azul_core/
id_tree.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
use std::{
    ops::{Index, IndexMut},
    slice::{Iter, IterMut},
};

pub use self::node_id::NodeId;
pub type NodeDepths = Vec<(usize, NodeId)>;

// Since private fields are module-based, this prevents any module from accessing
// `NodeId.index` directly. To get the correct node index is by using `NodeId::index()`,
// which subtracts 1 from the ID (because of Option<NodeId> optimizations)
mod node_id {

    use std::{
        fmt,
        num::NonZeroUsize,
        ops::{Add, AddAssign},
    };

    /// A node identifier within a particular `Arena`.
    #[derive(Copy, Clone, PartialOrd, Ord, PartialEq, Eq, Hash)]
    pub struct NodeId {
        index: NonZeroUsize,
    }

    impl NodeId {

        pub const ZERO: NodeId = NodeId { index: unsafe { NonZeroUsize::new_unchecked(1) } };

        /// **NOTE**: In debug mode, it panics on overflow, since having a
        /// pointer that is zero is undefined behaviour (it would basically be
        /// cast to a `None`), which is incorrect, so we rather panic on overflow
        /// to prevent that.
        ///
        /// To trigger an overflow however, you'd need more that 4 billion DOM nodes -
        /// it is more likely that you run out of RAM before you do that. The only thing
        /// that could lead to an overflow would be a bug. Therefore, overflow-checking is
        /// disabled in release mode.
        #[inline(always)]
        pub fn new(value: usize) -> Self {
            NodeId { index: unsafe { NonZeroUsize::new_unchecked(value + 1) } }
        }

        #[inline(always)]
        pub fn index(&self) -> usize {
            self.index.get() - 1
        }

        /// Return an iterator of references to this node’s children.
        #[inline]
        pub fn range(start: Self, end: Self) -> Vec<NodeId> {
            (start.index()..end.index()).map(NodeId::new).collect()
        }
    }

    impl Add<usize> for NodeId {
        type Output = NodeId;
        #[inline(always)]
        fn add(self, other: usize) -> NodeId {
            NodeId::new(self.index() + other)
        }
    }

    impl AddAssign<usize> for NodeId {
        #[inline(always)]
        fn add_assign(&mut self, other: usize) {
            *self = *self + other;
        }
    }

    impl fmt::Display for NodeId {
        fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
            write!(f, "{}", self.index())
        }
    }

    impl fmt::Debug for NodeId {
        fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
            write!(f, "NodeId({})", self.index())
        }
    }
}

/// Hierarchical information about a node (stores the indicies of the parent / child nodes).
#[derive(Debug, Default, Copy, Clone, PartialOrd, Ord, PartialEq, Eq, Hash)]
pub struct Node {
    pub parent: Option<NodeId>,
    pub previous_sibling: Option<NodeId>,
    pub next_sibling: Option<NodeId>,
    pub first_child: Option<NodeId>,
    pub last_child: Option<NodeId>,
}

// Node that initializes a Dom
pub const ROOT_NODE: Node = Node {
    parent: None,
    previous_sibling: None,
    next_sibling: None,
    first_child: None,
    last_child: None,
};

impl Node {
    pub const ROOT: Node = ROOT_NODE;
    #[inline]
    pub fn has_parent(&self) -> bool { self.parent.is_some() }
    #[inline]
    pub fn has_previous_sibling(&self) -> bool { self.previous_sibling.is_some() }
    #[inline]
    pub fn has_next_sibling(&self) -> bool { self.next_sibling.is_some() }
    #[inline]
    pub fn has_first_child(&self) -> bool { self.first_child.is_some() }
    #[inline]
    pub fn has_last_child(&self) -> bool { self.last_child.is_some() }
}

#[derive(Debug, Default, Clone, PartialEq, Hash, Eq)]
pub struct Arena<T> {
    pub node_hierarchy: NodeHierarchy,
    pub node_data: NodeDataContainer<T>,
}

/// The hierarchy of nodes is stored separately from the actual node content in order
/// to save on memory, since the hierarchy can be re-used across several DOM trees even
/// if the content changes.
#[derive(Debug, Default, Clone, PartialEq, Hash, Eq)]
pub struct NodeHierarchy {
    pub internal: Vec<Node>,
}

impl NodeHierarchy {

    #[inline]
    pub const fn new(data: Vec<Node>) -> Self {
        Self {
            internal: data,
        }
    }

    #[inline]
    pub fn len(&self) -> usize {
        self.internal.len()
    }

    #[inline]
    pub fn get(&self, id: NodeId) -> Option<&Node> {
        self.internal.get(id.index())
    }

    #[inline]
    pub fn linear_iter(&self) -> LinearIterator {
        LinearIterator {
            arena_len: self.len(),
            position: 0,
        }
    }

    /// Returns the `(depth, NodeId)` of all parent nodes (i.e. nodes that have a
    /// `first_child`), in depth sorted order, (i.e. `NodeId(0)` with a depth of 0) is
    /// the first element.
    ///
    /// Runtime: O(n) max
    pub fn get_parents_sorted_by_depth(&self) -> NodeDepths {

        let mut non_leaf_nodes = Vec::new();
        let mut current_children = vec![(0, NodeId::new(0))];
        let mut next_children = Vec::new();
        let mut depth = 1;

        loop {

            for id in &current_children {
                for child_id in id.1.children(self).filter(|id| self[*id].first_child.is_some()) {
                    next_children.push((depth, child_id));
                }
            }

            non_leaf_nodes.extend(&mut current_children.drain(..));

            if next_children.is_empty() {
                break;
            } else {
                current_children.extend(&mut next_children.drain(..));
                depth += 1;
            }
        }

        non_leaf_nodes
    }

    /// Returns the number of all subtree items - runtime O(1)
    #[inline]
    pub fn subtree_len(&self, parent_id: NodeId) -> usize {
        let self_item_index = parent_id.index();
        let next_item_index = match self[parent_id].next_sibling {
            None => self.len(),
            Some(s) => s.index(),
        };
        next_item_index - self_item_index - 1
    }

    /// Returns the index in the parent node of a certain NodeId
    /// (starts at 0, i.e. the first node has the index of 0).
    #[inline]
    pub fn get_index_in_parent(&self, node_id: NodeId) -> usize {
        node_id.preceding_siblings(&self).count() - 1
    }
}

#[derive(Debug, Clone, PartialEq, Hash, Eq, PartialOrd, Ord)]
pub struct NodeDataContainer<T> {
    pub internal: Vec<T>,
}

impl<T> Default for NodeDataContainer<T> {
    fn default() -> Self {
        Self { internal: Vec::new() }
    }
}

impl Index<NodeId> for NodeHierarchy {
    type Output = Node;

    #[inline]
    fn index(&self, node_id: NodeId) -> &Node {
        unsafe { self.internal.get_unchecked(node_id.index()) }
    }
}

impl IndexMut<NodeId> for NodeHierarchy {

    #[inline]
    fn index_mut(&mut self, node_id: NodeId) -> &mut Node {
        unsafe { self.internal.get_unchecked_mut(node_id.index()) }
    }
}

impl<T> NodeDataContainer<T> {

    #[inline]
    pub const fn new(data: Vec<T>) -> Self {
        Self { internal: data }
    }

    pub fn len(&self) -> usize { self.internal.len() }

    pub fn transform<U, F>(&self, mut closure: F) -> NodeDataContainer<U> where F: FnMut(&T, NodeId) -> U {
        // TODO if T: Send (which is usually the case), then we could use rayon here!
        NodeDataContainer {
            internal: self.internal.iter().enumerate().map(|(node_id, node)| closure(node, NodeId::new(node_id))).collect(),
        }
    }

    pub fn get(&self, id: NodeId) -> Option<&T> {
        self.internal.get(id.index())
    }

    pub fn iter(&self) -> Iter<T> {
        self.internal.iter()
    }

    pub fn iter_mut(&mut self) -> IterMut<T> {
        self.internal.iter_mut()
    }

    pub fn linear_iter(&self) -> LinearIterator {
        LinearIterator {
            arena_len: self.len(),
            position: 0,
        }
    }
}

impl<T> Index<NodeId> for NodeDataContainer<T> {
    type Output = T;

    #[inline]
    fn index(&self, node_id: NodeId) -> &T {
        unsafe { self.internal.get_unchecked(node_id.index()) }
    }
}

impl<T> IndexMut<NodeId> for NodeDataContainer<T> {

    #[inline]
    fn index_mut(&mut self, node_id: NodeId) -> &mut T {
        unsafe { self.internal.get_unchecked_mut(node_id.index()) }
    }
}

impl<T> Arena<T> {

    #[inline]
    pub fn new() -> Arena<T> {
        // NOTE: This is a separate function, since Vec::new() is a const fn (so this function doesn't allocate)
        Arena {
            node_hierarchy: NodeHierarchy { internal: Vec::new() },
            node_data: NodeDataContainer { internal: Vec::<T>::new() },
        }
    }

    #[inline]
    pub fn with_capacity(cap: usize) -> Arena<T> {
        Arena {
            node_hierarchy: NodeHierarchy { internal: Vec::with_capacity(cap) },
            node_data: NodeDataContainer { internal: Vec::<T>::with_capacity(cap) },
        }
    }

    /// Create a new node from its associated data.
    #[inline]
    pub fn new_node(&mut self, data: T) -> NodeId {
        let next_index = self.node_hierarchy.len();
        self.node_hierarchy.internal.push(Node {
            parent: None,
            first_child: None,
            last_child: None,
            previous_sibling: None,
            next_sibling: None,
        });
        self.node_data.internal.push(data);
        NodeId::new(next_index)
    }

    // Returns how many nodes there are in the arena
    #[inline]
    pub fn len(&self) -> usize {
        self.node_hierarchy.len()
    }

    #[inline]
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Return an iterator over the indices in the internal arenas Vec<T>
    #[inline]
    pub fn linear_iter(&self) -> LinearIterator {
        LinearIterator {
            arena_len: self.node_hierarchy.len(),
            position: 0,
        }
    }

    /// Appends another arena to the end of the current arena
    /// (by simply appending the two Vec of nodes)
    /// Can potentially mess up internal IDs, only use this if you
    /// know what you're doing
    #[inline]
    pub fn append_arena(&mut self, other: &mut Arena<T>) {
        self.node_hierarchy.internal.append(&mut other.node_hierarchy.internal);
        self.node_data.internal.append(&mut other.node_data.internal);
    }

    /// Transform keeps the relative order of parents / children
    /// but transforms an Arena<T> into an Arena<U>, by running the closure on each of the
    /// items. The `NodeId` for the root is then valid for the newly created `Arena<U>`, too.
    #[inline]
    pub fn transform<U, F>(&self, closure: F) -> Arena<U> where F: Fn(&T, NodeId) -> U {
        // TODO if T: Send (which is usually the case), then we could use rayon here!
        Arena {
            node_hierarchy: self.node_hierarchy.clone(),
            node_data: self.node_data.transform(closure),
        }
    }
}

impl NodeId {

    /// Return an iterator of references to this node and its ancestors.
    ///
    /// Call `.next().unwrap()` once on the iterator to skip the node itself.
    #[inline]
    pub const fn ancestors(self, node_hierarchy: &NodeHierarchy) -> Ancestors {
        Ancestors {
            node_hierarchy,
            node: Some(self),
        }
    }

    /// Return an iterator of references to this node and the siblings before it.
    ///
    /// Call `.next().unwrap()` once on the iterator to skip the node itself.
    #[inline]
    pub const fn preceding_siblings(self, node_hierarchy: &NodeHierarchy) -> PrecedingSiblings {
        PrecedingSiblings {
            node_hierarchy,
            node: Some(self),
        }
    }

    /// Return an iterator of references to this node and the siblings after it.
    ///
    /// Call `.next().unwrap()` once on the iterator to skip the node itself.
    #[inline]
    pub const fn following_siblings(self, node_hierarchy: &NodeHierarchy) -> FollowingSiblings {
        FollowingSiblings {
            node_hierarchy,
            node: Some(self),
        }
    }

    /// Return an iterator of references to this node’s children.
    #[inline]
    pub fn children(self, node_hierarchy: &NodeHierarchy) -> Children {
        Children {
            node_hierarchy,
            node: node_hierarchy[self].first_child,
        }
    }

    /// Return an iterator of references to this node’s children, in reverse order.
    #[inline]
    pub fn reverse_children(self, node_hierarchy: &NodeHierarchy) -> ReverseChildren {
        ReverseChildren {
            node_hierarchy,
            node: node_hierarchy[self].last_child,
        }
    }

    /// Return an iterator of references to this node and its descendants, in tree order.
    ///
    /// Parent nodes appear before the descendants.
    /// Call `.next().unwrap()` once on the iterator to skip the node itself.
    #[inline]
    pub const fn descendants(self, node_hierarchy: &NodeHierarchy) -> Descendants {
        Descendants(self.traverse(node_hierarchy))
    }

    /// Return an iterator of references to this node and its descendants, in tree order.
    #[inline]
    pub const fn traverse(self, node_hierarchy: &NodeHierarchy) -> Traverse {
        Traverse {
            node_hierarchy,
            root: self,
            next: Some(NodeEdge::Start(self)),
        }
    }

    /// Return an iterator of references to this node and its descendants, in tree order.
    #[inline]
    pub const fn reverse_traverse(self, node_hierarchy: &NodeHierarchy) -> ReverseTraverse {
        ReverseTraverse {
            node_hierarchy,
            root: self,
            next: Some(NodeEdge::End(self)),
        }
    }
}


macro_rules! impl_node_iterator {
    ($name: ident, $next: expr) => {
        impl<'a> Iterator for $name<'a> {
            type Item = NodeId;

            fn next(&mut self) -> Option<NodeId> {
                match self.node.take() {
                    Some(node) => {
                        self.node = $next(&self.node_hierarchy[node]);
                        Some(node)
                    }
                    None => None
                }
            }
        }
    }
}

/// An linear iterator, does not respect the DOM in any way,
/// it just iterates over the nodes like a Vec
#[derive(Debug, Copy, Clone)]
pub struct LinearIterator {
    arena_len: usize,
    position: usize,
}

impl Iterator for LinearIterator {
    type Item = NodeId;

    fn next(&mut self) -> Option<NodeId> {
        if self.arena_len < 1 || self.position > (self.arena_len - 1){
            None
        } else {
            let new_id = Some(NodeId::new(self.position));
            self.position += 1;
            new_id
        }
    }
}

/// An iterator of references to the ancestors a given node.
pub struct Ancestors<'a> {
    node_hierarchy: &'a NodeHierarchy,
    node: Option<NodeId>,
}

impl_node_iterator!(Ancestors, |node: &Node| node.parent);

/// An iterator of references to the siblings before a given node.
pub struct PrecedingSiblings<'a> {
    node_hierarchy: &'a NodeHierarchy,
    node: Option<NodeId>,
}

impl_node_iterator!(PrecedingSiblings, |node: &Node| node.previous_sibling);

/// An iterator of references to the siblings after a given node.
pub struct FollowingSiblings<'a> {
    node_hierarchy: &'a NodeHierarchy,
    node: Option<NodeId>,
}

impl_node_iterator!(FollowingSiblings, |node: &Node| node.next_sibling);

/// An iterator of references to the children of a given node.
pub struct Children<'a> {
    node_hierarchy: &'a NodeHierarchy,
    node: Option<NodeId>,
}

impl_node_iterator!(Children, |node: &Node| node.next_sibling);

/// An iterator of references to the children of a given node, in reverse order.
pub struct ReverseChildren<'a> {
    node_hierarchy: &'a NodeHierarchy,
    node: Option<NodeId>,
}

impl_node_iterator!(ReverseChildren, |node: &Node| node.previous_sibling);

/// An iterator of references to a given node and its descendants, in tree order.
pub struct Descendants<'a>(Traverse<'a>);

impl<'a> Iterator for Descendants<'a> {
    type Item = NodeId;

    fn next(&mut self) -> Option<NodeId> {
        loop {
            match self.0.next() {
                Some(NodeEdge::Start(node)) => return Some(node),
                Some(NodeEdge::End(_)) => {}
                None => return None
            }
        }
    }
}

#[derive(Debug, Clone)]
pub enum NodeEdge<T> {
    /// Indicates that start of a node that has children.
    /// Yielded by `Traverse::next` before the node’s descendants.
    /// In HTML or XML, this corresponds to an opening tag like `<div>`
    Start(T),

    /// Indicates that end of a node that has children.
    /// Yielded by `Traverse::next` after the node’s descendants.
    /// In HTML or XML, this corresponds to a closing tag like `</div>`
    End(T),
}

impl<T> NodeEdge<T> {
    pub fn inner_value(self) -> T {
        use self::NodeEdge::*;
        match self {
            Start(t) => t,
            End(t) => t,
        }
    }
}

/// An iterator of references to a given node and its descendants, in tree order.
pub struct Traverse<'a> {
    node_hierarchy: &'a NodeHierarchy,
    root: NodeId,
    next: Option<NodeEdge<NodeId>>,
}

impl<'a> Iterator for Traverse<'a> {
    type Item = NodeEdge<NodeId>;

    fn next(&mut self) -> Option<NodeEdge<NodeId>> {
        match self.next.take() {
            Some(item) => {
                self.next = match item {
                    NodeEdge::Start(node) => {
                        match self.node_hierarchy[node].first_child {
                            Some(first_child) => Some(NodeEdge::Start(first_child)),
                            None => Some(NodeEdge::End(node.clone()))
                        }
                    }
                    NodeEdge::End(node) => {
                        if node == self.root {
                            None
                        } else {
                            match self.node_hierarchy[node].next_sibling {
                                Some(next_sibling) => Some(NodeEdge::Start(next_sibling)),
                                None => match self.node_hierarchy[node].parent {
                                    Some(parent) => Some(NodeEdge::End(parent)),

                                    // `node.parent()` here can only be `None`
                                    // if the tree has been modified during iteration,
                                    // but silently stopping iteration
                                    // seems a more sensible behavior than panicking.
                                    None => None
                                }
                            }
                        }
                    }
                };
                Some(item)
            }
            None => None
        }
    }
}

/// An iterator of references to a given node and its descendants, in reverse tree order.
pub struct ReverseTraverse<'a> {
    node_hierarchy: &'a NodeHierarchy,
    root: NodeId,
    next: Option<NodeEdge<NodeId>>,
}

impl<'a> Iterator for ReverseTraverse<'a> {
    type Item = NodeEdge<NodeId>;

    fn next(&mut self) -> Option<NodeEdge<NodeId>> {
        match self.next.take() {
            Some(item) => {
                self.next = match item {
                    NodeEdge::End(node) => {
                        match self.node_hierarchy[node].last_child {
                            Some(last_child) => Some(NodeEdge::End(last_child)),
                            None => Some(NodeEdge::Start(node.clone()))
                        }
                    }
                    NodeEdge::Start(node) => {
                        if node == self.root {
                            None
                        } else {
                            match self.node_hierarchy[node].previous_sibling {
                                Some(previous_sibling) => Some(NodeEdge::End(previous_sibling)),
                                None => match self.node_hierarchy[node].parent {
                                    Some(parent) => Some(NodeEdge::Start(parent)),

                                    // `node.parent()` here can only be `None`
                                    // if the tree has been modified during iteration,
                                    // but silently stopping iteration
                                    // seems a more sensible behavior than panicking.
                                    None => None
                                }
                            }
                        }
                    }
                };
                Some(item)
            }
            None => None
        }
    }
}