_states.set_scroll_position(&overflowing_node, *scroll_position);
ret.should_scroll_render = true;
}
}
let new_focus_node = new_focus_target.and_then(|ft| ft.resolve(&ui_description_map, &ui_state_map).ok()?);
let focus_has_not_changed = full_window_state.focused_node == new_focus_node;
if !focus_has_not_changed {
// TODO: Emit proper On::FocusReceived / On::FocusLost events!
}
// Update the FullWindowState that we got from the frame event (updates window dimensions and DPI)
full_window_state.focused_node = new_focus_node;
ret
}