azul_webrender/
composite.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

use api::{ColorF, YuvRangedColorSpace, YuvFormat, ImageRendering, ExternalImageId, ImageBufferKind};
use api::units::*;
use api::ColorDepth;
use crate::image_source::resolve_image;
use euclid::{Box2D, Transform3D};
use crate::gpu_cache::GpuCache;
use crate::gpu_types::{ZBufferId, ZBufferIdGenerator};
use crate::internal_types::TextureSource;
use crate::picture::{ImageDependency, ResolvedSurfaceTexture, TileCacheInstance, TileId, TileSurface};
use crate::prim_store::DeferredResolve;
use crate::resource_cache::{ImageRequest, ResourceCache};
use crate::util::{Preallocator, ScaleOffset};
use crate::tile_cache::PictureCacheDebugInfo;
use std::{ops, u64, os::raw::c_void};

/*
 Types and definitions related to compositing picture cache tiles
 and/or OS compositor integration.
 */

/// Describes details of an operation to apply to a native surface
#[derive(Debug, Clone)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub enum NativeSurfaceOperationDetails {
    CreateSurface {
        id: NativeSurfaceId,
        virtual_offset: DeviceIntPoint,
        tile_size: DeviceIntSize,
        is_opaque: bool,
    },
    CreateExternalSurface {
        id: NativeSurfaceId,
        is_opaque: bool,
    },
    DestroySurface {
        id: NativeSurfaceId,
    },
    CreateTile {
        id: NativeTileId,
    },
    DestroyTile {
        id: NativeTileId,
    },
    AttachExternalImage {
        id: NativeSurfaceId,
        external_image: ExternalImageId,
    }
}

/// Describes an operation to apply to a native surface
#[derive(Debug, Clone)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct NativeSurfaceOperation {
    pub details: NativeSurfaceOperationDetails,
}

/// Describes the source surface information for a tile to be composited. This
/// is the analog of the TileSurface type, with target surface information
/// resolved such that it can be used by the renderer.
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[derive(Clone)]
pub enum CompositeTileSurface {
    Texture {
        surface: ResolvedSurfaceTexture,
    },
    Color {
        color: ColorF,
    },
    Clear,
    ExternalSurface {
        external_surface_index: ResolvedExternalSurfaceIndex,
    },
}

/// The surface format for a tile being composited.
#[derive(Debug, Copy, Clone, PartialEq)]
pub enum CompositeSurfaceFormat {
    Rgba,
    Yuv,
}

bitflags! {
    /// Optional features that can be opted-out of when compositing,
    /// possibly allowing a fast path to be selected.
    pub struct CompositeFeatures: u8 {
        // UV coordinates do not require clamping, for example because the
        // entire texture is being composited.
        const NO_UV_CLAMP = 1 << 0;
        // The texture sample should not be modulated by a specified color.
        const NO_COLOR_MODULATION = 1 << 1;
    }
}

#[derive(Copy, Clone, Debug, PartialEq)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub enum TileKind {
    Opaque,
    Alpha,
    Clear,
}

// Index in to the compositor transforms stored in `CompositeState`
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[derive(Debug, Copy, Clone)]
pub struct CompositorTransformIndex(usize);

impl CompositorTransformIndex {
    pub const INVALID: CompositorTransformIndex = CompositorTransformIndex(!0);
}

/// Describes the geometry and surface of a tile to be composited
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[derive(Clone)]
pub struct CompositeTile {
    pub surface: CompositeTileSurface,
    pub local_rect: PictureRect,
    pub local_valid_rect: PictureRect,
    pub local_dirty_rect: PictureRect,
    pub device_clip_rect: DeviceRect,
    pub z_id: ZBufferId,
    pub kind: TileKind,
    pub transform_index: CompositorTransformIndex,
}

pub fn tile_kind(surface: &CompositeTileSurface, is_opaque: bool) -> TileKind {
    match surface {
        // Color tiles are, by definition, opaque. We might support non-opaque color
        // tiles if we ever find pages that have a lot of these.
        CompositeTileSurface::Color { .. } => TileKind::Opaque,
        // Clear tiles have a special bucket
        CompositeTileSurface::Clear => TileKind::Clear,
        CompositeTileSurface::Texture { .. }
        | CompositeTileSurface::ExternalSurface { .. } => {
            // Texture surfaces get bucketed by opaque/alpha, for z-rejection
            // on the Draw compositor mode.
            if is_opaque {
                TileKind::Opaque
            } else {
                TileKind::Alpha
            }
        }
    }
}

pub enum ExternalSurfaceDependency {
    Yuv {
        image_dependencies: [ImageDependency; 3],
        color_space: YuvRangedColorSpace,
        format: YuvFormat,
        channel_bit_depth: u32,
    },
    Rgb {
        image_dependency: ImageDependency,
    },
}

/// Describes information about drawing a primitive as a compositor surface.
/// For now, we support only YUV images as compositor surfaces, but in future
/// this will also support RGBA images.
pub struct ExternalSurfaceDescriptor {
    // Normalized rectangle of this surface in local coordinate space
    // TODO(gw): Fix up local_rect unit kinds in ExternalSurfaceDescriptor (many flow on effects)
    pub local_surface_size: LayoutSize,
    pub local_rect: PictureRect,
    pub local_clip_rect: PictureRect,
    pub clip_rect: DeviceRect,
    pub transform_index: CompositorTransformIndex,
    pub image_rendering: ImageRendering,
    pub z_id: ZBufferId,
    pub dependency: ExternalSurfaceDependency,
    /// If native compositing is enabled, the native compositor surface handle.
    /// Otherwise, this will be None
    pub native_surface_id: Option<NativeSurfaceId>,
    /// If the native surface needs to be updated, this will contain the size
    /// of the native surface as Some(size). If not dirty, this is None.
    pub update_params: Option<DeviceIntSize>,
}

/// Information about a plane in a YUV or RGB surface.
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[derive(Debug, Copy, Clone)]
pub struct ExternalPlaneDescriptor {
    pub texture: TextureSource,
    pub uv_rect: TexelRect,
}

impl ExternalPlaneDescriptor {
    fn invalid() -> Self {
        ExternalPlaneDescriptor {
            texture: TextureSource::Invalid,
            uv_rect: TexelRect::invalid(),
        }
    }
}

#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[derive(Debug, Copy, Clone, PartialEq)]
pub struct ResolvedExternalSurfaceIndex(pub usize);

impl ResolvedExternalSurfaceIndex {
    pub const INVALID: ResolvedExternalSurfaceIndex = ResolvedExternalSurfaceIndex(usize::MAX);
}

#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub enum ResolvedExternalSurfaceColorData {
    Yuv {
        // YUV specific information
        image_dependencies: [ImageDependency; 3],
        planes: [ExternalPlaneDescriptor; 3],
        color_space: YuvRangedColorSpace,
        format: YuvFormat,
        channel_bit_depth: u32,
    },
    Rgb {
        image_dependency: ImageDependency,
        plane: ExternalPlaneDescriptor,
    },
}

/// An ExternalSurfaceDescriptor that has had image keys
/// resolved to texture handles. This contains all the
/// information that the compositor step in renderer
/// needs to know.
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct ResolvedExternalSurface {
    pub color_data: ResolvedExternalSurfaceColorData,
    pub image_buffer_kind: ImageBufferKind,
    // Update information for a native surface if it's dirty
    pub update_params: Option<(NativeSurfaceId, DeviceIntSize)>,
}

/// Public interface specified in `RendererOptions` that configures
/// how WR compositing will operate.
pub enum CompositorConfig {
    /// Let WR draw tiles via normal batching. This requires no special OS support.
    Draw {
        /// If this is zero, a full screen present occurs at the end of the
        /// frame. This is the simplest and default mode. If this is non-zero,
        /// then the operating system supports a form of 'partial present' where
        /// only dirty regions of the framebuffer need to be updated.
        max_partial_present_rects: usize,
        /// If this is true, WR must draw the previous frames' dirty regions when
        /// doing a partial present. This is used for EGL which requires the front
        /// buffer to always be fully consistent.
        draw_previous_partial_present_regions: bool,
        /// A client provided interface to a compositor handling partial present.
        /// Required if webrender must query the backbuffer's age.
        partial_present: Option<Box<dyn PartialPresentCompositor>>,
    },
    /// Use a native OS compositor to draw tiles. This requires clients to implement
    /// the Compositor trait, but can be significantly more power efficient on operating
    /// systems that support it.
    Native {
        /// A client provided interface to a native / OS compositor.
        compositor: Box<dyn Compositor>,
    }
}

impl CompositorConfig {
    pub fn compositor(&mut self) -> Option<&mut Box<dyn Compositor>> {
        match self {
            CompositorConfig::Native { ref mut compositor, .. } => {
                Some(compositor)
            }
            CompositorConfig::Draw { .. } => {
                None
            }
        }
    }

    pub fn partial_present(&mut self) -> Option<&mut Box<dyn PartialPresentCompositor>> {
        match self {
            CompositorConfig::Native { .. } => {
                None
            }
            CompositorConfig::Draw { ref mut partial_present, .. } => {
                partial_present.as_mut()
            }
        }
    }

}

impl Default for CompositorConfig {
    /// Default compositor config is full present without partial present.
    fn default() -> Self {
        CompositorConfig::Draw {
            max_partial_present_rects: 0,
            draw_previous_partial_present_regions: false,
            partial_present: None,
        }
    }
}

/// This is a representation of `CompositorConfig` without the `Compositor` trait
/// present. This allows it to be freely copied to other threads, such as the render
/// backend where the frame builder can access it.
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[derive(Debug, Copy, Clone, PartialEq)]
pub enum CompositorKind {
    /// WR handles compositing via drawing.
    Draw {
        /// Partial present support.
        max_partial_present_rects: usize,
        /// Draw previous regions when doing partial present.
        draw_previous_partial_present_regions: bool,
    },
    /// Native OS compositor.
    Native {
        /// The capabilities of the underlying platform.
        capabilities: CompositorCapabilities,
    },
}

impl Default for CompositorKind {
    /// Default compositor config is full present without partial present.
    fn default() -> Self {
        CompositorKind::Draw {
            max_partial_present_rects: 0,
            draw_previous_partial_present_regions: false,
        }
    }
}

impl CompositorKind {
    pub fn get_virtual_surface_size(&self) -> i32 {
        match self {
            CompositorKind::Draw { .. } => 0,
            CompositorKind::Native { capabilities, .. } => capabilities.virtual_surface_size,
        }
    }

    pub fn should_redraw_on_invalidation(&self) -> bool {
        match self {
            CompositorKind::Draw { max_partial_present_rects, .. } => {
                // When partial present is enabled, we need to force redraw.
                *max_partial_present_rects > 0
            }
            CompositorKind::Native { capabilities, .. } => capabilities.redraw_on_invalidation,
        }
    }
}

/// The backing surface kind for a tile. Same as `TileSurface`, minus
/// the texture cache handles, visibility masks etc.
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[derive(PartialEq, Clone)]
pub enum TileSurfaceKind {
    Texture,
    Color {
        color: ColorF,
    },
    Clear,
}

impl From<&TileSurface> for TileSurfaceKind {
    fn from(surface: &TileSurface) -> Self {
        match surface {
            TileSurface::Texture { .. } => TileSurfaceKind::Texture,
            TileSurface::Color { color } => TileSurfaceKind::Color { color: *color },
            TileSurface::Clear => TileSurfaceKind::Clear,
        }
    }
}

/// Describes properties that identify a tile composition uniquely.
/// The backing surface for this tile.
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[derive(PartialEq, Clone)]
pub struct CompositeTileDescriptor {
    pub tile_id: TileId,
    pub surface_kind: TileSurfaceKind,
}

/// Describes the properties that identify a surface composition uniquely.
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[derive(PartialEq, Clone)]
pub struct CompositeSurfaceDescriptor {
    pub surface_id: Option<NativeSurfaceId>,
    pub clip_rect: DeviceRect,
    pub transform: CompositorSurfaceTransform,
    // A list of image keys and generations that this compositor surface
    // depends on. This avoids composites being skipped when the only
    // thing that has changed is the generation of an compositor surface
    // image dependency.
    pub image_dependencies: [ImageDependency; 3],
    pub image_rendering: ImageRendering,
    // List of the surface information for each tile added to this virtual surface
    pub tile_descriptors: Vec<CompositeTileDescriptor>,
}

/// Describes surface properties used to composite a frame. This
/// is used to compare compositions between frames.
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[derive(PartialEq, Clone)]
pub struct CompositeDescriptor {
    pub surfaces: Vec<CompositeSurfaceDescriptor>,
}

impl CompositeDescriptor {
    /// Construct an empty descriptor.
    pub fn empty() -> Self {
        CompositeDescriptor {
            surfaces: Vec::new(),
        }
    }
}

pub struct CompositeStatePreallocator {
    tiles: Preallocator,
    external_surfaces: Preallocator,
    occluders: Preallocator,
    occluders_events: Preallocator,
    occluders_active: Preallocator,
    descriptor_surfaces: Preallocator,
}

impl CompositeStatePreallocator {
    pub fn record(&mut self, state: &CompositeState) {
        self.tiles.record_vec(&state.tiles);
        self.external_surfaces.record_vec(&state.external_surfaces);
        self.occluders.record_vec(&state.occluders.occluders);
        self.occluders_events.record_vec(&state.occluders.events);
        self.occluders_active.record_vec(&state.occluders.active);
        self.descriptor_surfaces.record_vec(&state.descriptor.surfaces);
    }

    pub fn preallocate(&self, state: &mut CompositeState) {
        self.tiles.preallocate_vec(&mut state.tiles);
        self.external_surfaces.preallocate_vec(&mut state.external_surfaces);
        self.occluders.preallocate_vec(&mut state.occluders.occluders);
        self.occluders_events.preallocate_vec(&mut state.occluders.events);
        self.occluders_active.preallocate_vec(&mut state.occluders.active);
        self.descriptor_surfaces.preallocate_vec(&mut state.descriptor.surfaces);
    }
}

impl Default for CompositeStatePreallocator {
    fn default() -> Self {
        CompositeStatePreallocator {
            tiles: Preallocator::new(56),
            external_surfaces: Preallocator::new(0),
            occluders: Preallocator::new(16),
            occluders_events: Preallocator::new(32),
            occluders_active: Preallocator::new(16),
            descriptor_surfaces: Preallocator::new(8),
        }
    }
}

/// A transform for either a picture cache or external compositor surface, stored
/// in the `CompositeState` structure. This allows conversions from local rects
/// to raster or device rects, without access to the spatial tree (e.g. during
/// the render step where dirty rects are calculated). Since we know that we only
/// handle scale and offset transforms for these types, we can store a single
/// ScaleOffset rather than 4x4 matrix here for efficiency.
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct CompositorTransform {
    // Map from local rect of a composite tile to the real backing surface coords
    local_to_surface: ScaleOffset,
    // Map from surface coords to the final device space position
    surface_to_device: ScaleOffset,
    // Combined local -> surface -> device transform
    local_to_device: ScaleOffset,
}

/// The list of tiles to be drawn this frame
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct CompositeState {
    // TODO(gw): Consider splitting up CompositeState into separate struct types depending
    //           on the selected compositing mode. Many of the fields in this state struct
    //           are only applicable to either Native or Draw compositing mode.
    /// List of tiles to be drawn by the Draw compositor.
    /// Tiles are accumulated in this vector and sorted from front to back at the end of the
    /// frame.
    pub tiles: Vec<CompositeTile>,
    /// List of primitives that were promoted to be compositor surfaces.
    pub external_surfaces: Vec<ResolvedExternalSurface>,
    /// Used to generate z-id values for tiles in the Draw compositor mode.
    pub z_generator: ZBufferIdGenerator,
    // If false, we can't rely on the dirty rects in the CompositeTile
    // instances. This currently occurs during a scroll event, as a
    // signal to refresh the whole screen. This is only a temporary
    // measure until we integrate with OS compositors. In the meantime
    // it gives us the ability to partial present for any non-scroll
    // case as a simple win (e.g. video, animation etc).
    pub dirty_rects_are_valid: bool,
    /// The kind of compositor for picture cache tiles (e.g. drawn by WR, or OS compositor)
    pub compositor_kind: CompositorKind,
    /// List of registered occluders
    pub occluders: Occluders,
    /// Description of the surfaces and properties that are being composited.
    pub descriptor: CompositeDescriptor,
    /// Debugging information about the state of the pictures cached for regression testing.
    pub picture_cache_debug: PictureCacheDebugInfo,
    /// List of registered transforms used by picture cache or external surfaces
    pub transforms: Vec<CompositorTransform>,
    /// Whether we have low quality pinch zoom enabled
    low_quality_pinch_zoom: bool,
}

impl CompositeState {
    /// Construct a new state for compositing picture tiles. This is created
    /// during each frame construction and passed to the renderer.
    pub fn new(
        compositor_kind: CompositorKind,
        max_depth_ids: i32,
        dirty_rects_are_valid: bool,
        low_quality_pinch_zoom: bool,
    ) -> Self {
        CompositeState {
            tiles: Vec::new(),
            z_generator: ZBufferIdGenerator::new(max_depth_ids),
            dirty_rects_are_valid,
            compositor_kind,
            occluders: Occluders::new(),
            descriptor: CompositeDescriptor::empty(),
            external_surfaces: Vec::new(),
            picture_cache_debug: PictureCacheDebugInfo::new(),
            transforms: Vec::new(),
            low_quality_pinch_zoom,
        }
    }

    /// Register use of a transform for a picture cache tile or external surface
    pub fn register_transform(
        &mut self,
        local_to_surface: ScaleOffset,
        surface_to_device: ScaleOffset,
    ) -> CompositorTransformIndex {
        let index = CompositorTransformIndex(self.transforms.len());

        let local_to_device = local_to_surface.accumulate(&surface_to_device);

        self.transforms.push(CompositorTransform {
            local_to_surface,
            surface_to_device,
            local_to_device,
        });

        index
    }

    /// Calculate the device-space rect of a local compositor surface rect
    pub fn get_device_rect(
        &self,
        local_rect: &PictureRect,
        transform_index: CompositorTransformIndex,
    ) -> DeviceRect {
        let transform = &self.transforms[transform_index.0];
        transform.local_to_device.map_rect(&local_rect).round()
    }

    /// Calculate the device-space rect of a local compositor surface rect, normalized
    /// to the origin of a given point
    pub fn get_surface_rect<T>(
        &self,
        local_sub_rect: &Box2D<f32, T>,
        local_bounds: &Box2D<f32, T>,
        transform_index: CompositorTransformIndex,
    ) -> DeviceRect {
        let transform = &self.transforms[transform_index.0];

        let surface_bounds = transform.local_to_surface.map_rect(&local_bounds);
        let surface_rect = transform.local_to_surface.map_rect(&local_sub_rect);

        surface_rect
            .translate(-surface_bounds.min.to_vector())
            .round_out()
            .intersection(&surface_bounds.size().round().into())
            .unwrap_or_else(DeviceRect::zero)
    }

    /// Get the local -> device compositor transform
    pub fn get_device_transform(
        &self,
        transform_index: CompositorTransformIndex,
    ) -> ScaleOffset {
        let transform = &self.transforms[transform_index.0];
        transform.local_to_device
    }

    /// Get the surface -> device compositor transform
    pub fn get_compositor_transform(
        &self,
        transform_index: CompositorTransformIndex,
    ) -> ScaleOffset {
        let transform = &self.transforms[transform_index.0];
        transform.surface_to_device
    }

    /// Register an occluder during picture cache updates that can be
    /// used during frame building to occlude tiles.
    pub fn register_occluder(
        &mut self,
        z_id: ZBufferId,
        rect: WorldRect,
    ) {
        let world_rect = rect.round().to_i32();

        self.occluders.push(world_rect, z_id);
    }

    /// Add a picture cache to be composited
    pub fn push_surface(
        &mut self,
        tile_cache: &TileCacheInstance,
        device_clip_rect: DeviceRect,
        resource_cache: &ResourceCache,
        gpu_cache: &mut GpuCache,
        deferred_resolves: &mut Vec<DeferredResolve>,
    ) {
        let slice_transform = self.get_compositor_transform(tile_cache.transform_index).to_transform();

        let image_rendering = if self.low_quality_pinch_zoom {
            ImageRendering::Auto
        } else {
            ImageRendering::CrispEdges
        };

        for sub_slice in &tile_cache.sub_slices {
            let mut surface_device_rect = DeviceRect::zero();

            for tile in sub_slice.tiles.values() {
                if !tile.is_visible {
                    // This can occur when a tile is found to be occluded during frame building.
                    continue;
                }

                // Accumulate this tile into the overall surface bounds. This is used below
                // to clamp the size of the supplied clip rect to a reasonable value.
                // NOTE: This clip rect must include the device_valid_rect rather than
                //       the tile device rect. This ensures that in the case of a picture
                //       cache slice that is smaller than a single tile, the clip rect in
                //       the composite descriptor will change if the position of that slice
                //       is changed. Otherwise, WR may conclude that no composite is needed
                //       if the tile itself was not invalidated due to changing content.
                //       See bug #1675414 for more detail.
                surface_device_rect = surface_device_rect.union(&tile.device_valid_rect);
            }

            // Append the visible tiles from this sub-slice
            self.tiles.extend_from_slice(&sub_slice.composite_tiles);

            // If the clip rect is too large, it can cause accuracy and correctness problems
            // for some native compositors (specifically, CoreAnimation in this case). To
            // work around that, intersect the supplied clip rect with the current bounds
            // of the native surface, which ensures it is a reasonable size.
            let surface_clip_rect = device_clip_rect
                .intersection(&surface_device_rect)
                .unwrap_or(DeviceRect::zero());

            // Add opaque surface before any compositor surfaces
            if !sub_slice.opaque_tile_descriptors.is_empty() {
                self.descriptor.surfaces.push(
                    CompositeSurfaceDescriptor {
                        surface_id: sub_slice.native_surface.as_ref().map(|s| s.opaque),
                        clip_rect: surface_clip_rect,
                        transform: slice_transform,
                        image_dependencies: [ImageDependency::INVALID; 3],
                        image_rendering,
                        tile_descriptors: sub_slice.opaque_tile_descriptors.clone(),
                    }
                );
            }

            // Add alpha tiles after opaque surfaces
            if !sub_slice.alpha_tile_descriptors.is_empty() {
                self.descriptor.surfaces.push(
                    CompositeSurfaceDescriptor {
                        surface_id: sub_slice.native_surface.as_ref().map(|s| s.alpha),
                        clip_rect: surface_clip_rect,
                        transform: slice_transform,
                        image_dependencies: [ImageDependency::INVALID; 3],
                        image_rendering,
                        tile_descriptors: sub_slice.alpha_tile_descriptors.clone(),
                    }
                );
            }

            // For each compositor surface that was promoted, build the
            // information required for the compositor to draw it
            for compositor_surface in &sub_slice.compositor_surfaces {
                let external_surface = &compositor_surface.descriptor;

                let clip_rect = external_surface
                    .clip_rect
                    .intersection(&device_clip_rect)
                    .unwrap_or_else(DeviceRect::zero);

                let required_plane_count =
                    match external_surface.dependency {
                        ExternalSurfaceDependency::Yuv { format, .. } => {
                            format.get_plane_num()
                        },
                        ExternalSurfaceDependency::Rgb { .. } => {
                            1
                        }
                    };

                let mut image_dependencies = [ImageDependency::INVALID; 3];

                for i in 0 .. required_plane_count {
                    let dependency = match external_surface.dependency {
                        ExternalSurfaceDependency::Yuv { image_dependencies, .. } => {
                            image_dependencies[i]
                        },
                        ExternalSurfaceDependency::Rgb { image_dependency, .. } => {
                            image_dependency
                        }
                    };
                    image_dependencies[i] = dependency;
                }

                // Get a new z_id for each compositor surface, to ensure correct ordering
                // when drawing with the simple (Draw) compositor, and to schedule compositing
                // of any required updates into the surfaces.
                let needs_external_surface_update = match self.compositor_kind {
                    CompositorKind::Draw { .. } => true,
                    _ => external_surface.update_params.is_some(),
                };
                let external_surface_index = if needs_external_surface_update {
                    let external_surface_index = self.compute_external_surface_dependencies(
                        &external_surface,
                        &image_dependencies,
                        required_plane_count,
                        resource_cache,
                        gpu_cache,
                        deferred_resolves,
                    );
                    if external_surface_index == ResolvedExternalSurfaceIndex::INVALID {
                        continue;
                    }
                    external_surface_index
                } else {
                    ResolvedExternalSurfaceIndex::INVALID
                };

                let surface = CompositeTileSurface::ExternalSurface { external_surface_index };
                let local_rect = external_surface.local_surface_size.cast_unit().into();

                let tile = CompositeTile {
                    kind: tile_kind(&surface, compositor_surface.is_opaque),
                    surface,
                    local_rect,
                    local_valid_rect: local_rect,
                    local_dirty_rect: local_rect,
                    device_clip_rect: clip_rect,
                    z_id: external_surface.z_id,
                    transform_index: external_surface.transform_index,
                };

                // Add a surface descriptor for each compositor surface. For the Draw
                // compositor, this is used to avoid composites being skipped by adding
                // a dependency on the compositor surface external image keys / generations.
                self.descriptor.surfaces.push(
                    CompositeSurfaceDescriptor {
                        surface_id: external_surface.native_surface_id,
                        clip_rect,
                        transform: self.get_compositor_transform(external_surface.transform_index).to_transform(),
                        image_dependencies: image_dependencies,
                        image_rendering: external_surface.image_rendering,
                        tile_descriptors: Vec::new(),
                    }
                );

                self.tiles.push(tile);
            }
        }
    }

    fn compute_external_surface_dependencies(
        &mut self,
        external_surface: &ExternalSurfaceDescriptor,
        image_dependencies: &[ImageDependency; 3],
        required_plane_count: usize,
        resource_cache: &ResourceCache,
        gpu_cache: &mut GpuCache,
        deferred_resolves: &mut Vec<DeferredResolve>,
    ) -> ResolvedExternalSurfaceIndex {
        let mut planes = [
            ExternalPlaneDescriptor::invalid(),
            ExternalPlaneDescriptor::invalid(),
            ExternalPlaneDescriptor::invalid(),
        ];

        let mut valid_plane_count = 0;
        for i in 0 .. required_plane_count {
            let request = ImageRequest {
                key: image_dependencies[i].key,
                rendering: external_surface.image_rendering,
                tile: None,
            };

            let cache_item = resolve_image(
                request,
                resource_cache,
                gpu_cache,
                deferred_resolves,
            );

            if cache_item.texture_id != TextureSource::Invalid {
                valid_plane_count += 1;
                let plane = &mut planes[i];
                *plane = ExternalPlaneDescriptor {
                    texture: cache_item.texture_id,
                    uv_rect: cache_item.uv_rect.into(),
                };
            }
        }

        // Check if there are valid images added for each YUV plane
        if valid_plane_count < required_plane_count {
            warn!("Warnings: skip a YUV/RGB compositor surface, found {}/{} valid images",
                valid_plane_count,
                required_plane_count,
            );
            return ResolvedExternalSurfaceIndex::INVALID;
        }

        let external_surface_index = ResolvedExternalSurfaceIndex(self.external_surfaces.len());

        // If the external surface descriptor reports that the native surface
        // needs to be updated, create an update params tuple for the renderer
        // to use.
        let update_params = external_surface.update_params.map(|surface_size| {
            (
                external_surface.native_surface_id.expect("bug: no native surface!"),
                surface_size
            )
        });

        match external_surface.dependency {
            ExternalSurfaceDependency::Yuv{ color_space, format, channel_bit_depth, .. } => {

                let image_buffer_kind = planes[0].texture.image_buffer_kind();

                self.external_surfaces.push(ResolvedExternalSurface {
                    color_data: ResolvedExternalSurfaceColorData::Yuv {
                        image_dependencies: *image_dependencies,
                        planes,
                        color_space,
                        format,
                        channel_bit_depth,
                        },
                    image_buffer_kind,
                    update_params,
                });
            },
            ExternalSurfaceDependency::Rgb { .. } => {
                let image_buffer_kind = planes[0].texture.image_buffer_kind();

                self.external_surfaces.push(ResolvedExternalSurface {
                    color_data: ResolvedExternalSurfaceColorData::Rgb {
                        image_dependency: image_dependencies[0],
                        plane: planes[0],
                    },
                    image_buffer_kind,
                    update_params,
                });
            },
        }
        external_surface_index
    }

    pub fn end_frame(&mut self) {
        // Sort tiles from front to back.
        self.tiles.sort_by_key(|tile| tile.z_id.0);
    }
}

/// An arbitrary identifier for a native (OS compositor) surface
#[repr(C)]
#[derive(Debug, Copy, Clone, Hash, Eq, PartialEq)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct NativeSurfaceId(pub u64);

impl NativeSurfaceId {
    /// A special id for the native surface that is used for debug / profiler overlays.
    pub const DEBUG_OVERLAY: NativeSurfaceId = NativeSurfaceId(u64::MAX);
}

#[repr(C)]
#[derive(Debug, Copy, Clone, Hash, Eq, PartialEq)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct NativeTileId {
    pub surface_id: NativeSurfaceId,
    pub x: i32,
    pub y: i32,
}

impl NativeTileId {
    /// A special id for the native surface that is used for debug / profiler overlays.
    pub const DEBUG_OVERLAY: NativeTileId = NativeTileId {
        surface_id: NativeSurfaceId::DEBUG_OVERLAY,
        x: 0,
        y: 0,
    };
}

/// Information about a bound surface that the native compositor
/// returns to WR.
#[repr(C)]
#[derive(Copy, Clone)]
pub struct NativeSurfaceInfo {
    /// An offset into the surface that WR should draw. Some compositing
    /// implementations (notably, DirectComposition) use texture atlases
    /// when the surface sizes are small. In this case, an offset can
    /// be returned into the larger texture where WR should draw. This
    /// can be (0, 0) if texture atlases are not used.
    pub origin: DeviceIntPoint,
    /// The ID of the FBO that WR should bind to, in order to draw to
    /// the bound surface. On Windows (ANGLE) this will always be 0,
    /// since creating a p-buffer sets the default framebuffer to
    /// be the DirectComposition surface. On Mac, this will be non-zero,
    /// since it identifies the IOSurface that has been bound to draw to.
    // TODO(gw): This may need to be a larger / different type for WR
    //           backends that are not GL.
    pub fbo_id: u32,
}

#[repr(C)]
#[derive(Debug, Copy, Clone, PartialEq)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct CompositorCapabilities {
    /// The virtual surface size used by the underlying platform.
    pub virtual_surface_size: i32,
    /// Whether the compositor requires redrawing on invalidation.
    pub redraw_on_invalidation: bool,
    /// The maximum number of dirty rects that can be provided per compositor
    /// surface update. If this is zero, the entire compositor surface for
    /// a given tile will be drawn if it's dirty.
    pub max_update_rects: usize,
}

impl Default for CompositorCapabilities {
    fn default() -> Self {
        // The default set of compositor capabilities for a given platform.
        // These should only be modified if a compositor diverges specifically
        // from the default behavior so that compositors don't have to track
        // which changes to this structure unless necessary.
        CompositorCapabilities {
            virtual_surface_size: 0,
            redraw_on_invalidation: false,
            // Assume compositors can do at least partial update of surfaces. If not,
            // the native compositor should override this to be 0.
            max_update_rects: 1,
        }
    }
}

/// The transform type to apply to Compositor surfaces.
// TODO: Should transform from CompositorSurfacePixel instead, but this requires a cleanup of the
// Compositor API to use CompositorSurface-space geometry instead of Device-space where necessary
// to avoid a bunch of noisy cast_unit calls and make it actually type-safe. May be difficult due
// to pervasive use of Device-space nomenclature inside WR.
// pub struct CompositorSurfacePixel;
// pub type CompositorSurfaceTransform = Transform3D<f32, CompositorSurfacePixel, DevicePixel>;
pub type CompositorSurfaceTransform = Transform3D<f32, DevicePixel, DevicePixel>;

/// Defines an interface to a native (OS level) compositor. If supplied
/// by the client application, then picture cache slices will be
/// composited by the OS compositor, rather than drawn via WR batches.
pub trait Compositor {
    /// Create a new OS compositor surface with the given properties.
    fn create_surface(
        &mut self,
        id: NativeSurfaceId,
        virtual_offset: DeviceIntPoint,
        tile_size: DeviceIntSize,
        is_opaque: bool,
    );

    /// Create a new OS compositor surface that can be used with an
    /// existing ExternalImageId, instead of being drawn to by WebRender.
    /// Surfaces created by this can only be used with attach_external_image,
    /// and not create_tile/destroy_tile/bind/unbind.
    fn create_external_surface(
        &mut self,
        id: NativeSurfaceId,
        is_opaque: bool,
    );

    /// Destroy the surface with the specified id. WR may call this
    /// at any time the surface is no longer required (including during
    /// renderer deinit). It's the responsibility of the embedder
    /// to ensure that the surface is only freed once the GPU is
    /// no longer using the surface (if this isn't already handled
    /// by the operating system).
    fn destroy_surface(
        &mut self,
        id: NativeSurfaceId,
    );

    /// Create a new OS compositor tile with the given properties.
    fn create_tile(
        &mut self,
        id: NativeTileId,
    );

    /// Destroy an existing compositor tile.
    fn destroy_tile(
        &mut self,
        id: NativeTileId,
    );

    /// Attaches an ExternalImageId to an OS compositor surface created
    /// by create_external_surface, and uses that as the contents of
    /// the surface. It is expected that a single surface will have
    /// many different images attached (like one for each video frame).
    fn attach_external_image(
        &mut self,
        id: NativeSurfaceId,
        external_image: ExternalImageId
    );

    /// Mark a tile as invalid before any surfaces are queued for
    /// composition and before it is updated with bind. This is useful
    /// for early composition, allowing for dependency tracking of which
    /// surfaces can be composited early while others are still updating.
    fn invalidate_tile(
        &mut self,
        _id: NativeTileId,
        _valid_rect: DeviceIntRect
    ) {}

    /// Bind this surface such that WR can issue OpenGL commands
    /// that will target the surface. Returns an (x, y) offset
    /// where WR should draw into the surface. This can be set
    /// to (0, 0) if the OS doesn't use texture atlases. The dirty
    /// rect is a local surface rect that specifies which part
    /// of the surface needs to be updated. If max_update_rects
    /// in CompositeConfig is 0, this will always be the size
    /// of the entire surface. The returned offset is only
    /// relevant to compositors that store surfaces in a texture
    /// atlas (that is, WR expects that the dirty rect doesn't
    /// affect the coordinates of the returned origin).
    fn bind(
        &mut self,
        id: NativeTileId,
        dirty_rect: DeviceIntRect,
        valid_rect: DeviceIntRect,
    ) -> NativeSurfaceInfo;

    /// Unbind the surface. This is called by WR when it has
    /// finished issuing OpenGL commands on the current surface.
    fn unbind(
        &mut self,
    );

    /// Begin the frame
    fn begin_frame(&mut self);

    /// Add a surface to the visual tree to be composited. Visuals must
    /// be added every frame, between the begin/end transaction call. The
    /// z-order of the surfaces is determined by the order they are added
    /// to the visual tree.
    // TODO(gw): Adding visuals every frame makes the interface simple,
    //           but may have performance implications on some compositors?
    //           We might need to change the interface to maintain a visual
    //           tree that can be mutated?
    // TODO(gw): We might need to add a concept of a hierachy in future.
    fn add_surface(
        &mut self,
        id: NativeSurfaceId,
        transform: CompositorSurfaceTransform,
        clip_rect: DeviceIntRect,
        image_rendering: ImageRendering,
    );

    /// Notify the compositor that all tiles have been invalidated and all
    /// native surfaces have been added, thus it is safe to start compositing
    /// valid surfaces. The dirty rects array allows native compositors that
    /// support partial present to skip copying unchanged areas.
    /// Optionally provides a set of rectangles for the areas known to be
    /// opaque, this is currently only computed if the caller is SwCompositor.
    fn start_compositing(
        &mut self,
        _clear_color: ColorF,
        _dirty_rects: &[DeviceIntRect],
        _opaque_rects: &[DeviceIntRect],
    ) {}

    /// Commit any changes in the compositor tree for this frame. WR calls
    /// this once when all surface and visual updates are complete, to signal
    /// that the OS composite transaction should be applied.
    fn end_frame(&mut self);

    /// Enable/disable native compositor usage
    fn enable_native_compositor(&mut self, enable: bool);

    /// Safely deinitialize any remaining resources owned by the compositor.
    fn deinit(&mut self);

    /// Get the capabilities struct for this compositor. This is used to
    /// specify what features a compositor supports, depending on the
    /// underlying platform
    fn get_capabilities(&self) -> CompositorCapabilities;
}

/// Information about the underlying data buffer of a mapped tile.
#[repr(C)]
#[derive(Copy, Clone)]
pub struct MappedTileInfo {
    pub data: *mut c_void,
    pub stride: i32,
}

/// Descriptor for a locked surface that will be directly composited by SWGL.
#[repr(C)]
pub struct SWGLCompositeSurfaceInfo {
    /// The number of YUV planes in the surface. 0 indicates non-YUV BGRA.
    /// 1 is interleaved YUV. 2 is NV12. 3 is planar YUV.
    pub yuv_planes: u32,
    /// Textures for planes of the surface, or 0 if not applicable.
    pub textures: [u32; 3],
    /// Color space of surface if using a YUV format.
    pub color_space: YuvRangedColorSpace,
    /// Color depth of surface if using a YUV format.
    pub color_depth: ColorDepth,
    /// The actual source surface size before transformation.
    pub size: DeviceIntSize,
}

/// A Compositor variant that supports mapping tiles into CPU memory.
pub trait MappableCompositor: Compositor {
    /// Map a tile's underlying buffer so it can be used as the backing for
    /// a SWGL framebuffer. This is intended to be a replacement for 'bind'
    /// in any compositors that intend to directly interoperate with SWGL
    /// while supporting some form of native layers.
    fn map_tile(
        &mut self,
        id: NativeTileId,
        dirty_rect: DeviceIntRect,
        valid_rect: DeviceIntRect,
    ) -> Option<MappedTileInfo>;

    /// Unmap a tile that was was previously mapped via map_tile to signal
    /// that SWGL is done rendering to the buffer.
    fn unmap_tile(&mut self);

    fn lock_composite_surface(
        &mut self,
        ctx: *mut c_void,
        external_image_id: ExternalImageId,
        composite_info: *mut SWGLCompositeSurfaceInfo,
    ) -> bool;
    fn unlock_composite_surface(&mut self, ctx: *mut c_void, external_image_id: ExternalImageId);
}

/// Defines an interface to a non-native (application-level) Compositor which handles
/// partial present. This is required if webrender must query the backbuffer's age.
/// TODO: Use the Compositor trait for native and non-native compositors, and integrate
/// this functionality there.
pub trait PartialPresentCompositor {
    /// Allows webrender to specify the total region that will be rendered to this frame,
    /// ie the frame's dirty region and some previous frames' dirty regions, if applicable
    /// (calculated using the buffer age). Must be called before anything has been rendered
    /// to the main framebuffer.
    fn set_buffer_damage_region(&mut self, rects: &[DeviceIntRect]);
}

/// Information about an opaque surface used to occlude tiles.
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
struct Occluder {
    z_id: ZBufferId,
    world_rect: WorldIntRect,
}

// Whether this event is the start or end of a rectangle
#[derive(Debug)]
enum OcclusionEventKind {
    Begin,
    End,
}

// A list of events on the y-axis, with the rectangle range that it affects on the x-axis
#[derive(Debug)]
struct OcclusionEvent {
    y: i32,
    x_range: ops::Range<i32>,
    kind: OcclusionEventKind,
}

impl OcclusionEvent {
    fn new(y: i32, kind: OcclusionEventKind, x0: i32, x1: i32) -> Self {
        OcclusionEvent {
            y,
            x_range: ops::Range {
                start: x0,
                end: x1,
            },
            kind,
        }
    }
}

/// List of registered occluders.
///
/// Also store a couple of vectors for reuse.
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct Occluders {
    occluders: Vec<Occluder>,

    // The two vectors below are kept to avoid unnecessary reallocations in area().

    #[cfg_attr(feature = "serde", serde(skip))]
    events: Vec<OcclusionEvent>,

    #[cfg_attr(feature = "serde", serde(skip))]
    active: Vec<ops::Range<i32>>,
}

impl Occluders {
    fn new() -> Self {
        Occluders {
            occluders: Vec::new(),
            events: Vec::new(),
            active: Vec::new(),
        }
    }

    fn push(&mut self, world_rect: WorldIntRect, z_id: ZBufferId) {
        self.occluders.push(Occluder { world_rect, z_id });
    }

    /// Returns true if a tile with the specified rectangle and z_id
    /// is occluded by an opaque surface in front of it.
    pub fn is_tile_occluded(
        &mut self,
        z_id: ZBufferId,
        world_rect: WorldRect,
    ) -> bool {
        // It's often the case that a tile is only occluded by considering multiple
        // picture caches in front of it (for example, the background tiles are
        // often occluded by a combination of the content slice + the scrollbar slices).

        // The basic algorithm is:
        //    For every occluder:
        //      If this occluder is in front of the tile we are querying:
        //         Clip the occluder rectangle to the query rectangle.
        //    Calculate the total non-overlapping area of those clipped occluders.
        //    If the cumulative area of those occluders is the same as the area of the query tile,
        //       Then the entire tile must be occluded and can be skipped during rasterization and compositing.

        // Get the reference area we will compare against.
        let world_rect = world_rect.round().to_i32();
        let ref_area = world_rect.area();

        // Calculate the non-overlapping area of the valid occluders.
        let cover_area = self.area(z_id, &world_rect);
        debug_assert!(cover_area <= ref_area);

        // Check if the tile area is completely covered
        ref_area == cover_area
    }

    /// Return the total area covered by a set of occluders, accounting for
    /// overlapping areas between those rectangles.
    fn area(
        &mut self,
        z_id: ZBufferId,
        clip_rect: &WorldIntRect,
    ) -> i32 {
        // This implementation is based on the article https://leetcode.com/articles/rectangle-area-ii/.
        // This is not a particularly efficient implementation (it skips building segment trees), however
        // we typically use this where the length of the rectangles array is < 10, so simplicity is more important.

        self.events.clear();
        self.active.clear();

        let mut area = 0;

        // Step through each rectangle and build the y-axis event list
        for occluder in &self.occluders {
            // Only consider occluders in front of this rect
            if occluder.z_id.0 < z_id.0 {
                // Clip the source rect to the rectangle we care about, since we only
                // want to record area for the tile we are comparing to.
                if let Some(rect) = occluder.world_rect.intersection(clip_rect) {
                    let x0 = rect.min.x;
                    let x1 = x0 + rect.width();
                    self.events.push(OcclusionEvent::new(rect.min.y, OcclusionEventKind::Begin, x0, x1));
                    self.events.push(OcclusionEvent::new(rect.min.y + rect.height(), OcclusionEventKind::End, x0, x1));
                }
            }
        }

        // If we didn't end up with any valid events, the area must be 0
        if self.events.is_empty() {
            return 0;
        }

        // Sort the events by y-value
        self.events.sort_by_key(|e| e.y);
        let mut cur_y = self.events[0].y;

        // Step through each y interval
        for event in &self.events {
            // This is the dimension of the y-axis we are accumulating areas for
            let dy = event.y - cur_y;

            // If we have active events covering x-ranges in this y-interval, process them
            if dy != 0 && !self.active.is_empty() {
                assert!(dy > 0);

                // Step through the x-ranges, ordered by x0 of each event
                self.active.sort_by_key(|i| i.start);
                let mut query = 0;
                let mut cur = self.active[0].start;

                // Accumulate the non-overlapping x-interval that contributes to area for this y-interval.
                for interval in &self.active {
                    cur = interval.start.max(cur);
                    query += (interval.end - cur).max(0);
                    cur = cur.max(interval.end);
                }

                // Accumulate total area for this y-interval
                area += query * dy;
            }

            // Update the active events list
            match event.kind {
                OcclusionEventKind::Begin => {
                    self.active.push(event.x_range.clone());
                }
                OcclusionEventKind::End => {
                    let index = self.active.iter().position(|i| *i == event.x_range).unwrap();
                    self.active.remove(index);
                }
            }

            cur_y = event.y;
        }

        area
    }
}