azul_webrender/composite.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
use api::{ColorF, YuvRangedColorSpace, YuvFormat, ImageRendering, ExternalImageId, ImageBufferKind};
use api::units::*;
use api::ColorDepth;
use crate::image_source::resolve_image;
use euclid::{Box2D, Transform3D};
use crate::gpu_cache::GpuCache;
use crate::gpu_types::{ZBufferId, ZBufferIdGenerator};
use crate::internal_types::TextureSource;
use crate::picture::{ImageDependency, ResolvedSurfaceTexture, TileCacheInstance, TileId, TileSurface};
use crate::prim_store::DeferredResolve;
use crate::resource_cache::{ImageRequest, ResourceCache};
use crate::util::{Preallocator, ScaleOffset};
use crate::tile_cache::PictureCacheDebugInfo;
use std::{ops, u64, os::raw::c_void};
/*
Types and definitions related to compositing picture cache tiles
and/or OS compositor integration.
*/
/// Describes details of an operation to apply to a native surface
#[derive(Debug, Clone)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub enum NativeSurfaceOperationDetails {
CreateSurface {
id: NativeSurfaceId,
virtual_offset: DeviceIntPoint,
tile_size: DeviceIntSize,
is_opaque: bool,
},
CreateExternalSurface {
id: NativeSurfaceId,
is_opaque: bool,
},
DestroySurface {
id: NativeSurfaceId,
},
CreateTile {
id: NativeTileId,
},
DestroyTile {
id: NativeTileId,
},
AttachExternalImage {
id: NativeSurfaceId,
external_image: ExternalImageId,
}
}
/// Describes an operation to apply to a native surface
#[derive(Debug, Clone)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct NativeSurfaceOperation {
pub details: NativeSurfaceOperationDetails,
}
/// Describes the source surface information for a tile to be composited. This
/// is the analog of the TileSurface type, with target surface information
/// resolved such that it can be used by the renderer.
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[derive(Clone)]
pub enum CompositeTileSurface {
Texture {
surface: ResolvedSurfaceTexture,
},
Color {
color: ColorF,
},
Clear,
ExternalSurface {
external_surface_index: ResolvedExternalSurfaceIndex,
},
}
/// The surface format for a tile being composited.
#[derive(Debug, Copy, Clone, PartialEq)]
pub enum CompositeSurfaceFormat {
Rgba,
Yuv,
}
bitflags! {
/// Optional features that can be opted-out of when compositing,
/// possibly allowing a fast path to be selected.
pub struct CompositeFeatures: u8 {
// UV coordinates do not require clamping, for example because the
// entire texture is being composited.
const NO_UV_CLAMP = 1 << 0;
// The texture sample should not be modulated by a specified color.
const NO_COLOR_MODULATION = 1 << 1;
}
}
#[derive(Copy, Clone, Debug, PartialEq)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub enum TileKind {
Opaque,
Alpha,
Clear,
}
// Index in to the compositor transforms stored in `CompositeState`
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[derive(Debug, Copy, Clone)]
pub struct CompositorTransformIndex(usize);
impl CompositorTransformIndex {
pub const INVALID: CompositorTransformIndex = CompositorTransformIndex(!0);
}
/// Describes the geometry and surface of a tile to be composited
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[derive(Clone)]
pub struct CompositeTile {
pub surface: CompositeTileSurface,
pub local_rect: PictureRect,
pub local_valid_rect: PictureRect,
pub local_dirty_rect: PictureRect,
pub device_clip_rect: DeviceRect,
pub z_id: ZBufferId,
pub kind: TileKind,
pub transform_index: CompositorTransformIndex,
}
pub fn tile_kind(surface: &CompositeTileSurface, is_opaque: bool) -> TileKind {
match surface {
// Color tiles are, by definition, opaque. We might support non-opaque color
// tiles if we ever find pages that have a lot of these.
CompositeTileSurface::Color { .. } => TileKind::Opaque,
// Clear tiles have a special bucket
CompositeTileSurface::Clear => TileKind::Clear,
CompositeTileSurface::Texture { .. }
| CompositeTileSurface::ExternalSurface { .. } => {
// Texture surfaces get bucketed by opaque/alpha, for z-rejection
// on the Draw compositor mode.
if is_opaque {
TileKind::Opaque
} else {
TileKind::Alpha
}
}
}
}
pub enum ExternalSurfaceDependency {
Yuv {
image_dependencies: [ImageDependency; 3],
color_space: YuvRangedColorSpace,
format: YuvFormat,
channel_bit_depth: u32,
},
Rgb {
image_dependency: ImageDependency,
},
}
/// Describes information about drawing a primitive as a compositor surface.
/// For now, we support only YUV images as compositor surfaces, but in future
/// this will also support RGBA images.
pub struct ExternalSurfaceDescriptor {
// Normalized rectangle of this surface in local coordinate space
// TODO(gw): Fix up local_rect unit kinds in ExternalSurfaceDescriptor (many flow on effects)
pub local_surface_size: LayoutSize,
pub local_rect: PictureRect,
pub local_clip_rect: PictureRect,
pub clip_rect: DeviceRect,
pub transform_index: CompositorTransformIndex,
pub image_rendering: ImageRendering,
pub z_id: ZBufferId,
pub dependency: ExternalSurfaceDependency,
/// If native compositing is enabled, the native compositor surface handle.
/// Otherwise, this will be None
pub native_surface_id: Option<NativeSurfaceId>,
/// If the native surface needs to be updated, this will contain the size
/// of the native surface as Some(size). If not dirty, this is None.
pub update_params: Option<DeviceIntSize>,
}
/// Information about a plane in a YUV or RGB surface.
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[derive(Debug, Copy, Clone)]
pub struct ExternalPlaneDescriptor {
pub texture: TextureSource,
pub uv_rect: TexelRect,
}
impl ExternalPlaneDescriptor {
fn invalid() -> Self {
ExternalPlaneDescriptor {
texture: TextureSource::Invalid,
uv_rect: TexelRect::invalid(),
}
}
}
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[derive(Debug, Copy, Clone, PartialEq)]
pub struct ResolvedExternalSurfaceIndex(pub usize);
impl ResolvedExternalSurfaceIndex {
pub const INVALID: ResolvedExternalSurfaceIndex = ResolvedExternalSurfaceIndex(usize::MAX);
}
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub enum ResolvedExternalSurfaceColorData {
Yuv {
// YUV specific information
image_dependencies: [ImageDependency; 3],
planes: [ExternalPlaneDescriptor; 3],
color_space: YuvRangedColorSpace,
format: YuvFormat,
channel_bit_depth: u32,
},
Rgb {
image_dependency: ImageDependency,
plane: ExternalPlaneDescriptor,
},
}
/// An ExternalSurfaceDescriptor that has had image keys
/// resolved to texture handles. This contains all the
/// information that the compositor step in renderer
/// needs to know.
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct ResolvedExternalSurface {
pub color_data: ResolvedExternalSurfaceColorData,
pub image_buffer_kind: ImageBufferKind,
// Update information for a native surface if it's dirty
pub update_params: Option<(NativeSurfaceId, DeviceIntSize)>,
}
/// Public interface specified in `RendererOptions` that configures
/// how WR compositing will operate.
pub enum CompositorConfig {
/// Let WR draw tiles via normal batching. This requires no special OS support.
Draw {
/// If this is zero, a full screen present occurs at the end of the
/// frame. This is the simplest and default mode. If this is non-zero,
/// then the operating system supports a form of 'partial present' where
/// only dirty regions of the framebuffer need to be updated.
max_partial_present_rects: usize,
/// If this is true, WR must draw the previous frames' dirty regions when
/// doing a partial present. This is used for EGL which requires the front
/// buffer to always be fully consistent.
draw_previous_partial_present_regions: bool,
/// A client provided interface to a compositor handling partial present.
/// Required if webrender must query the backbuffer's age.
partial_present: Option<Box<dyn PartialPresentCompositor>>,
},
/// Use a native OS compositor to draw tiles. This requires clients to implement
/// the Compositor trait, but can be significantly more power efficient on operating
/// systems that support it.
Native {
/// A client provided interface to a native / OS compositor.
compositor: Box<dyn Compositor>,
}
}
impl CompositorConfig {
pub fn compositor(&mut self) -> Option<&mut Box<dyn Compositor>> {
match self {
CompositorConfig::Native { ref mut compositor, .. } => {
Some(compositor)
}
CompositorConfig::Draw { .. } => {
None
}
}
}
pub fn partial_present(&mut self) -> Option<&mut Box<dyn PartialPresentCompositor>> {
match self {
CompositorConfig::Native { .. } => {
None
}
CompositorConfig::Draw { ref mut partial_present, .. } => {
partial_present.as_mut()
}
}
}
}
impl Default for CompositorConfig {
/// Default compositor config is full present without partial present.
fn default() -> Self {
CompositorConfig::Draw {
max_partial_present_rects: 0,
draw_previous_partial_present_regions: false,
partial_present: None,
}
}
}
/// This is a representation of `CompositorConfig` without the `Compositor` trait
/// present. This allows it to be freely copied to other threads, such as the render
/// backend where the frame builder can access it.
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[derive(Debug, Copy, Clone, PartialEq)]
pub enum CompositorKind {
/// WR handles compositing via drawing.
Draw {
/// Partial present support.
max_partial_present_rects: usize,
/// Draw previous regions when doing partial present.
draw_previous_partial_present_regions: bool,
},
/// Native OS compositor.
Native {
/// The capabilities of the underlying platform.
capabilities: CompositorCapabilities,
},
}
impl Default for CompositorKind {
/// Default compositor config is full present without partial present.
fn default() -> Self {
CompositorKind::Draw {
max_partial_present_rects: 0,
draw_previous_partial_present_regions: false,
}
}
}
impl CompositorKind {
pub fn get_virtual_surface_size(&self) -> i32 {
match self {
CompositorKind::Draw { .. } => 0,
CompositorKind::Native { capabilities, .. } => capabilities.virtual_surface_size,
}
}
pub fn should_redraw_on_invalidation(&self) -> bool {
match self {
CompositorKind::Draw { max_partial_present_rects, .. } => {
// When partial present is enabled, we need to force redraw.
*max_partial_present_rects > 0
}
CompositorKind::Native { capabilities, .. } => capabilities.redraw_on_invalidation,
}
}
}
/// The backing surface kind for a tile. Same as `TileSurface`, minus
/// the texture cache handles, visibility masks etc.
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[derive(PartialEq, Clone)]
pub enum TileSurfaceKind {
Texture,
Color {
color: ColorF,
},
Clear,
}
impl From<&TileSurface> for TileSurfaceKind {
fn from(surface: &TileSurface) -> Self {
match surface {
TileSurface::Texture { .. } => TileSurfaceKind::Texture,
TileSurface::Color { color } => TileSurfaceKind::Color { color: *color },
TileSurface::Clear => TileSurfaceKind::Clear,
}
}
}
/// Describes properties that identify a tile composition uniquely.
/// The backing surface for this tile.
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[derive(PartialEq, Clone)]
pub struct CompositeTileDescriptor {
pub tile_id: TileId,
pub surface_kind: TileSurfaceKind,
}
/// Describes the properties that identify a surface composition uniquely.
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[derive(PartialEq, Clone)]
pub struct CompositeSurfaceDescriptor {
pub surface_id: Option<NativeSurfaceId>,
pub clip_rect: DeviceRect,
pub transform: CompositorSurfaceTransform,
// A list of image keys and generations that this compositor surface
// depends on. This avoids composites being skipped when the only
// thing that has changed is the generation of an compositor surface
// image dependency.
pub image_dependencies: [ImageDependency; 3],
pub image_rendering: ImageRendering,
// List of the surface information for each tile added to this virtual surface
pub tile_descriptors: Vec<CompositeTileDescriptor>,
}
/// Describes surface properties used to composite a frame. This
/// is used to compare compositions between frames.
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[derive(PartialEq, Clone)]
pub struct CompositeDescriptor {
pub surfaces: Vec<CompositeSurfaceDescriptor>,
}
impl CompositeDescriptor {
/// Construct an empty descriptor.
pub fn empty() -> Self {
CompositeDescriptor {
surfaces: Vec::new(),
}
}
}
pub struct CompositeStatePreallocator {
tiles: Preallocator,
external_surfaces: Preallocator,
occluders: Preallocator,
occluders_events: Preallocator,
occluders_active: Preallocator,
descriptor_surfaces: Preallocator,
}
impl CompositeStatePreallocator {
pub fn record(&mut self, state: &CompositeState) {
self.tiles.record_vec(&state.tiles);
self.external_surfaces.record_vec(&state.external_surfaces);
self.occluders.record_vec(&state.occluders.occluders);
self.occluders_events.record_vec(&state.occluders.events);
self.occluders_active.record_vec(&state.occluders.active);
self.descriptor_surfaces.record_vec(&state.descriptor.surfaces);
}
pub fn preallocate(&self, state: &mut CompositeState) {
self.tiles.preallocate_vec(&mut state.tiles);
self.external_surfaces.preallocate_vec(&mut state.external_surfaces);
self.occluders.preallocate_vec(&mut state.occluders.occluders);
self.occluders_events.preallocate_vec(&mut state.occluders.events);
self.occluders_active.preallocate_vec(&mut state.occluders.active);
self.descriptor_surfaces.preallocate_vec(&mut state.descriptor.surfaces);
}
}
impl Default for CompositeStatePreallocator {
fn default() -> Self {
CompositeStatePreallocator {
tiles: Preallocator::new(56),
external_surfaces: Preallocator::new(0),
occluders: Preallocator::new(16),
occluders_events: Preallocator::new(32),
occluders_active: Preallocator::new(16),
descriptor_surfaces: Preallocator::new(8),
}
}
}
/// A transform for either a picture cache or external compositor surface, stored
/// in the `CompositeState` structure. This allows conversions from local rects
/// to raster or device rects, without access to the spatial tree (e.g. during
/// the render step where dirty rects are calculated). Since we know that we only
/// handle scale and offset transforms for these types, we can store a single
/// ScaleOffset rather than 4x4 matrix here for efficiency.
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct CompositorTransform {
// Map from local rect of a composite tile to the real backing surface coords
local_to_surface: ScaleOffset,
// Map from surface coords to the final device space position
surface_to_device: ScaleOffset,
// Combined local -> surface -> device transform
local_to_device: ScaleOffset,
}
/// The list of tiles to be drawn this frame
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct CompositeState {
// TODO(gw): Consider splitting up CompositeState into separate struct types depending
// on the selected compositing mode. Many of the fields in this state struct
// are only applicable to either Native or Draw compositing mode.
/// List of tiles to be drawn by the Draw compositor.
/// Tiles are accumulated in this vector and sorted from front to back at the end of the
/// frame.
pub tiles: Vec<CompositeTile>,
/// List of primitives that were promoted to be compositor surfaces.
pub external_surfaces: Vec<ResolvedExternalSurface>,
/// Used to generate z-id values for tiles in the Draw compositor mode.
pub z_generator: ZBufferIdGenerator,
// If false, we can't rely on the dirty rects in the CompositeTile
// instances. This currently occurs during a scroll event, as a
// signal to refresh the whole screen. This is only a temporary
// measure until we integrate with OS compositors. In the meantime
// it gives us the ability to partial present for any non-scroll
// case as a simple win (e.g. video, animation etc).
pub dirty_rects_are_valid: bool,
/// The kind of compositor for picture cache tiles (e.g. drawn by WR, or OS compositor)
pub compositor_kind: CompositorKind,
/// List of registered occluders
pub occluders: Occluders,
/// Description of the surfaces and properties that are being composited.
pub descriptor: CompositeDescriptor,
/// Debugging information about the state of the pictures cached for regression testing.
pub picture_cache_debug: PictureCacheDebugInfo,
/// List of registered transforms used by picture cache or external surfaces
pub transforms: Vec<CompositorTransform>,
/// Whether we have low quality pinch zoom enabled
low_quality_pinch_zoom: bool,
}
impl CompositeState {
/// Construct a new state for compositing picture tiles. This is created
/// during each frame construction and passed to the renderer.
pub fn new(
compositor_kind: CompositorKind,
max_depth_ids: i32,
dirty_rects_are_valid: bool,
low_quality_pinch_zoom: bool,
) -> Self {
CompositeState {
tiles: Vec::new(),
z_generator: ZBufferIdGenerator::new(max_depth_ids),
dirty_rects_are_valid,
compositor_kind,
occluders: Occluders::new(),
descriptor: CompositeDescriptor::empty(),
external_surfaces: Vec::new(),
picture_cache_debug: PictureCacheDebugInfo::new(),
transforms: Vec::new(),
low_quality_pinch_zoom,
}
}
/// Register use of a transform for a picture cache tile or external surface
pub fn register_transform(
&mut self,
local_to_surface: ScaleOffset,
surface_to_device: ScaleOffset,
) -> CompositorTransformIndex {
let index = CompositorTransformIndex(self.transforms.len());
let local_to_device = local_to_surface.accumulate(&surface_to_device);
self.transforms.push(CompositorTransform {
local_to_surface,
surface_to_device,
local_to_device,
});
index
}
/// Calculate the device-space rect of a local compositor surface rect
pub fn get_device_rect(
&self,
local_rect: &PictureRect,
transform_index: CompositorTransformIndex,
) -> DeviceRect {
let transform = &self.transforms[transform_index.0];
transform.local_to_device.map_rect(&local_rect).round()
}
/// Calculate the device-space rect of a local compositor surface rect, normalized
/// to the origin of a given point
pub fn get_surface_rect<T>(
&self,
local_sub_rect: &Box2D<f32, T>,
local_bounds: &Box2D<f32, T>,
transform_index: CompositorTransformIndex,
) -> DeviceRect {
let transform = &self.transforms[transform_index.0];
let surface_bounds = transform.local_to_surface.map_rect(&local_bounds);
let surface_rect = transform.local_to_surface.map_rect(&local_sub_rect);
surface_rect
.translate(-surface_bounds.min.to_vector())
.round_out()
.intersection(&surface_bounds.size().round().into())
.unwrap_or_else(DeviceRect::zero)
}
/// Get the local -> device compositor transform
pub fn get_device_transform(
&self,
transform_index: CompositorTransformIndex,
) -> ScaleOffset {
let transform = &self.transforms[transform_index.0];
transform.local_to_device
}
/// Get the surface -> device compositor transform
pub fn get_compositor_transform(
&self,
transform_index: CompositorTransformIndex,
) -> ScaleOffset {
let transform = &self.transforms[transform_index.0];
transform.surface_to_device
}
/// Register an occluder during picture cache updates that can be
/// used during frame building to occlude tiles.
pub fn register_occluder(
&mut self,
z_id: ZBufferId,
rect: WorldRect,
) {
let world_rect = rect.round().to_i32();
self.occluders.push(world_rect, z_id);
}
/// Add a picture cache to be composited
pub fn push_surface(
&mut self,
tile_cache: &TileCacheInstance,
device_clip_rect: DeviceRect,
resource_cache: &ResourceCache,
gpu_cache: &mut GpuCache,
deferred_resolves: &mut Vec<DeferredResolve>,
) {
let slice_transform = self.get_compositor_transform(tile_cache.transform_index).to_transform();
let image_rendering = if self.low_quality_pinch_zoom {
ImageRendering::Auto
} else {
ImageRendering::CrispEdges
};
for sub_slice in &tile_cache.sub_slices {
let mut surface_device_rect = DeviceRect::zero();
for tile in sub_slice.tiles.values() {
if !tile.is_visible {
// This can occur when a tile is found to be occluded during frame building.
continue;
}
// Accumulate this tile into the overall surface bounds. This is used below
// to clamp the size of the supplied clip rect to a reasonable value.
// NOTE: This clip rect must include the device_valid_rect rather than
// the tile device rect. This ensures that in the case of a picture
// cache slice that is smaller than a single tile, the clip rect in
// the composite descriptor will change if the position of that slice
// is changed. Otherwise, WR may conclude that no composite is needed
// if the tile itself was not invalidated due to changing content.
// See bug #1675414 for more detail.
surface_device_rect = surface_device_rect.union(&tile.device_valid_rect);
}
// Append the visible tiles from this sub-slice
self.tiles.extend_from_slice(&sub_slice.composite_tiles);
// If the clip rect is too large, it can cause accuracy and correctness problems
// for some native compositors (specifically, CoreAnimation in this case). To
// work around that, intersect the supplied clip rect with the current bounds
// of the native surface, which ensures it is a reasonable size.
let surface_clip_rect = device_clip_rect
.intersection(&surface_device_rect)
.unwrap_or(DeviceRect::zero());
// Add opaque surface before any compositor surfaces
if !sub_slice.opaque_tile_descriptors.is_empty() {
self.descriptor.surfaces.push(
CompositeSurfaceDescriptor {
surface_id: sub_slice.native_surface.as_ref().map(|s| s.opaque),
clip_rect: surface_clip_rect,
transform: slice_transform,
image_dependencies: [ImageDependency::INVALID; 3],
image_rendering,
tile_descriptors: sub_slice.opaque_tile_descriptors.clone(),
}
);
}
// Add alpha tiles after opaque surfaces
if !sub_slice.alpha_tile_descriptors.is_empty() {
self.descriptor.surfaces.push(
CompositeSurfaceDescriptor {
surface_id: sub_slice.native_surface.as_ref().map(|s| s.alpha),
clip_rect: surface_clip_rect,
transform: slice_transform,
image_dependencies: [ImageDependency::INVALID; 3],
image_rendering,
tile_descriptors: sub_slice.alpha_tile_descriptors.clone(),
}
);
}
// For each compositor surface that was promoted, build the
// information required for the compositor to draw it
for compositor_surface in &sub_slice.compositor_surfaces {
let external_surface = &compositor_surface.descriptor;
let clip_rect = external_surface
.clip_rect
.intersection(&device_clip_rect)
.unwrap_or_else(DeviceRect::zero);
let required_plane_count =
match external_surface.dependency {
ExternalSurfaceDependency::Yuv { format, .. } => {
format.get_plane_num()
},
ExternalSurfaceDependency::Rgb { .. } => {
1
}
};
let mut image_dependencies = [ImageDependency::INVALID; 3];
for i in 0 .. required_plane_count {
let dependency = match external_surface.dependency {
ExternalSurfaceDependency::Yuv { image_dependencies, .. } => {
image_dependencies[i]
},
ExternalSurfaceDependency::Rgb { image_dependency, .. } => {
image_dependency
}
};
image_dependencies[i] = dependency;
}
// Get a new z_id for each compositor surface, to ensure correct ordering
// when drawing with the simple (Draw) compositor, and to schedule compositing
// of any required updates into the surfaces.
let needs_external_surface_update = match self.compositor_kind {
CompositorKind::Draw { .. } => true,
_ => external_surface.update_params.is_some(),
};
let external_surface_index = if needs_external_surface_update {
let external_surface_index = self.compute_external_surface_dependencies(
&external_surface,
&image_dependencies,
required_plane_count,
resource_cache,
gpu_cache,
deferred_resolves,
);
if external_surface_index == ResolvedExternalSurfaceIndex::INVALID {
continue;
}
external_surface_index
} else {
ResolvedExternalSurfaceIndex::INVALID
};
let surface = CompositeTileSurface::ExternalSurface { external_surface_index };
let local_rect = external_surface.local_surface_size.cast_unit().into();
let tile = CompositeTile {
kind: tile_kind(&surface, compositor_surface.is_opaque),
surface,
local_rect,
local_valid_rect: local_rect,
local_dirty_rect: local_rect,
device_clip_rect: clip_rect,
z_id: external_surface.z_id,
transform_index: external_surface.transform_index,
};
// Add a surface descriptor for each compositor surface. For the Draw
// compositor, this is used to avoid composites being skipped by adding
// a dependency on the compositor surface external image keys / generations.
self.descriptor.surfaces.push(
CompositeSurfaceDescriptor {
surface_id: external_surface.native_surface_id,
clip_rect,
transform: self.get_compositor_transform(external_surface.transform_index).to_transform(),
image_dependencies: image_dependencies,
image_rendering: external_surface.image_rendering,
tile_descriptors: Vec::new(),
}
);
self.tiles.push(tile);
}
}
}
fn compute_external_surface_dependencies(
&mut self,
external_surface: &ExternalSurfaceDescriptor,
image_dependencies: &[ImageDependency; 3],
required_plane_count: usize,
resource_cache: &ResourceCache,
gpu_cache: &mut GpuCache,
deferred_resolves: &mut Vec<DeferredResolve>,
) -> ResolvedExternalSurfaceIndex {
let mut planes = [
ExternalPlaneDescriptor::invalid(),
ExternalPlaneDescriptor::invalid(),
ExternalPlaneDescriptor::invalid(),
];
let mut valid_plane_count = 0;
for i in 0 .. required_plane_count {
let request = ImageRequest {
key: image_dependencies[i].key,
rendering: external_surface.image_rendering,
tile: None,
};
let cache_item = resolve_image(
request,
resource_cache,
gpu_cache,
deferred_resolves,
);
if cache_item.texture_id != TextureSource::Invalid {
valid_plane_count += 1;
let plane = &mut planes[i];
*plane = ExternalPlaneDescriptor {
texture: cache_item.texture_id,
uv_rect: cache_item.uv_rect.into(),
};
}
}
// Check if there are valid images added for each YUV plane
if valid_plane_count < required_plane_count {
warn!("Warnings: skip a YUV/RGB compositor surface, found {}/{} valid images",
valid_plane_count,
required_plane_count,
);
return ResolvedExternalSurfaceIndex::INVALID;
}
let external_surface_index = ResolvedExternalSurfaceIndex(self.external_surfaces.len());
// If the external surface descriptor reports that the native surface
// needs to be updated, create an update params tuple for the renderer
// to use.
let update_params = external_surface.update_params.map(|surface_size| {
(
external_surface.native_surface_id.expect("bug: no native surface!"),
surface_size
)
});
match external_surface.dependency {
ExternalSurfaceDependency::Yuv{ color_space, format, channel_bit_depth, .. } => {
let image_buffer_kind = planes[0].texture.image_buffer_kind();
self.external_surfaces.push(ResolvedExternalSurface {
color_data: ResolvedExternalSurfaceColorData::Yuv {
image_dependencies: *image_dependencies,
planes,
color_space,
format,
channel_bit_depth,
},
image_buffer_kind,
update_params,
});
},
ExternalSurfaceDependency::Rgb { .. } => {
let image_buffer_kind = planes[0].texture.image_buffer_kind();
self.external_surfaces.push(ResolvedExternalSurface {
color_data: ResolvedExternalSurfaceColorData::Rgb {
image_dependency: image_dependencies[0],
plane: planes[0],
},
image_buffer_kind,
update_params,
});
},
}
external_surface_index
}
pub fn end_frame(&mut self) {
// Sort tiles from front to back.
self.tiles.sort_by_key(|tile| tile.z_id.0);
}
}
/// An arbitrary identifier for a native (OS compositor) surface
#[repr(C)]
#[derive(Debug, Copy, Clone, Hash, Eq, PartialEq)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct NativeSurfaceId(pub u64);
impl NativeSurfaceId {
/// A special id for the native surface that is used for debug / profiler overlays.
pub const DEBUG_OVERLAY: NativeSurfaceId = NativeSurfaceId(u64::MAX);
}
#[repr(C)]
#[derive(Debug, Copy, Clone, Hash, Eq, PartialEq)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct NativeTileId {
pub surface_id: NativeSurfaceId,
pub x: i32,
pub y: i32,
}
impl NativeTileId {
/// A special id for the native surface that is used for debug / profiler overlays.
pub const DEBUG_OVERLAY: NativeTileId = NativeTileId {
surface_id: NativeSurfaceId::DEBUG_OVERLAY,
x: 0,
y: 0,
};
}
/// Information about a bound surface that the native compositor
/// returns to WR.
#[repr(C)]
#[derive(Copy, Clone)]
pub struct NativeSurfaceInfo {
/// An offset into the surface that WR should draw. Some compositing
/// implementations (notably, DirectComposition) use texture atlases
/// when the surface sizes are small. In this case, an offset can
/// be returned into the larger texture where WR should draw. This
/// can be (0, 0) if texture atlases are not used.
pub origin: DeviceIntPoint,
/// The ID of the FBO that WR should bind to, in order to draw to
/// the bound surface. On Windows (ANGLE) this will always be 0,
/// since creating a p-buffer sets the default framebuffer to
/// be the DirectComposition surface. On Mac, this will be non-zero,
/// since it identifies the IOSurface that has been bound to draw to.
// TODO(gw): This may need to be a larger / different type for WR
// backends that are not GL.
pub fbo_id: u32,
}
#[repr(C)]
#[derive(Debug, Copy, Clone, PartialEq)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct CompositorCapabilities {
/// The virtual surface size used by the underlying platform.
pub virtual_surface_size: i32,
/// Whether the compositor requires redrawing on invalidation.
pub redraw_on_invalidation: bool,
/// The maximum number of dirty rects that can be provided per compositor
/// surface update. If this is zero, the entire compositor surface for
/// a given tile will be drawn if it's dirty.
pub max_update_rects: usize,
}
impl Default for CompositorCapabilities {
fn default() -> Self {
// The default set of compositor capabilities for a given platform.
// These should only be modified if a compositor diverges specifically
// from the default behavior so that compositors don't have to track
// which changes to this structure unless necessary.
CompositorCapabilities {
virtual_surface_size: 0,
redraw_on_invalidation: false,
// Assume compositors can do at least partial update of surfaces. If not,
// the native compositor should override this to be 0.
max_update_rects: 1,
}
}
}
/// The transform type to apply to Compositor surfaces.
// TODO: Should transform from CompositorSurfacePixel instead, but this requires a cleanup of the
// Compositor API to use CompositorSurface-space geometry instead of Device-space where necessary
// to avoid a bunch of noisy cast_unit calls and make it actually type-safe. May be difficult due
// to pervasive use of Device-space nomenclature inside WR.
// pub struct CompositorSurfacePixel;
// pub type CompositorSurfaceTransform = Transform3D<f32, CompositorSurfacePixel, DevicePixel>;
pub type CompositorSurfaceTransform = Transform3D<f32, DevicePixel, DevicePixel>;
/// Defines an interface to a native (OS level) compositor. If supplied
/// by the client application, then picture cache slices will be
/// composited by the OS compositor, rather than drawn via WR batches.
pub trait Compositor {
/// Create a new OS compositor surface with the given properties.
fn create_surface(
&mut self,
id: NativeSurfaceId,
virtual_offset: DeviceIntPoint,
tile_size: DeviceIntSize,
is_opaque: bool,
);
/// Create a new OS compositor surface that can be used with an
/// existing ExternalImageId, instead of being drawn to by WebRender.
/// Surfaces created by this can only be used with attach_external_image,
/// and not create_tile/destroy_tile/bind/unbind.
fn create_external_surface(
&mut self,
id: NativeSurfaceId,
is_opaque: bool,
);
/// Destroy the surface with the specified id. WR may call this
/// at any time the surface is no longer required (including during
/// renderer deinit). It's the responsibility of the embedder
/// to ensure that the surface is only freed once the GPU is
/// no longer using the surface (if this isn't already handled
/// by the operating system).
fn destroy_surface(
&mut self,
id: NativeSurfaceId,
);
/// Create a new OS compositor tile with the given properties.
fn create_tile(
&mut self,
id: NativeTileId,
);
/// Destroy an existing compositor tile.
fn destroy_tile(
&mut self,
id: NativeTileId,
);
/// Attaches an ExternalImageId to an OS compositor surface created
/// by create_external_surface, and uses that as the contents of
/// the surface. It is expected that a single surface will have
/// many different images attached (like one for each video frame).
fn attach_external_image(
&mut self,
id: NativeSurfaceId,
external_image: ExternalImageId
);
/// Mark a tile as invalid before any surfaces are queued for
/// composition and before it is updated with bind. This is useful
/// for early composition, allowing for dependency tracking of which
/// surfaces can be composited early while others are still updating.
fn invalidate_tile(
&mut self,
_id: NativeTileId,
_valid_rect: DeviceIntRect
) {}
/// Bind this surface such that WR can issue OpenGL commands
/// that will target the surface. Returns an (x, y) offset
/// where WR should draw into the surface. This can be set
/// to (0, 0) if the OS doesn't use texture atlases. The dirty
/// rect is a local surface rect that specifies which part
/// of the surface needs to be updated. If max_update_rects
/// in CompositeConfig is 0, this will always be the size
/// of the entire surface. The returned offset is only
/// relevant to compositors that store surfaces in a texture
/// atlas (that is, WR expects that the dirty rect doesn't
/// affect the coordinates of the returned origin).
fn bind(
&mut self,
id: NativeTileId,
dirty_rect: DeviceIntRect,
valid_rect: DeviceIntRect,
) -> NativeSurfaceInfo;
/// Unbind the surface. This is called by WR when it has
/// finished issuing OpenGL commands on the current surface.
fn unbind(
&mut self,
);
/// Begin the frame
fn begin_frame(&mut self);
/// Add a surface to the visual tree to be composited. Visuals must
/// be added every frame, between the begin/end transaction call. The
/// z-order of the surfaces is determined by the order they are added
/// to the visual tree.
// TODO(gw): Adding visuals every frame makes the interface simple,
// but may have performance implications on some compositors?
// We might need to change the interface to maintain a visual
// tree that can be mutated?
// TODO(gw): We might need to add a concept of a hierachy in future.
fn add_surface(
&mut self,
id: NativeSurfaceId,
transform: CompositorSurfaceTransform,
clip_rect: DeviceIntRect,
image_rendering: ImageRendering,
);
/// Notify the compositor that all tiles have been invalidated and all
/// native surfaces have been added, thus it is safe to start compositing
/// valid surfaces. The dirty rects array allows native compositors that
/// support partial present to skip copying unchanged areas.
/// Optionally provides a set of rectangles for the areas known to be
/// opaque, this is currently only computed if the caller is SwCompositor.
fn start_compositing(
&mut self,
_clear_color: ColorF,
_dirty_rects: &[DeviceIntRect],
_opaque_rects: &[DeviceIntRect],
) {}
/// Commit any changes in the compositor tree for this frame. WR calls
/// this once when all surface and visual updates are complete, to signal
/// that the OS composite transaction should be applied.
fn end_frame(&mut self);
/// Enable/disable native compositor usage
fn enable_native_compositor(&mut self, enable: bool);
/// Safely deinitialize any remaining resources owned by the compositor.
fn deinit(&mut self);
/// Get the capabilities struct for this compositor. This is used to
/// specify what features a compositor supports, depending on the
/// underlying platform
fn get_capabilities(&self) -> CompositorCapabilities;
}
/// Information about the underlying data buffer of a mapped tile.
#[repr(C)]
#[derive(Copy, Clone)]
pub struct MappedTileInfo {
pub data: *mut c_void,
pub stride: i32,
}
/// Descriptor for a locked surface that will be directly composited by SWGL.
#[repr(C)]
pub struct SWGLCompositeSurfaceInfo {
/// The number of YUV planes in the surface. 0 indicates non-YUV BGRA.
/// 1 is interleaved YUV. 2 is NV12. 3 is planar YUV.
pub yuv_planes: u32,
/// Textures for planes of the surface, or 0 if not applicable.
pub textures: [u32; 3],
/// Color space of surface if using a YUV format.
pub color_space: YuvRangedColorSpace,
/// Color depth of surface if using a YUV format.
pub color_depth: ColorDepth,
/// The actual source surface size before transformation.
pub size: DeviceIntSize,
}
/// A Compositor variant that supports mapping tiles into CPU memory.
pub trait MappableCompositor: Compositor {
/// Map a tile's underlying buffer so it can be used as the backing for
/// a SWGL framebuffer. This is intended to be a replacement for 'bind'
/// in any compositors that intend to directly interoperate with SWGL
/// while supporting some form of native layers.
fn map_tile(
&mut self,
id: NativeTileId,
dirty_rect: DeviceIntRect,
valid_rect: DeviceIntRect,
) -> Option<MappedTileInfo>;
/// Unmap a tile that was was previously mapped via map_tile to signal
/// that SWGL is done rendering to the buffer.
fn unmap_tile(&mut self);
fn lock_composite_surface(
&mut self,
ctx: *mut c_void,
external_image_id: ExternalImageId,
composite_info: *mut SWGLCompositeSurfaceInfo,
) -> bool;
fn unlock_composite_surface(&mut self, ctx: *mut c_void, external_image_id: ExternalImageId);
}
/// Defines an interface to a non-native (application-level) Compositor which handles
/// partial present. This is required if webrender must query the backbuffer's age.
/// TODO: Use the Compositor trait for native and non-native compositors, and integrate
/// this functionality there.
pub trait PartialPresentCompositor {
/// Allows webrender to specify the total region that will be rendered to this frame,
/// ie the frame's dirty region and some previous frames' dirty regions, if applicable
/// (calculated using the buffer age). Must be called before anything has been rendered
/// to the main framebuffer.
fn set_buffer_damage_region(&mut self, rects: &[DeviceIntRect]);
}
/// Information about an opaque surface used to occlude tiles.
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
struct Occluder {
z_id: ZBufferId,
world_rect: WorldIntRect,
}
// Whether this event is the start or end of a rectangle
#[derive(Debug)]
enum OcclusionEventKind {
Begin,
End,
}
// A list of events on the y-axis, with the rectangle range that it affects on the x-axis
#[derive(Debug)]
struct OcclusionEvent {
y: i32,
x_range: ops::Range<i32>,
kind: OcclusionEventKind,
}
impl OcclusionEvent {
fn new(y: i32, kind: OcclusionEventKind, x0: i32, x1: i32) -> Self {
OcclusionEvent {
y,
x_range: ops::Range {
start: x0,
end: x1,
},
kind,
}
}
}
/// List of registered occluders.
///
/// Also store a couple of vectors for reuse.
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct Occluders {
occluders: Vec<Occluder>,
// The two vectors below are kept to avoid unnecessary reallocations in area().
#[cfg_attr(feature = "serde", serde(skip))]
events: Vec<OcclusionEvent>,
#[cfg_attr(feature = "serde", serde(skip))]
active: Vec<ops::Range<i32>>,
}
impl Occluders {
fn new() -> Self {
Occluders {
occluders: Vec::new(),
events: Vec::new(),
active: Vec::new(),
}
}
fn push(&mut self, world_rect: WorldIntRect, z_id: ZBufferId) {
self.occluders.push(Occluder { world_rect, z_id });
}
/// Returns true if a tile with the specified rectangle and z_id
/// is occluded by an opaque surface in front of it.
pub fn is_tile_occluded(
&mut self,
z_id: ZBufferId,
world_rect: WorldRect,
) -> bool {
// It's often the case that a tile is only occluded by considering multiple
// picture caches in front of it (for example, the background tiles are
// often occluded by a combination of the content slice + the scrollbar slices).
// The basic algorithm is:
// For every occluder:
// If this occluder is in front of the tile we are querying:
// Clip the occluder rectangle to the query rectangle.
// Calculate the total non-overlapping area of those clipped occluders.
// If the cumulative area of those occluders is the same as the area of the query tile,
// Then the entire tile must be occluded and can be skipped during rasterization and compositing.
// Get the reference area we will compare against.
let world_rect = world_rect.round().to_i32();
let ref_area = world_rect.area();
// Calculate the non-overlapping area of the valid occluders.
let cover_area = self.area(z_id, &world_rect);
debug_assert!(cover_area <= ref_area);
// Check if the tile area is completely covered
ref_area == cover_area
}
/// Return the total area covered by a set of occluders, accounting for
/// overlapping areas between those rectangles.
fn area(
&mut self,
z_id: ZBufferId,
clip_rect: &WorldIntRect,
) -> i32 {
// This implementation is based on the article https://leetcode.com/articles/rectangle-area-ii/.
// This is not a particularly efficient implementation (it skips building segment trees), however
// we typically use this where the length of the rectangles array is < 10, so simplicity is more important.
self.events.clear();
self.active.clear();
let mut area = 0;
// Step through each rectangle and build the y-axis event list
for occluder in &self.occluders {
// Only consider occluders in front of this rect
if occluder.z_id.0 < z_id.0 {
// Clip the source rect to the rectangle we care about, since we only
// want to record area for the tile we are comparing to.
if let Some(rect) = occluder.world_rect.intersection(clip_rect) {
let x0 = rect.min.x;
let x1 = x0 + rect.width();
self.events.push(OcclusionEvent::new(rect.min.y, OcclusionEventKind::Begin, x0, x1));
self.events.push(OcclusionEvent::new(rect.min.y + rect.height(), OcclusionEventKind::End, x0, x1));
}
}
}
// If we didn't end up with any valid events, the area must be 0
if self.events.is_empty() {
return 0;
}
// Sort the events by y-value
self.events.sort_by_key(|e| e.y);
let mut cur_y = self.events[0].y;
// Step through each y interval
for event in &self.events {
// This is the dimension of the y-axis we are accumulating areas for
let dy = event.y - cur_y;
// If we have active events covering x-ranges in this y-interval, process them
if dy != 0 && !self.active.is_empty() {
assert!(dy > 0);
// Step through the x-ranges, ordered by x0 of each event
self.active.sort_by_key(|i| i.start);
let mut query = 0;
let mut cur = self.active[0].start;
// Accumulate the non-overlapping x-interval that contributes to area for this y-interval.
for interval in &self.active {
cur = interval.start.max(cur);
query += (interval.end - cur).max(0);
cur = cur.max(interval.end);
}
// Accumulate total area for this y-interval
area += query * dy;
}
// Update the active events list
match event.kind {
OcclusionEventKind::Begin => {
self.active.push(event.x_range.clone());
}
OcclusionEventKind::End => {
let index = self.active.iter().position(|i| *i == event.x_range).unwrap();
self.active.remove(index);
}
}
cur_y = event.y;
}
area
}
}