1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
/* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ use api::{ColorF, YuvColorSpace, YuvFormat, ImageRendering}; use api::units::{DeviceRect, DeviceIntSize, DeviceIntRect, DeviceIntPoint, WorldRect}; use api::units::{DevicePixelScale, DevicePoint, PictureRect, TexelRect}; use crate::batch::{resolve_image, get_buffer_kind}; use crate::gpu_cache::GpuCache; use crate::gpu_types::{ZBufferId, ZBufferIdGenerator}; use crate::internal_types::TextureSource; use crate::picture::{ImageDependency, ResolvedSurfaceTexture, TileCacheInstance, TileId, TileSurface}; use crate::prim_store::DeferredResolve; use crate::renderer::ImageBufferKind; use crate::resource_cache::{ImageRequest, ResourceCache}; use std::{ops, u64}; /* Types and definitions related to compositing picture cache tiles and/or OS compositor integration. */ /// Describes details of an operation to apply to a native surface #[derive(Debug, Clone)] #[cfg_attr(feature = "capture", derive(Serialize))] #[cfg_attr(feature = "replay", derive(Deserialize))] pub enum NativeSurfaceOperationDetails { CreateSurface { id: NativeSurfaceId, virtual_offset: DeviceIntPoint, tile_size: DeviceIntSize, is_opaque: bool, }, DestroySurface { id: NativeSurfaceId, }, CreateTile { id: NativeTileId, }, DestroyTile { id: NativeTileId, } } /// Describes an operation to apply to a native surface #[derive(Debug, Clone)] #[cfg_attr(feature = "capture", derive(Serialize))] #[cfg_attr(feature = "replay", derive(Deserialize))] pub struct NativeSurfaceOperation { pub details: NativeSurfaceOperationDetails, } /// Describes the source surface information for a tile to be composited. This /// is the analog of the TileSurface type, with target surface information /// resolved such that it can be used by the renderer. #[cfg_attr(feature = "capture", derive(Serialize))] #[cfg_attr(feature = "replay", derive(Deserialize))] pub enum CompositeTileSurface { Texture { surface: ResolvedSurfaceTexture, }, Color { color: ColorF, }, Clear, ExternalSurface { external_surface_index: ResolvedExternalSurfaceIndex, }, } /// The surface format for a tile being composited. #[derive(Debug, Copy, Clone, PartialEq)] pub enum CompositeSurfaceFormat { Rgba, Yuv, } /// Describes the geometry and surface of a tile to be composited #[cfg_attr(feature = "capture", derive(Serialize))] #[cfg_attr(feature = "replay", derive(Deserialize))] pub struct CompositeTile { pub surface: CompositeTileSurface, pub rect: DeviceRect, pub clip_rect: DeviceRect, pub dirty_rect: DeviceRect, pub valid_rect: DeviceRect, pub z_id: ZBufferId, } /// Describes information about drawing a primitive as a compositor surface. /// For now, we support only YUV images as compositor surfaces, but in future /// this will also support RGBA images. pub struct ExternalSurfaceDescriptor { pub local_rect: PictureRect, pub world_rect: WorldRect, pub device_rect: DeviceRect, pub local_clip_rect: PictureRect, pub clip_rect: DeviceRect, pub image_dependencies: [ImageDependency; 3], pub image_rendering: ImageRendering, pub yuv_color_space: YuvColorSpace, pub yuv_format: YuvFormat, pub yuv_rescale: f32, pub z_id: ZBufferId, /// If native compositing is enabled, the native compositor surface handle. /// Otherwise, this will be None pub native_surface_id: Option<NativeSurfaceId>, /// If the native surface needs to be updated, this will contain the size /// of the native surface as Some(size). If not dirty, this is None. pub update_params: Option<DeviceIntSize>, } /// Information about a plane in a YUV surface. #[cfg_attr(feature = "capture", derive(Serialize))] #[cfg_attr(feature = "replay", derive(Deserialize))] pub struct YuvPlaneDescriptor { pub texture: TextureSource, pub texture_layer: i32, pub uv_rect: TexelRect, } impl YuvPlaneDescriptor { fn invalid() -> Self { YuvPlaneDescriptor { texture: TextureSource::Invalid, texture_layer: 0, uv_rect: TexelRect::invalid(), } } } #[cfg_attr(feature = "capture", derive(Serialize))] #[cfg_attr(feature = "replay", derive(Deserialize))] #[derive(Debug, Copy, Clone)] pub struct ResolvedExternalSurfaceIndex(pub usize); /// An ExternalSurfaceDescriptor that has had image keys /// resolved to texture handles. This contains all the /// information that the compositor step in renderer /// needs to know. #[cfg_attr(feature = "capture", derive(Serialize))] #[cfg_attr(feature = "replay", derive(Deserialize))] pub struct ResolvedExternalSurface { // YUV specific information pub image_dependencies: [ImageDependency; 3], pub yuv_planes: [YuvPlaneDescriptor; 3], pub yuv_color_space: YuvColorSpace, pub yuv_format: YuvFormat, pub yuv_rescale: f32, pub image_buffer_kind: ImageBufferKind, // Update information for a native surface if it's dirty pub update_params: Option<(NativeSurfaceId, DeviceIntSize)>, } /// Public interface specified in `RendererOptions` that configures /// how WR compositing will operate. pub enum CompositorConfig { /// Let WR draw tiles via normal batching. This requires no special OS support. Draw { /// If this is zero, a full screen present occurs at the end of the /// frame. This is the simplest and default mode. If this is non-zero, /// then the operating system supports a form of 'partial present' where /// only dirty regions of the framebuffer need to be updated. max_partial_present_rects: usize, }, /// Use a native OS compositor to draw tiles. This requires clients to implement /// the Compositor trait, but can be significantly more power efficient on operating /// systems that support it. Native { /// The maximum number of dirty rects that can be provided per compositor /// surface update. If this is zero, the entire compositor surface for /// a given tile will be drawn if it's dirty. max_update_rects: usize, /// A client provided interface to a native / OS compositor. compositor: Box<dyn Compositor>, } } impl CompositorConfig { pub fn compositor(&mut self) -> Option<&mut Box<dyn Compositor>> { match self { CompositorConfig::Native { ref mut compositor, .. } => { Some(compositor) } CompositorConfig::Draw { .. } => { None } } } } impl Default for CompositorConfig { /// Default compositor config is full present without partial present. fn default() -> Self { CompositorConfig::Draw { max_partial_present_rects: 0, } } } /// This is a representation of `CompositorConfig` without the `Compositor` trait /// present. This allows it to be freely copied to other threads, such as the render /// backend where the frame builder can access it. #[cfg_attr(feature = "capture", derive(Serialize))] #[cfg_attr(feature = "replay", derive(Deserialize))] #[derive(Debug, Copy, Clone, PartialEq)] pub enum CompositorKind { /// WR handles compositing via drawing. Draw { /// Partial present support. max_partial_present_rects: usize, }, /// Native OS compositor. Native { /// Maximum dirty rects per compositor surface. max_update_rects: usize, /// The virtual surface size used by underlying platform. virtual_surface_size: i32, }, } impl Default for CompositorKind { /// Default compositor config is full present without partial present. fn default() -> Self { CompositorKind::Draw { max_partial_present_rects: 0, } } } impl CompositorKind { pub fn get_virtual_surface_size(&self) -> i32 { match self { CompositorKind::Draw { .. } => 0, CompositorKind::Native { virtual_surface_size, .. } => *virtual_surface_size, } } } /// Information about an opaque surface used to occlude tiles. #[cfg_attr(feature = "capture", derive(Serialize))] #[cfg_attr(feature = "replay", derive(Deserialize))] struct Occluder { z_id: ZBufferId, device_rect: DeviceIntRect, } /// The backing surface kind for a tile. Same as `TileSurface`, minus /// the texture cache handles, visibility masks etc. #[cfg_attr(feature = "capture", derive(Serialize))] #[cfg_attr(feature = "replay", derive(Deserialize))] #[derive(PartialEq, Clone)] pub enum TileSurfaceKind { Texture, Color { color: ColorF, }, Clear, } impl From<&TileSurface> for TileSurfaceKind { fn from(surface: &TileSurface) -> Self { match surface { TileSurface::Texture { .. } => TileSurfaceKind::Texture, TileSurface::Color { color } => TileSurfaceKind::Color { color: *color }, TileSurface::Clear => TileSurfaceKind::Clear, } } } /// Describes properties that identify a tile composition uniquely. /// The backing surface for this tile. #[cfg_attr(feature = "capture", derive(Serialize))] #[cfg_attr(feature = "replay", derive(Deserialize))] #[derive(PartialEq, Clone)] pub struct CompositeTileDescriptor { pub tile_id: TileId, pub surface_kind: TileSurfaceKind, } /// Describes the properties that identify a surface composition uniquely. #[cfg_attr(feature = "capture", derive(Serialize))] #[cfg_attr(feature = "replay", derive(Deserialize))] #[derive(PartialEq, Clone)] pub struct CompositeSurfaceDescriptor { pub surface_id: Option<NativeSurfaceId>, pub offset: DevicePoint, pub clip_rect: DeviceRect, // A list of image keys and generations that this compositor surface // depends on. This avoids composites being skipped when the only // thing that has changed is the generation of an compositor surface // image dependency. pub image_dependencies: [ImageDependency; 3], // List of the surface information for each tile added to this virtual surface pub tile_descriptors: Vec<CompositeTileDescriptor>, } /// Describes surface properties used to composite a frame. This /// is used to compare compositions between frames. #[cfg_attr(feature = "capture", derive(Serialize))] #[cfg_attr(feature = "replay", derive(Deserialize))] #[derive(PartialEq, Clone)] pub struct CompositeDescriptor { pub surfaces: Vec<CompositeSurfaceDescriptor>, } impl CompositeDescriptor { /// Construct an empty descriptor. pub fn empty() -> Self { CompositeDescriptor { surfaces: Vec::new(), } } } /// The list of tiles to be drawn this frame #[cfg_attr(feature = "capture", derive(Serialize))] #[cfg_attr(feature = "replay", derive(Deserialize))] pub struct CompositeState { // TODO(gw): Consider splitting up CompositeState into separate struct types depending // on the selected compositing mode. Many of the fields in this state struct // are only applicable to either Native or Draw compositing mode. /// List of opaque tiles to be drawn by the Draw compositor. pub opaque_tiles: Vec<CompositeTile>, /// List of alpha tiles to be drawn by the Draw compositor. pub alpha_tiles: Vec<CompositeTile>, /// List of clear tiles to be drawn by the Draw compositor. pub clear_tiles: Vec<CompositeTile>, /// List of primitives that were promoted to be compositor surfaces. pub external_surfaces: Vec<ResolvedExternalSurface>, /// Used to generate z-id values for tiles in the Draw compositor mode. pub z_generator: ZBufferIdGenerator, // If false, we can't rely on the dirty rects in the CompositeTile // instances. This currently occurs during a scroll event, as a // signal to refresh the whole screen. This is only a temporary // measure until we integrate with OS compositors. In the meantime // it gives us the ability to partial present for any non-scroll // case as a simple win (e.g. video, animation etc). pub dirty_rects_are_valid: bool, /// The kind of compositor for picture cache tiles (e.g. drawn by WR, or OS compositor) pub compositor_kind: CompositorKind, /// Picture caching may be disabled dynamically, based on debug flags, pinch zoom etc. pub picture_caching_is_enabled: bool, /// The overall device pixel scale, used for tile occlusion conversions. global_device_pixel_scale: DevicePixelScale, /// List of registered occluders occluders: Vec<Occluder>, /// Description of the surfaces and properties that are being composited. pub descriptor: CompositeDescriptor, } impl CompositeState { /// Construct a new state for compositing picture tiles. This is created /// during each frame construction and passed to the renderer. pub fn new( compositor_kind: CompositorKind, mut picture_caching_is_enabled: bool, global_device_pixel_scale: DevicePixelScale, max_depth_ids: i32, ) -> Self { // The native compositor interface requires picture caching to work, so // force it here and warn if it was disabled. if let CompositorKind::Native { .. } = compositor_kind { if !picture_caching_is_enabled { warn!("Picture caching cannot be disabled in native compositor config"); } picture_caching_is_enabled = true; } CompositeState { opaque_tiles: Vec::new(), alpha_tiles: Vec::new(), clear_tiles: Vec::new(), z_generator: ZBufferIdGenerator::new(0, max_depth_ids), dirty_rects_are_valid: true, compositor_kind, picture_caching_is_enabled, global_device_pixel_scale, occluders: Vec::new(), descriptor: CompositeDescriptor::empty(), external_surfaces: Vec::new(), } } /// Register an occluder during picture cache updates that can be /// used during frame building to occlude tiles. pub fn register_occluder( &mut self, z_id: ZBufferId, rect: WorldRect, ) { let device_rect = (rect * self.global_device_pixel_scale).round().to_i32(); self.occluders.push(Occluder { device_rect, z_id, }); } /// Returns true if a tile with the specified rectangle and z_id /// is occluded by an opaque surface in front of it. pub fn is_tile_occluded( &self, z_id: ZBufferId, device_rect: DeviceRect, ) -> bool { // It's often the case that a tile is only occluded by considering multiple // picture caches in front of it (for example, the background tiles are // often occluded by a combination of the content slice + the scrollbar slices). // The basic algorithm is: // For every occluder: // If this occluder is in front of the tile we are querying: // Clip the occluder rectangle to the query rectangle. // Calculate the total non-overlapping area of those clipped occluders. // If the cumulative area of those occluders is the same as the area of the query tile, // Then the entire tile must be occluded and can be skipped during rasterization and compositing. // Get the reference area we will compare against. let device_rect = device_rect.round().to_i32(); let ref_area = device_rect.size.width * device_rect.size.height; // Calculate the non-overlapping area of the valid occluders. let cover_area = area_of_occluders(&self.occluders, z_id, &device_rect); debug_assert!(cover_area <= ref_area); // Check if the tile area is completely covered ref_area == cover_area } /// Add a picture cache to be composited pub fn push_surface( &mut self, tile_cache: &TileCacheInstance, device_clip_rect: DeviceRect, global_device_pixel_scale: DevicePixelScale, resource_cache: &ResourceCache, gpu_cache: &mut GpuCache, deferred_resolves: &mut Vec<DeferredResolve>, ) { let mut visible_opaque_tile_count = 0; let mut visible_alpha_tile_count = 0; let mut opaque_tile_descriptors = Vec::new(); let mut alpha_tile_descriptors = Vec::new(); for tile in tile_cache.tiles.values() { if !tile.is_visible { // This can occur when a tile is found to be occluded during frame building. continue; } let device_rect = (tile.world_tile_rect * global_device_pixel_scale).round(); let surface = tile.surface.as_ref().expect("no tile surface set!"); let descriptor = CompositeTileDescriptor { surface_kind: surface.into(), tile_id: tile.id, }; let (surface, is_opaque) = match surface { TileSurface::Color { color } => { (CompositeTileSurface::Color { color: *color }, true) } TileSurface::Clear => { (CompositeTileSurface::Clear, false) } TileSurface::Texture { descriptor, .. } => { let surface = descriptor.resolve(resource_cache, tile_cache.current_tile_size); ( CompositeTileSurface::Texture { surface }, tile.is_opaque || tile_cache.is_opaque(), ) } }; if is_opaque { opaque_tile_descriptors.push(descriptor); visible_opaque_tile_count += 1; } else { alpha_tile_descriptors.push(descriptor); visible_alpha_tile_count += 1; } let tile = CompositeTile { surface, rect: device_rect, valid_rect: tile.device_valid_rect.translate(-device_rect.origin.to_vector()), dirty_rect: tile.device_dirty_rect.translate(-device_rect.origin.to_vector()), clip_rect: device_clip_rect, z_id: tile.z_id, }; self.push_tile(tile, is_opaque); } // Sort the tile descriptor lists, since iterating values in the tile_cache.tiles // hashmap doesn't provide any ordering guarantees, but we want to detect the // composite descriptor as equal if the tiles list is the same, regardless of // ordering. opaque_tile_descriptors.sort_by_key(|desc| desc.tile_id); alpha_tile_descriptors.sort_by_key(|desc| desc.tile_id); // Add opaque surface before any compositor surfaces if visible_opaque_tile_count > 0 { self.descriptor.surfaces.push( CompositeSurfaceDescriptor { surface_id: tile_cache.native_surface.as_ref().map(|s| s.opaque), offset: tile_cache.device_position, clip_rect: device_clip_rect, image_dependencies: [ImageDependency::INVALID; 3], tile_descriptors: opaque_tile_descriptors, } ); } // For each compositor surface that was promoted, build the // information required for the compositor to draw it for external_surface in &tile_cache.external_surfaces { let mut yuv_planes = [ YuvPlaneDescriptor::invalid(), YuvPlaneDescriptor::invalid(), YuvPlaneDescriptor::invalid(), ]; // Step through the image keys, and build a yuv plane descriptor for each let required_plane_count = external_surface.yuv_format.get_plane_num(); let mut valid_plane_count = 0; for i in 0 .. required_plane_count { let key = external_surface.image_dependencies[i].key; let plane = &mut yuv_planes[i]; let request = ImageRequest { key, rendering: external_surface.image_rendering, tile: None, }; let cache_item = resolve_image( request, resource_cache, gpu_cache, deferred_resolves, ); if cache_item.texture_id != TextureSource::Invalid { valid_plane_count += 1; *plane = YuvPlaneDescriptor { texture: cache_item.texture_id, texture_layer: cache_item.texture_layer, uv_rect: cache_item.uv_rect.into(), }; } } // Check if there are valid images added for each YUV plane if valid_plane_count < required_plane_count { warn!("Warnings: skip a YUV compositor surface, found {}/{} valid images", valid_plane_count, required_plane_count, ); continue; } let clip_rect = external_surface .clip_rect .intersection(&device_clip_rect) .unwrap_or_else(DeviceRect::zero); // Get a new z_id for each compositor surface, to ensure correct ordering // when drawing with the simple (Draw) compositor. let surface = CompositeTileSurface::ExternalSurface { external_surface_index: ResolvedExternalSurfaceIndex(self.external_surfaces.len()), }; // If the external surface descriptor reports that the native surface // needs to be updated, create an update params tuple for the renderer // to use. let update_params = external_surface.update_params.map(|surface_size| { ( external_surface.native_surface_id.expect("bug: no native surface!"), surface_size ) }); self.external_surfaces.push(ResolvedExternalSurface { yuv_color_space: external_surface.yuv_color_space, yuv_format: external_surface.yuv_format, yuv_rescale: external_surface.yuv_rescale, image_buffer_kind: get_buffer_kind(yuv_planes[0].texture), image_dependencies: external_surface.image_dependencies, yuv_planes, update_params, }); let tile = CompositeTile { surface, rect: external_surface.device_rect, valid_rect: external_surface.device_rect.translate(-external_surface.device_rect.origin.to_vector()), dirty_rect: external_surface.device_rect.translate(-external_surface.device_rect.origin.to_vector()), clip_rect, z_id: external_surface.z_id, }; // Add a surface descriptor for each compositor surface. For the Draw // compositor, this is used to avoid composites being skipped by adding // a dependency on the compositor surface external image keys / generations. self.descriptor.surfaces.push( CompositeSurfaceDescriptor { surface_id: external_surface.native_surface_id, offset: tile.rect.origin, clip_rect: tile.clip_rect, image_dependencies: external_surface.image_dependencies, tile_descriptors: Vec::new(), } ); self.push_tile(tile, true); } // Add alpha / overlay tiles after compositor surfaces if visible_alpha_tile_count > 0 { self.descriptor.surfaces.push( CompositeSurfaceDescriptor { surface_id: tile_cache.native_surface.as_ref().map(|s| s.alpha), offset: tile_cache.device_position, clip_rect: device_clip_rect, image_dependencies: [ImageDependency::INVALID; 3], tile_descriptors: alpha_tile_descriptors, } ); } } /// Add a tile to the appropriate array, depending on tile properties and compositor mode. fn push_tile( &mut self, tile: CompositeTile, is_opaque: bool, ) { match tile.surface { CompositeTileSurface::Color { .. } => { // Color tiles are, by definition, opaque. We might support non-opaque color // tiles if we ever find pages that have a lot of these. self.opaque_tiles.push(tile); } CompositeTileSurface::Clear => { // Clear tiles have a special bucket self.clear_tiles.push(tile); } CompositeTileSurface::Texture { .. } => { // Texture surfaces get bucketed by opaque/alpha, for z-rejection // on the Draw compositor mode. if is_opaque { self.opaque_tiles.push(tile); } else { self.alpha_tiles.push(tile); } } CompositeTileSurface::ExternalSurface { .. } => { self.opaque_tiles.push(tile); } } } } /// An arbitrary identifier for a native (OS compositor) surface #[repr(C)] #[derive(Debug, Copy, Clone, Hash, Eq, PartialEq)] #[cfg_attr(feature = "capture", derive(Serialize))] #[cfg_attr(feature = "replay", derive(Deserialize))] pub struct NativeSurfaceId(pub u64); impl NativeSurfaceId { /// A special id for the native surface that is used for debug / profiler overlays. pub const DEBUG_OVERLAY: NativeSurfaceId = NativeSurfaceId(u64::MAX); } #[repr(C)] #[derive(Debug, Copy, Clone, Hash, Eq, PartialEq)] #[cfg_attr(feature = "capture", derive(Serialize))] #[cfg_attr(feature = "replay", derive(Deserialize))] pub struct NativeTileId { pub surface_id: NativeSurfaceId, pub x: i32, pub y: i32, } impl NativeTileId { /// A special id for the native surface that is used for debug / profiler overlays. pub const DEBUG_OVERLAY: NativeTileId = NativeTileId { surface_id: NativeSurfaceId::DEBUG_OVERLAY, x: 0, y: 0, }; } /// Information about a bound surface that the native compositor /// returns to WR. #[repr(C)] #[derive(Copy, Clone)] pub struct NativeSurfaceInfo { /// An offset into the surface that WR should draw. Some compositing /// implementations (notably, DirectComposition) use texture atlases /// when the surface sizes are small. In this case, an offset can /// be returned into the larger texture where WR should draw. This /// can be (0, 0) if texture atlases are not used. pub origin: DeviceIntPoint, /// The ID of the FBO that WR should bind to, in order to draw to /// the bound surface. On Windows (ANGLE) this will always be 0, /// since creating a p-buffer sets the default framebuffer to /// be the DirectComposition surface. On Mac, this will be non-zero, /// since it identifies the IOSurface that has been bound to draw to. // TODO(gw): This may need to be a larger / different type for WR // backends that are not GL. pub fbo_id: u32, } #[repr(C)] pub struct CompositorCapabilities { pub virtual_surface_size: i32, } /// Defines an interface to a native (OS level) compositor. If supplied /// by the client application, then picture cache slices will be /// composited by the OS compositor, rather than drawn via WR batches. pub trait Compositor { /// Create a new OS compositor surface with the given properties. fn create_surface( &mut self, id: NativeSurfaceId, virtual_offset: DeviceIntPoint, tile_size: DeviceIntSize, is_opaque: bool, ); /// Destroy the surface with the specified id. WR may call this /// at any time the surface is no longer required (including during /// renderer deinit). It's the responsibility of the embedder /// to ensure that the surface is only freed once the GPU is /// no longer using the surface (if this isn't already handled /// by the operating system). fn destroy_surface( &mut self, id: NativeSurfaceId, ); /// Create a new OS compositor tile with the given properties. fn create_tile( &mut self, id: NativeTileId, ); /// Destroy an existing compositor tile. fn destroy_tile( &mut self, id: NativeTileId, ); /// Bind this surface such that WR can issue OpenGL commands /// that will target the surface. Returns an (x, y) offset /// where WR should draw into the surface. This can be set /// to (0, 0) if the OS doesn't use texture atlases. The dirty /// rect is a local surface rect that specifies which part /// of the surface needs to be updated. If max_update_rects /// in CompositeConfig is 0, this will always be the size /// of the entire surface. The returned offset is only /// relevant to compositors that store surfaces in a texture /// atlas (that is, WR expects that the dirty rect doesn't /// affect the coordinates of the returned origin). fn bind( &mut self, id: NativeTileId, dirty_rect: DeviceIntRect, valid_rect: DeviceIntRect, ) -> NativeSurfaceInfo; /// Unbind the surface. This is called by WR when it has /// finished issuing OpenGL commands on the current surface. fn unbind( &mut self, ); /// Begin the frame fn begin_frame(&mut self); /// Add a surface to the visual tree to be composited. Visuals must /// be added every frame, between the begin/end transaction call. The /// z-order of the surfaces is determined by the order they are added /// to the visual tree. // TODO(gw): Adding visuals every frame makes the interface simple, // but may have performance implications on some compositors? // We might need to change the interface to maintain a visual // tree that can be mutated? // TODO(gw): We might need to add a concept of a hierachy in future. // TODO(gw): In future, expand to support a more complete transform matrix. fn add_surface( &mut self, id: NativeSurfaceId, position: DeviceIntPoint, clip_rect: DeviceIntRect, ); /// Commit any changes in the compositor tree for this frame. WR calls /// this once when all surface and visual updates are complete, to signal /// that the OS composite transaction should be applied. fn end_frame(&mut self); /// Enable/disable native compositor usage fn enable_native_compositor(&mut self, enable: bool); /// Safely deinitialize any remaining resources owned by the compositor. fn deinit(&mut self); /// Get the capabilities struct for this compositor. This is used to /// specify what features a compositor supports, depending on the /// underlying platform fn get_capabilities(&self) -> CompositorCapabilities; } /// Return the total area covered by a set of occluders, accounting for /// overlapping areas between those rectangles. fn area_of_occluders( occluders: &[Occluder], z_id: ZBufferId, clip_rect: &DeviceIntRect, ) -> i32 { // This implementation is based on the article https://leetcode.com/articles/rectangle-area-ii/. // This is not a particularly efficient implementation (it skips building segment trees), however // we typically use this where the length of the rectangles array is < 10, so simplicity is more important. let mut area = 0; // Whether this event is the start or end of a rectangle #[derive(Debug)] enum EventKind { Begin, End, } // A list of events on the y-axis, with the rectangle range that it affects on the x-axis #[derive(Debug)] struct Event { y: i32, x_range: ops::Range<i32>, kind: EventKind, } impl Event { fn new(y: i32, kind: EventKind, x0: i32, x1: i32) -> Self { Event { y, x_range: ops::Range { start: x0, end: x1, }, kind, } } } // Step through each rectangle and build the y-axis event list let mut events = Vec::with_capacity(occluders.len() * 2); for occluder in occluders { // Only consider occluders in front of this rect if occluder.z_id.0 > z_id.0 { // Clip the source rect to the rectangle we care about, since we only // want to record area for the tile we are comparing to. if let Some(rect) = occluder.device_rect.intersection(clip_rect) { let x0 = rect.origin.x; let x1 = x0 + rect.size.width; events.push(Event::new(rect.origin.y, EventKind::Begin, x0, x1)); events.push(Event::new(rect.origin.y + rect.size.height, EventKind::End, x0, x1)); } } } // If we didn't end up with any valid events, the area must be 0 if events.is_empty() { return 0; } // Sort the events by y-value events.sort_by_key(|e| e.y); let mut active: Vec<ops::Range<i32>> = Vec::new(); let mut cur_y = events[0].y; // Step through each y interval for event in &events { // This is the dimension of the y-axis we are accumulating areas for let dy = event.y - cur_y; // If we have active events covering x-ranges in this y-interval, process them if dy != 0 && !active.is_empty() { assert!(dy > 0); // Step through the x-ranges, ordered by x0 of each event active.sort_by_key(|i| i.start); let mut query = 0; let mut cur = active[0].start; // Accumulate the non-overlapping x-interval that contributes to area for this y-interval. for interval in &active { cur = interval.start.max(cur); query += (interval.end - cur).max(0); cur = cur.max(interval.end); } // Accumulate total area for this y-interval area += query * dy; } // Update the active events list match event.kind { EventKind::Begin => { active.push(event.x_range.clone()); } EventKind::End => { let index = active.iter().position(|i| *i == event.x_range).unwrap(); active.remove(index); } } cur_y = event.y; } area }