azul_webrender/picture.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
//! A picture represents a dynamically rendered image.
//!
//! # Overview
//!
//! Pictures consists of:
//!
//! - A number of primitives that are drawn onto the picture.
//! - A composite operation describing how to composite this
//! picture into its parent.
//! - A configuration describing how to draw the primitives on
//! this picture (e.g. in screen space or local space).
//!
//! The tree of pictures are generated during scene building.
//!
//! Depending on their composite operations pictures can be rendered into
//! intermediate targets or folded into their parent picture.
//!
//! ## Picture caching
//!
//! Pictures can be cached to reduce the amount of rasterization happening per
//! frame.
//!
//! When picture caching is enabled, the scene is cut into a small number of slices,
//! typically:
//!
//! - content slice
//! - UI slice
//! - background UI slice which is hidden by the other two slices most of the time.
//!
//! Each of these slice is made up of fixed-size large tiles of 2048x512 pixels
//! (or 128x128 for the UI slice).
//!
//! Tiles can be either cached rasterized content into a texture or "clear tiles"
//! that contain only a solid color rectangle rendered directly during the composite
//! pass.
//!
//! ## Invalidation
//!
//! Each tile keeps track of the elements that affect it, which can be:
//!
//! - primitives
//! - clips
//! - image keys
//! - opacity bindings
//! - transforms
//!
//! These dependency lists are built each frame and compared to the previous frame to
//! see if the tile changed.
//!
//! The tile's primitive dependency information is organized in a quadtree, each node
//! storing an index buffer of tile primitive dependencies.
//!
//! The union of the invalidated leaves of each quadtree produces a per-tile dirty rect
//! which defines the scissor rect used when replaying the tile's drawing commands and
//! can be used for partial present.
//!
//! ## Display List shape
//!
//! WR will first look for an iframe item in the root stacking context to apply
//! picture caching to. If that's not found, it will apply to the entire root
//! stacking context of the display list. Apart from that, the format of the
//! display list is not important to picture caching. Each time a new scroll root
//! is encountered, a new picture cache slice will be created. If the display
//! list contains more than some arbitrary number of slices (currently 8), the
//! content will all be squashed into a single slice, in order to save GPU memory
//! and compositing performance.
//!
//! ## Compositor Surfaces
//!
//! Sometimes, a primitive would prefer to exist as a native compositor surface.
//! This allows a large and/or regularly changing primitive (such as a video, or
//! webgl canvas) to be updated each frame without invalidating the content of
//! tiles, and can provide a significant performance win and battery saving.
//!
//! Since drawing a primitive as a compositor surface alters the ordering of
//! primitives in a tile, we use 'overlay tiles' to ensure correctness. If a
//! tile has a compositor surface, _and_ that tile has primitives that overlap
//! the compositor surface rect, the tile switches to be drawn in alpha mode.
//!
//! We rely on only promoting compositor surfaces that are opaque primitives.
//! With this assumption, the tile(s) that intersect the compositor surface get
//! a 'cutout' in the rectangle where the compositor surface exists (not the
//! entire tile), allowing that tile to be drawn as an alpha tile after the
//! compositor surface.
//!
//! Tiles are only drawn in overlay mode if there is content that exists on top
//! of the compositor surface. Otherwise, we can draw the tiles in the normal fast
//! path before the compositor surface is drawn. Use of the per-tile valid and
//! dirty rects ensure that we do a minimal amount of per-pixel work here to
//! blend the overlay tile (this is not always optimal right now, but will be
//! improved as a follow up).
use api::{MixBlendMode, PremultipliedColorF, FilterPrimitiveKind};
use api::{PropertyBinding, PropertyBindingId, FilterPrimitive};
use api::{DebugFlags, ImageKey, ColorF, ColorU, PrimitiveFlags};
use api::{ImageRendering, ColorDepth, YuvRangedColorSpace, YuvFormat, AlphaType};
use api::units::*;
use crate::batch::BatchFilter;
use crate::box_shadow::BLUR_SAMPLE_SCALE;
use crate::clip::{ClipStore, ClipChainInstance, ClipChainId, ClipInstance};
use crate::spatial_tree::{ROOT_SPATIAL_NODE_INDEX,
SpatialTree, CoordinateSpaceMapping, SpatialNodeIndex, VisibleFace
};
use crate::composite::{CompositorKind, CompositeState, NativeSurfaceId, NativeTileId, CompositeTileSurface, tile_kind};
use crate::composite::{ExternalSurfaceDescriptor, ExternalSurfaceDependency, CompositeTileDescriptor, CompositeTile};
use crate::composite::{CompositorTransformIndex};
use crate::debug_colors;
use euclid::{vec2, vec3, Point2D, Scale, Vector2D, Box2D, Transform3D, SideOffsets2D};
use euclid::approxeq::ApproxEq;
use crate::filterdata::SFilterData;
use crate::intern::ItemUid;
use crate::internal_types::{FastHashMap, FastHashSet, PlaneSplitter, Filter, PlaneSplitAnchor, TextureSource};
use crate::frame_builder::{FrameBuildingContext, FrameBuildingState, PictureState, PictureContext};
use crate::gpu_cache::{GpuCache, GpuCacheAddress, GpuCacheHandle};
use crate::gpu_types::{UvRectKind, ZBufferId};
use plane_split::{Clipper, Polygon, Splitter};
use crate::prim_store::{PrimitiveTemplateKind, PictureIndex, PrimitiveInstance, PrimitiveInstanceKind};
use crate::prim_store::{ColorBindingStorage, ColorBindingIndex, PrimitiveScratchBuffer};
use crate::print_tree::{PrintTree, PrintTreePrinter};
use crate::render_backend::{DataStores, FrameId};
use crate::render_task_graph::RenderTaskId;
use crate::render_target::RenderTargetKind;
use crate::render_task::{BlurTask, RenderTask, RenderTaskLocation, BlurTaskCache};
use crate::render_task::{StaticRenderTaskSurface, RenderTaskKind};
use crate::renderer::BlendMode;
use crate::resource_cache::{ResourceCache, ImageGeneration, ImageRequest};
use crate::space::SpaceMapper;
use crate::scene::SceneProperties;
use smallvec::SmallVec;
use std::{mem, u8, marker, u32};
use std::sync::atomic::{AtomicUsize, Ordering};
use std::collections::hash_map::Entry;
use std::ops::Range;
use crate::texture_cache::TextureCacheHandle;
use crate::util::{MaxRect, VecHelper, MatrixHelpers, Recycler, raster_rect_to_device_pixels, ScaleOffset};
use crate::filterdata::{FilterDataHandle};
use crate::tile_cache::{SliceDebugInfo, TileDebugInfo, DirtyTileDebugInfo};
use crate::visibility::{PrimitiveVisibilityFlags, FrameVisibilityContext};
use crate::visibility::{VisibilityState, FrameVisibilityState};
#[cfg(any(feature = "capture", feature = "replay"))]
use ron;
#[cfg(feature = "capture")]
use crate::scene_builder_thread::InternerUpdates;
#[cfg(any(feature = "capture", feature = "replay"))]
use crate::intern::{Internable, UpdateList};
#[cfg(any(feature = "capture", feature = "replay"))]
use crate::clip::{ClipIntern, PolygonIntern};
#[cfg(any(feature = "capture", feature = "replay"))]
use crate::filterdata::FilterDataIntern;
#[cfg(any(feature = "capture", feature = "replay"))]
use api::PrimitiveKeyKind;
#[cfg(any(feature = "capture", feature = "replay"))]
use crate::prim_store::backdrop::Backdrop;
#[cfg(any(feature = "capture", feature = "replay"))]
use crate::prim_store::borders::{ImageBorder, NormalBorderPrim};
#[cfg(any(feature = "capture", feature = "replay"))]
use crate::prim_store::gradient::{LinearGradient, RadialGradient, ConicGradient};
#[cfg(any(feature = "capture", feature = "replay"))]
use crate::prim_store::image::{Image, YuvImage};
#[cfg(any(feature = "capture", feature = "replay"))]
use crate::prim_store::line_dec::LineDecoration;
#[cfg(any(feature = "capture", feature = "replay"))]
use crate::prim_store::picture::Picture;
#[cfg(any(feature = "capture", feature = "replay"))]
use crate::prim_store::text_run::TextRun;
#[cfg(feature = "capture")]
use std::fs::File;
#[cfg(feature = "capture")]
use std::io::prelude::*;
#[cfg(feature = "capture")]
use std::path::PathBuf;
use crate::scene_building::{SliceFlags};
#[cfg(feature = "replay")]
// used by tileview so don't use an internal_types FastHashMap
use std::collections::HashMap;
// Maximum blur radius for blur filter (different than box-shadow blur).
// Taken from FilterNodeSoftware.cpp in Gecko.
pub const MAX_BLUR_RADIUS: f32 = 100.;
/// Specify whether a surface allows subpixel AA text rendering.
#[derive(Debug, Copy, Clone)]
pub enum SubpixelMode {
/// This surface allows subpixel AA text
Allow,
/// Subpixel AA text cannot be drawn on this surface
Deny,
/// Subpixel AA can be drawn on this surface, if not intersecting
/// with the excluded regions, and inside the allowed rect.
Conditional {
allowed_rect: PictureRect,
},
}
/// A comparable transform matrix, that compares with epsilon checks.
#[derive(Debug, Clone)]
struct MatrixKey {
m: [f32; 16],
}
impl PartialEq for MatrixKey {
fn eq(&self, other: &Self) -> bool {
const EPSILON: f32 = 0.001;
// TODO(gw): It's possible that we may need to adjust the epsilon
// to be tighter on most of the matrix, except the
// translation parts?
for (i, j) in self.m.iter().zip(other.m.iter()) {
if !i.approx_eq_eps(j, &EPSILON) {
return false;
}
}
true
}
}
/// A comparable scale-offset, that compares with epsilon checks.
#[derive(Debug, Clone)]
struct ScaleOffsetKey {
sx: f32,
sy: f32,
tx: f32,
ty: f32,
}
impl PartialEq for ScaleOffsetKey {
fn eq(&self, other: &Self) -> bool {
const EPSILON: f32 = 0.001;
self.sx.approx_eq_eps(&other.sx, &EPSILON) &&
self.sy.approx_eq_eps(&other.sy, &EPSILON) &&
self.tx.approx_eq_eps(&other.tx, &EPSILON) &&
self.ty.approx_eq_eps(&other.ty, &EPSILON)
}
}
/// A comparable / hashable version of a coordinate space mapping. Used to determine
/// if a transform dependency for a tile has changed.
#[derive(Debug, PartialEq, Clone)]
enum TransformKey {
Local,
ScaleOffset {
so: ScaleOffsetKey,
},
Transform {
m: MatrixKey,
}
}
impl<Src, Dst> From<CoordinateSpaceMapping<Src, Dst>> for TransformKey {
fn from(transform: CoordinateSpaceMapping<Src, Dst>) -> TransformKey {
match transform {
CoordinateSpaceMapping::Local => {
TransformKey::Local
}
CoordinateSpaceMapping::ScaleOffset(ref scale_offset) => {
TransformKey::ScaleOffset {
so: ScaleOffsetKey {
sx: scale_offset.scale.x,
sy: scale_offset.scale.y,
tx: scale_offset.offset.x,
ty: scale_offset.offset.y,
}
}
}
CoordinateSpaceMapping::Transform(ref m) => {
TransformKey::Transform {
m: MatrixKey {
m: m.to_array(),
},
}
}
}
}
}
/// Unit for tile coordinates.
#[derive(Hash, Clone, Copy, Debug, Eq, PartialEq, Ord, PartialOrd)]
pub struct TileCoordinate;
// Geometry types for tile coordinates.
pub type TileOffset = Point2D<i32, TileCoordinate>;
pub type TileRect = Box2D<i32, TileCoordinate>;
/// The maximum number of compositor surfaces that are allowed per picture cache. This
/// is an arbitrary number that should be enough for common cases, but low enough to
/// prevent performance and memory usage drastically degrading in pathological cases.
const MAX_COMPOSITOR_SURFACES: usize = 4;
/// The size in device pixels of a normal cached tile.
pub const TILE_SIZE_DEFAULT: DeviceIntSize = DeviceIntSize {
width: 1024,
height: 512,
_unit: marker::PhantomData,
};
/// The size in device pixels of a tile for horizontal scroll bars
pub const TILE_SIZE_SCROLLBAR_HORIZONTAL: DeviceIntSize = DeviceIntSize {
width: 1024,
height: 32,
_unit: marker::PhantomData,
};
/// The size in device pixels of a tile for vertical scroll bars
pub const TILE_SIZE_SCROLLBAR_VERTICAL: DeviceIntSize = DeviceIntSize {
width: 32,
height: 1024,
_unit: marker::PhantomData,
};
/// The maximum size per axis of a surface,
/// in WorldPixel coordinates.
const MAX_SURFACE_SIZE: f32 = 4096.0;
/// Maximum size of a compositor surface.
const MAX_COMPOSITOR_SURFACES_SIZE: f32 = 8192.0;
/// The maximum number of sub-dependencies (e.g. clips, transforms) we can handle
/// per-primitive. If a primitive has more than this, it will invalidate every frame.
const MAX_PRIM_SUB_DEPS: usize = u8::MAX as usize;
/// Used to get unique tile IDs, even when the tile cache is
/// destroyed between display lists / scenes.
static NEXT_TILE_ID: AtomicUsize = AtomicUsize::new(0);
fn clamp(value: i32, low: i32, high: i32) -> i32 {
value.max(low).min(high)
}
fn clampf(value: f32, low: f32, high: f32) -> f32 {
value.max(low).min(high)
}
/// Clamps the blur radius depending on scale factors.
fn clamp_blur_radius(blur_radius: f32, scale_factors: (f32, f32)) -> f32 {
// Clamping must occur after scale factors are applied, but scale factors are not applied
// until later on. To clamp the blur radius, we first apply the scale factors and then clamp
// and finally revert the scale factors.
// TODO: the clamping should be done on a per-axis basis, but WR currently only supports
// having a single value for both x and y blur.
let largest_scale_factor = f32::max(scale_factors.0, scale_factors.1);
let scaled_blur_radius = blur_radius * largest_scale_factor;
if scaled_blur_radius > MAX_BLUR_RADIUS {
MAX_BLUR_RADIUS / largest_scale_factor
} else {
// Return the original blur radius to avoid any rounding errors
blur_radius
}
}
/// An index into the prims array in a TileDescriptor.
#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct PrimitiveDependencyIndex(pub u32);
/// Information about the state of a binding.
#[derive(Debug)]
pub struct BindingInfo<T> {
/// The current value retrieved from dynamic scene properties.
value: T,
/// True if it was changed (or is new) since the last frame build.
changed: bool,
}
/// Information stored in a tile descriptor for a binding.
#[derive(Debug, PartialEq, Clone, Copy)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub enum Binding<T> {
Value(T),
Binding(PropertyBindingId),
}
impl<T> From<PropertyBinding<T>> for Binding<T> {
fn from(binding: PropertyBinding<T>) -> Binding<T> {
match binding {
PropertyBinding::Binding(key, _) => Binding::Binding(key.id),
PropertyBinding::Value(value) => Binding::Value(value),
}
}
}
pub type OpacityBinding = Binding<f32>;
pub type OpacityBindingInfo = BindingInfo<f32>;
pub type ColorBinding = Binding<ColorU>;
pub type ColorBindingInfo = BindingInfo<ColorU>;
/// A dependency for a transform is defined by the spatial node index + frame it was used
#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct SpatialNodeKey {
spatial_node_index: SpatialNodeIndex,
frame_id: FrameId,
}
/// A helper for comparing spatial nodes between frames. The comparisons
/// are done by-value, so that if the shape of the spatial node tree
/// changes, invalidations aren't done simply due to the spatial node
/// index changing between display lists.
struct SpatialNodeComparer {
/// The root spatial node index of the tile cache
ref_spatial_node_index: SpatialNodeIndex,
/// Maintains a map of currently active transform keys
spatial_nodes: FastHashMap<SpatialNodeKey, TransformKey>,
/// A cache of recent comparisons between prev and current spatial nodes
compare_cache: FastHashMap<(SpatialNodeKey, SpatialNodeKey), bool>,
/// A set of frames that we need to retain spatial node entries for
referenced_frames: FastHashSet<FrameId>,
}
impl SpatialNodeComparer {
/// Construct a new comparer
fn new() -> Self {
SpatialNodeComparer {
ref_spatial_node_index: ROOT_SPATIAL_NODE_INDEX,
spatial_nodes: FastHashMap::default(),
compare_cache: FastHashMap::default(),
referenced_frames: FastHashSet::default(),
}
}
/// Advance to the next frame
fn next_frame(
&mut self,
ref_spatial_node_index: SpatialNodeIndex,
) {
// Drop any node information for unreferenced frames, to ensure that the
// hashmap doesn't grow indefinitely!
let referenced_frames = &self.referenced_frames;
self.spatial_nodes.retain(|key, _| {
referenced_frames.contains(&key.frame_id)
});
// Update the root spatial node for this comparer
self.ref_spatial_node_index = ref_spatial_node_index;
self.compare_cache.clear();
self.referenced_frames.clear();
}
/// Register a transform that is used, and build the transform key for it if new.
fn register_used_transform(
&mut self,
spatial_node_index: SpatialNodeIndex,
frame_id: FrameId,
spatial_tree: &SpatialTree,
) {
let key = SpatialNodeKey {
spatial_node_index,
frame_id,
};
if let Entry::Vacant(entry) = self.spatial_nodes.entry(key) {
entry.insert(
get_transform_key(
spatial_node_index,
self.ref_spatial_node_index,
spatial_tree,
)
);
}
}
/// Return true if the transforms for two given spatial nodes are considered equivalent
fn are_transforms_equivalent(
&mut self,
prev_spatial_node_key: &SpatialNodeKey,
curr_spatial_node_key: &SpatialNodeKey,
) -> bool {
let key = (*prev_spatial_node_key, *curr_spatial_node_key);
let spatial_nodes = &self.spatial_nodes;
*self.compare_cache
.entry(key)
.or_insert_with(|| {
let prev = &spatial_nodes[&prev_spatial_node_key];
let curr = &spatial_nodes[&curr_spatial_node_key];
curr == prev
})
}
/// Ensure that the comparer won't GC any nodes for a given frame id
fn retain_for_frame(&mut self, frame_id: FrameId) {
self.referenced_frames.insert(frame_id);
}
}
// Immutable context passed to picture cache tiles during pre_update
struct TilePreUpdateContext {
/// Maps from picture cache coords -> world space coords.
pic_to_world_mapper: SpaceMapper<PicturePixel, WorldPixel>,
/// The optional background color of the picture cache instance
background_color: Option<ColorF>,
/// The visible part of the screen in world coords.
global_screen_world_rect: WorldRect,
/// Current size of tiles in picture units.
tile_size: PictureSize,
/// The current frame id for this picture cache
frame_id: FrameId,
}
// Immutable context passed to picture cache tiles during post_update
struct TilePostUpdateContext<'a> {
/// Maps from picture cache coords -> world space coords.
pic_to_world_mapper: SpaceMapper<PicturePixel, WorldPixel>,
/// Global scale factor from world -> device pixels.
global_device_pixel_scale: DevicePixelScale,
/// The local clip rect (in picture space) of the entire picture cache
local_clip_rect: PictureRect,
/// The calculated backdrop information for this cache instance.
backdrop: Option<BackdropInfo>,
/// Information about opacity bindings from the picture cache.
opacity_bindings: &'a FastHashMap<PropertyBindingId, OpacityBindingInfo>,
/// Information about color bindings from the picture cache.
color_bindings: &'a FastHashMap<PropertyBindingId, ColorBindingInfo>,
/// Current size in device pixels of tiles for this cache
current_tile_size: DeviceIntSize,
/// The local rect of the overall picture cache
local_rect: PictureRect,
/// Pre-allocated z-id to assign to tiles during post_update.
z_id: ZBufferId,
/// If true, the scale factor of the root transform for this picture
/// cache changed, so we need to invalidate the tile and re-render.
invalidate_all: bool,
}
// Mutable state passed to picture cache tiles during post_update
struct TilePostUpdateState<'a> {
/// Allow access to the texture cache for requesting tiles
resource_cache: &'a mut ResourceCache,
/// Current configuration and setup for compositing all the picture cache tiles in renderer.
composite_state: &'a mut CompositeState,
/// A cache of comparison results to avoid re-computation during invalidation.
compare_cache: &'a mut FastHashMap<PrimitiveComparisonKey, PrimitiveCompareResult>,
/// Information about transform node differences from last frame.
spatial_node_comparer: &'a mut SpatialNodeComparer,
}
/// Information about the dependencies of a single primitive instance.
struct PrimitiveDependencyInfo {
/// Unique content identifier of the primitive.
prim_uid: ItemUid,
/// The (conservative) clipped area in picture space this primitive occupies.
prim_clip_box: PictureBox2D,
/// Image keys this primitive depends on.
images: SmallVec<[ImageDependency; 8]>,
/// Opacity bindings this primitive depends on.
opacity_bindings: SmallVec<[OpacityBinding; 4]>,
/// Color binding this primitive depends on.
color_binding: Option<ColorBinding>,
/// Clips that this primitive depends on.
clips: SmallVec<[ItemUid; 8]>,
/// Spatial nodes references by the clip dependencies of this primitive.
spatial_nodes: SmallVec<[SpatialNodeIndex; 4]>,
}
impl PrimitiveDependencyInfo {
/// Construct dependency info for a new primitive.
fn new(
prim_uid: ItemUid,
prim_clip_box: PictureBox2D,
) -> Self {
PrimitiveDependencyInfo {
prim_uid,
images: SmallVec::new(),
opacity_bindings: SmallVec::new(),
color_binding: None,
prim_clip_box,
clips: SmallVec::new(),
spatial_nodes: SmallVec::new(),
}
}
}
/// A stable ID for a given tile, to help debugging. These are also used
/// as unique identifiers for tile surfaces when using a native compositor.
#[derive(Debug, Copy, Clone, PartialEq, PartialOrd, Ord, Eq)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct TileId(pub usize);
/// A descriptor for the kind of texture that a picture cache tile will
/// be drawn into.
#[derive(Debug)]
pub enum SurfaceTextureDescriptor {
/// When using the WR compositor, the tile is drawn into an entry
/// in the WR texture cache.
TextureCache {
handle: TextureCacheHandle
},
/// When using an OS compositor, the tile is drawn into a native
/// surface identified by arbitrary id.
Native {
/// The arbitrary id of this tile.
id: Option<NativeTileId>,
},
}
/// This is the same as a `SurfaceTextureDescriptor` but has been resolved
/// into a texture cache handle (if appropriate) that can be used by the
/// batching and compositing code in the renderer.
#[derive(Clone, Debug, Eq, PartialEq, Hash)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub enum ResolvedSurfaceTexture {
TextureCache {
/// The texture ID to draw to.
texture: TextureSource,
},
Native {
/// The arbitrary id of this tile.
id: NativeTileId,
/// The size of the tile in device pixels.
size: DeviceIntSize,
}
}
impl SurfaceTextureDescriptor {
/// Create a resolved surface texture for this descriptor
pub fn resolve(
&self,
resource_cache: &ResourceCache,
size: DeviceIntSize,
) -> ResolvedSurfaceTexture {
match self {
SurfaceTextureDescriptor::TextureCache { handle } => {
let cache_item = resource_cache.texture_cache.get(handle);
ResolvedSurfaceTexture::TextureCache {
texture: cache_item.texture_id,
}
}
SurfaceTextureDescriptor::Native { id } => {
ResolvedSurfaceTexture::Native {
id: id.expect("bug: native surface not allocated"),
size,
}
}
}
}
}
/// The backing surface for this tile.
#[derive(Debug)]
pub enum TileSurface {
Texture {
/// Descriptor for the surface that this tile draws into.
descriptor: SurfaceTextureDescriptor,
},
Color {
color: ColorF,
},
Clear,
}
impl TileSurface {
fn kind(&self) -> &'static str {
match *self {
TileSurface::Color { .. } => "Color",
TileSurface::Texture { .. } => "Texture",
TileSurface::Clear => "Clear",
}
}
}
/// Optional extra information returned by is_same when
/// logging is enabled.
#[derive(Debug, Copy, Clone, PartialEq)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub enum CompareHelperResult<T> {
/// Primitives match
Equal,
/// Counts differ
Count {
prev_count: u8,
curr_count: u8,
},
/// Sentinel
Sentinel,
/// Two items are not equal
NotEqual {
prev: T,
curr: T,
},
/// User callback returned true on item
PredicateTrue {
curr: T
},
}
/// The result of a primitive dependency comparison. Size is a u8
/// since this is a hot path in the code, and keeping the data small
/// is a performance win.
#[derive(Debug, Copy, Clone, PartialEq)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[repr(u8)]
pub enum PrimitiveCompareResult {
/// Primitives match
Equal,
/// Something in the PrimitiveDescriptor was different
Descriptor,
/// The clip node content or spatial node changed
Clip,
/// The value of the transform changed
Transform,
/// An image dependency was dirty
Image,
/// The value of an opacity binding changed
OpacityBinding,
/// The value of a color binding changed
ColorBinding,
}
/// A more detailed version of PrimitiveCompareResult used when
/// debug logging is enabled.
#[derive(Debug, Copy, Clone, PartialEq)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub enum PrimitiveCompareResultDetail {
/// Primitives match
Equal,
/// Something in the PrimitiveDescriptor was different
Descriptor {
old: PrimitiveDescriptor,
new: PrimitiveDescriptor,
},
/// The clip node content or spatial node changed
Clip {
detail: CompareHelperResult<ItemUid>,
},
/// The value of the transform changed
Transform {
detail: CompareHelperResult<SpatialNodeKey>,
},
/// An image dependency was dirty
Image {
detail: CompareHelperResult<ImageDependency>,
},
/// The value of an opacity binding changed
OpacityBinding {
detail: CompareHelperResult<OpacityBinding>,
},
/// The value of a color binding changed
ColorBinding {
detail: CompareHelperResult<ColorBinding>,
},
}
/// Debugging information about why a tile was invalidated
#[derive(Debug,Clone)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub enum InvalidationReason {
/// The background color changed
BackgroundColor {
old: Option<ColorF>,
new: Option<ColorF>,
},
/// The opaque state of the backing native surface changed
SurfaceOpacityChanged{
became_opaque: bool
},
/// There was no backing texture (evicted or never rendered)
NoTexture,
/// There was no backing native surface (never rendered, or recreated)
NoSurface,
/// The primitive count in the dependency list was different
PrimCount {
old: Option<Vec<ItemUid>>,
new: Option<Vec<ItemUid>>,
},
/// The content of one of the primitives was different
Content {
/// What changed in the primitive that was different
prim_compare_result: PrimitiveCompareResult,
prim_compare_result_detail: Option<PrimitiveCompareResultDetail>,
},
// The compositor type changed
CompositorKindChanged,
// The valid region of the tile changed
ValidRectChanged,
// The overall scale of the picture cache changed
ScaleChanged,
}
/// A minimal subset of Tile for debug capturing
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct TileSerializer {
pub rect: PictureRect,
pub current_descriptor: TileDescriptor,
pub id: TileId,
pub root: TileNode,
pub background_color: Option<ColorF>,
pub invalidation_reason: Option<InvalidationReason>
}
/// A minimal subset of TileCacheInstance for debug capturing
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct TileCacheInstanceSerializer {
pub slice: usize,
pub tiles: FastHashMap<TileOffset, TileSerializer>,
pub background_color: Option<ColorF>,
}
/// Information about a cached tile.
pub struct Tile {
/// The grid position of this tile within the picture cache
pub tile_offset: TileOffset,
/// The current world rect of this tile.
pub world_tile_rect: WorldRect,
/// The current local rect of this tile.
pub local_tile_rect: PictureRect,
/// The picture space dirty rect for this tile.
pub local_dirty_rect: PictureRect,
/// The device space dirty rect for this tile.
/// TODO(gw): We have multiple dirty rects available due to the quadtree above. In future,
/// expose these as multiple dirty rects, which will help in some cases.
pub device_dirty_rect: DeviceRect,
/// World space rect that contains valid pixels region of this tile.
pub world_valid_rect: WorldRect,
/// Device space rect that contains valid pixels region of this tile.
pub device_valid_rect: DeviceRect,
/// Uniquely describes the content of this tile, in a way that can be
/// (reasonably) efficiently hashed and compared.
pub current_descriptor: TileDescriptor,
/// The content descriptor for this tile from the previous frame.
pub prev_descriptor: TileDescriptor,
/// Handle to the backing surface for this tile.
pub surface: Option<TileSurface>,
/// If true, this tile is marked valid, and the existing texture
/// cache handle can be used. Tiles are invalidated during the
/// build_dirty_regions method.
pub is_valid: bool,
/// If true, this tile intersects with the currently visible screen
/// rect, and will be drawn.
pub is_visible: bool,
/// The tile id is stable between display lists and / or frames,
/// if the tile is retained. Useful for debugging tile evictions.
pub id: TileId,
/// If true, the tile was determined to be opaque, which means blending
/// can be disabled when drawing it.
pub is_opaque: bool,
/// Root node of the quadtree dirty rect tracker.
root: TileNode,
/// The last rendered background color on this tile.
background_color: Option<ColorF>,
/// The first reason the tile was invalidated this frame.
invalidation_reason: Option<InvalidationReason>,
/// The local space valid rect for all primitives that affect this tile.
pub local_valid_rect: PictureBox2D,
/// z-buffer id for this tile
pub z_id: ZBufferId,
/// The last frame this tile had its dependencies updated (dependency updating is
/// skipped if a tile is off-screen).
pub last_updated_frame_id: FrameId,
}
impl Tile {
/// Construct a new, invalid tile.
fn new(tile_offset: TileOffset) -> Self {
let id = TileId(NEXT_TILE_ID.fetch_add(1, Ordering::Relaxed));
Tile {
tile_offset,
local_tile_rect: PictureRect::zero(),
world_tile_rect: WorldRect::zero(),
world_valid_rect: WorldRect::zero(),
device_valid_rect: DeviceRect::zero(),
local_dirty_rect: PictureRect::zero(),
device_dirty_rect: DeviceRect::zero(),
surface: None,
current_descriptor: TileDescriptor::new(),
prev_descriptor: TileDescriptor::new(),
is_valid: false,
is_visible: false,
id,
is_opaque: false,
root: TileNode::new_leaf(Vec::new()),
background_color: None,
invalidation_reason: None,
local_valid_rect: PictureBox2D::zero(),
z_id: ZBufferId::invalid(),
last_updated_frame_id: FrameId::INVALID,
}
}
/// Print debug information about this tile to a tree printer.
fn print(&self, pt: &mut dyn PrintTreePrinter) {
pt.new_level(format!("Tile {:?}", self.id));
pt.add_item(format!("local_tile_rect: {:?}", self.local_tile_rect));
pt.add_item(format!("background_color: {:?}", self.background_color));
pt.add_item(format!("invalidation_reason: {:?}", self.invalidation_reason));
self.current_descriptor.print(pt);
pt.end_level();
}
/// Check if the content of the previous and current tile descriptors match
fn update_dirty_rects(
&mut self,
ctx: &TilePostUpdateContext,
state: &mut TilePostUpdateState,
invalidation_reason: &mut Option<InvalidationReason>,
frame_context: &FrameVisibilityContext,
) -> PictureRect {
let mut prim_comparer = PrimitiveComparer::new(
&self.prev_descriptor,
&self.current_descriptor,
state.resource_cache,
state.spatial_node_comparer,
ctx.opacity_bindings,
ctx.color_bindings,
);
let mut dirty_rect = PictureBox2D::zero();
self.root.update_dirty_rects(
&self.prev_descriptor.prims,
&self.current_descriptor.prims,
&mut prim_comparer,
&mut dirty_rect,
state.compare_cache,
invalidation_reason,
frame_context,
);
dirty_rect
}
/// Invalidate a tile based on change in content. This
/// must be called even if the tile is not currently
/// visible on screen. We might be able to improve this
/// later by changing how ComparableVec is used.
fn update_content_validity(
&mut self,
ctx: &TilePostUpdateContext,
state: &mut TilePostUpdateState,
frame_context: &FrameVisibilityContext,
) {
// Check if the contents of the primitives, clips, and
// other dependencies are the same.
state.compare_cache.clear();
let mut invalidation_reason = None;
let dirty_rect = self.update_dirty_rects(
ctx,
state,
&mut invalidation_reason,
frame_context,
);
if !dirty_rect.is_empty() {
self.invalidate(
Some(dirty_rect),
invalidation_reason.expect("bug: no invalidation_reason"),
);
}
if ctx.invalidate_all {
self.invalidate(None, InvalidationReason::ScaleChanged);
}
// TODO(gw): We can avoid invalidating the whole tile in some cases here,
// but it should be a fairly rare invalidation case.
if self.current_descriptor.local_valid_rect != self.prev_descriptor.local_valid_rect {
self.invalidate(None, InvalidationReason::ValidRectChanged);
state.composite_state.dirty_rects_are_valid = false;
}
}
/// Invalidate this tile. If `invalidation_rect` is None, the entire
/// tile is invalidated.
fn invalidate(
&mut self,
invalidation_rect: Option<PictureRect>,
reason: InvalidationReason,
) {
self.is_valid = false;
match invalidation_rect {
Some(rect) => {
self.local_dirty_rect = self.local_dirty_rect.union(&rect);
}
None => {
self.local_dirty_rect = self.local_tile_rect;
}
}
if self.invalidation_reason.is_none() {
self.invalidation_reason = Some(reason);
}
}
/// Called during pre_update of a tile cache instance. Allows the
/// tile to setup state before primitive dependency calculations.
fn pre_update(
&mut self,
ctx: &TilePreUpdateContext,
) {
self.local_tile_rect = PictureRect::from_origin_and_size(
PicturePoint::new(
self.tile_offset.x as f32 * ctx.tile_size.width,
self.tile_offset.y as f32 * ctx.tile_size.height,
),
ctx.tile_size,
);
// TODO(gw): This is a hack / fix for Box2D::union in euclid not working with
// zero sized rect accumulation. Once that lands, we'll revert this
// to be zero.
self.local_valid_rect = PictureBox2D::new(
PicturePoint::new( 1.0e32, 1.0e32),
PicturePoint::new(-1.0e32, -1.0e32),
);
self.invalidation_reason = None;
self.world_tile_rect = ctx.pic_to_world_mapper
.map(&self.local_tile_rect)
.expect("bug: map local tile rect");
// Check if this tile is currently on screen.
self.is_visible = self.world_tile_rect.intersects(&ctx.global_screen_world_rect);
// If the tile isn't visible, early exit, skipping the normal set up to
// validate dependencies. Instead, we will only compare the current tile
// dependencies the next time it comes into view.
if !self.is_visible {
return;
}
if ctx.background_color != self.background_color {
self.invalidate(None, InvalidationReason::BackgroundColor {
old: self.background_color,
new: ctx.background_color });
self.background_color = ctx.background_color;
}
// Clear any dependencies so that when we rebuild them we
// can compare if the tile has the same content.
mem::swap(
&mut self.current_descriptor,
&mut self.prev_descriptor,
);
self.current_descriptor.clear();
self.root.clear(self.local_tile_rect);
// Since this tile is determined to be visible, it will get updated
// dependencies, so update the frame id we are storing dependencies for.
self.last_updated_frame_id = ctx.frame_id;
}
/// Add dependencies for a given primitive to this tile.
fn add_prim_dependency(
&mut self,
info: &PrimitiveDependencyInfo,
) {
// If this tile isn't currently visible, we don't want to update the dependencies
// for this tile, as an optimization, since it won't be drawn anyway.
if !self.is_visible {
return;
}
// Incorporate the bounding rect of the primitive in the local valid rect
// for this tile. This is used to minimize the size of the scissor rect
// during rasterization and the draw rect during composition of partial tiles.
self.local_valid_rect = self.local_valid_rect.union(&info.prim_clip_box);
// Include any image keys this tile depends on.
self.current_descriptor.images.extend_from_slice(&info.images);
// Include any opacity bindings this primitive depends on.
self.current_descriptor.opacity_bindings.extend_from_slice(&info.opacity_bindings);
// Include any clip nodes that this primitive depends on.
self.current_descriptor.clips.extend_from_slice(&info.clips);
// Include any transforms that this primitive depends on.
for spatial_node_index in &info.spatial_nodes {
self.current_descriptor.transforms.push(
SpatialNodeKey {
spatial_node_index: *spatial_node_index,
frame_id: self.last_updated_frame_id,
}
);
}
// Include any color bindings this primitive depends on.
if info.color_binding.is_some() {
self.current_descriptor.color_bindings.insert(
self.current_descriptor.color_bindings.len(), info.color_binding.unwrap());
}
// TODO(gw): The prim_clip_rect can be impacted by the clip rect of the display port,
// which can cause invalidations when a new display list with changed
// display port is received. To work around this, clamp the prim clip rect
// to the tile boundaries - if the clip hasn't affected the tile, then the
// changed clip can't affect the content of the primitive on this tile.
// In future, we could consider supplying the display port clip from Gecko
// in a different way (e.g. as a scroll frame clip) which still provides
// the desired clip for checkerboarding, but doesn't require this extra
// work below.
// TODO(gw): This is a hot part of the code - we could probably optimize further by:
// - Using min/max instead of clamps below (if we guarantee the rects are well formed)
let tile_p0 = self.local_tile_rect.min;
let tile_p1 = self.local_tile_rect.max;
let prim_clip_box = PictureBox2D::new(
PicturePoint::new(
clampf(info.prim_clip_box.min.x, tile_p0.x, tile_p1.x),
clampf(info.prim_clip_box.min.y, tile_p0.y, tile_p1.y),
),
PicturePoint::new(
clampf(info.prim_clip_box.max.x, tile_p0.x, tile_p1.x),
clampf(info.prim_clip_box.max.y, tile_p0.y, tile_p1.y),
),
);
// Update the tile descriptor, used for tile comparison during scene swaps.
let prim_index = PrimitiveDependencyIndex(self.current_descriptor.prims.len() as u32);
// We know that the casts below will never overflow because the array lengths are
// truncated to MAX_PRIM_SUB_DEPS during update_prim_dependencies.
debug_assert!(info.spatial_nodes.len() <= MAX_PRIM_SUB_DEPS);
debug_assert!(info.clips.len() <= MAX_PRIM_SUB_DEPS);
debug_assert!(info.images.len() <= MAX_PRIM_SUB_DEPS);
debug_assert!(info.opacity_bindings.len() <= MAX_PRIM_SUB_DEPS);
self.current_descriptor.prims.push(PrimitiveDescriptor {
prim_uid: info.prim_uid,
prim_clip_box,
transform_dep_count: info.spatial_nodes.len() as u8,
clip_dep_count: info.clips.len() as u8,
image_dep_count: info.images.len() as u8,
opacity_binding_dep_count: info.opacity_bindings.len() as u8,
color_binding_dep_count: if info.color_binding.is_some() { 1 } else { 0 } as u8,
});
// Add this primitive to the dirty rect quadtree.
self.root.add_prim(prim_index, &info.prim_clip_box);
}
/// Called during tile cache instance post_update. Allows invalidation and dirty
/// rect calculation after primitive dependencies have been updated.
fn post_update(
&mut self,
ctx: &TilePostUpdateContext,
state: &mut TilePostUpdateState,
frame_context: &FrameVisibilityContext,
) -> bool {
// Register the frame id of this tile with the spatial node comparer, to ensure
// that it doesn't GC any spatial nodes from the comparer that are referenced
// by this tile. Must be done before we early exit below, so that we retain
// spatial node info even for tiles that are currently not visible.
state.spatial_node_comparer.retain_for_frame(self.last_updated_frame_id);
// If tile is not visible, just early out from here - we don't update dependencies
// so don't want to invalidate, merge, split etc. The tile won't need to be drawn
// (and thus updated / invalidated) until it is on screen again.
if !self.is_visible {
return false;
}
// Calculate the overall valid rect for this tile.
self.current_descriptor.local_valid_rect = self.local_valid_rect;
// TODO(gw): In theory, the local tile rect should always have an
// intersection with the overall picture rect. In practice,
// due to some accuracy issues with how fract_offset (and
// fp accuracy) are used in the calling method, this isn't
// always true. In this case, it's safe to set the local
// valid rect to zero, which means it will be clipped out
// and not affect the scene. In future, we should fix the
// accuracy issue above, so that this assumption holds, but
// it shouldn't have any noticeable effect on performance
// or memory usage (textures should never get allocated).
self.current_descriptor.local_valid_rect = self.local_tile_rect
.intersection(&ctx.local_rect)
.and_then(|r| r.intersection(&self.current_descriptor.local_valid_rect))
.unwrap_or_else(PictureRect::zero);
// The device_valid_rect is referenced during `update_content_validity` so it
// must be updated here first.
self.world_valid_rect = ctx.pic_to_world_mapper
.map(&self.current_descriptor.local_valid_rect)
.expect("bug: map local valid rect");
// The device rect is guaranteed to be aligned on a device pixel - the round
// is just to deal with float accuracy. However, the valid rect is not
// always aligned to a device pixel. To handle this, round out to get all
// required pixels, and intersect with the tile device rect.
let device_rect = (self.world_tile_rect * ctx.global_device_pixel_scale).round();
self.device_valid_rect = (self.world_valid_rect * ctx.global_device_pixel_scale)
.round_out()
.intersection(&device_rect)
.unwrap_or_else(DeviceRect::zero);
// Invalidate the tile based on the content changing.
self.update_content_validity(ctx, state, frame_context);
// If there are no primitives there is no need to draw or cache it.
if self.current_descriptor.prims.is_empty() {
// If there is a native compositor surface allocated for this (now empty) tile
// it must be freed here, otherwise the stale tile with previous contents will
// be composited. If the tile subsequently gets new primitives added to it, the
// surface will be re-allocated when it's added to the composite draw list.
if let Some(TileSurface::Texture { descriptor: SurfaceTextureDescriptor::Native { mut id, .. }, .. }) = self.surface.take() {
if let Some(id) = id.take() {
state.resource_cache.destroy_compositor_tile(id);
}
}
self.is_visible = false;
return false;
}
// Check if this tile can be considered opaque. Opacity state must be updated only
// after all early out checks have been performed. Otherwise, we might miss updating
// the native surface next time this tile becomes visible.
let clipped_rect = self.current_descriptor.local_valid_rect
.intersection(&ctx.local_clip_rect)
.unwrap_or_else(PictureRect::zero);
let has_opaque_bg_color = self.background_color.map_or(false, |c| c.a >= 1.0);
let has_opaque_backdrop = ctx.backdrop.map_or(false, |b| b.opaque_rect.contains_box(&clipped_rect));
let is_opaque = has_opaque_bg_color || has_opaque_backdrop;
// Set the correct z_id for this tile
self.z_id = ctx.z_id;
if is_opaque != self.is_opaque {
// If opacity changed, the native compositor surface and all tiles get invalidated.
// (this does nothing if not using native compositor mode).
// TODO(gw): This property probably changes very rarely, so it is OK to invalidate
// everything in this case. If it turns out that this isn't true, we could
// consider other options, such as per-tile opacity (natively supported
// on CoreAnimation, and supported if backed by non-virtual surfaces in
// DirectComposition).
if let Some(TileSurface::Texture { descriptor: SurfaceTextureDescriptor::Native { ref mut id, .. }, .. }) = self.surface {
if let Some(id) = id.take() {
state.resource_cache.destroy_compositor_tile(id);
}
}
// Invalidate the entire tile to force a redraw.
self.invalidate(None, InvalidationReason::SurfaceOpacityChanged { became_opaque: is_opaque });
self.is_opaque = is_opaque;
}
// Check if the selected composite mode supports dirty rect updates. For Draw composite
// mode, we can always update the content with smaller dirty rects, unless there is a
// driver bug to workaround. For native composite mode, we can only use dirty rects if
// the compositor supports partial surface updates.
let (supports_dirty_rects, supports_simple_prims) = match state.composite_state.compositor_kind {
CompositorKind::Draw { .. } => {
(frame_context.config.gpu_supports_render_target_partial_update, true)
}
CompositorKind::Native { capabilities, .. } => {
(capabilities.max_update_rects > 0, false)
}
};
// TODO(gw): Consider using smaller tiles and/or tile splits for
// native compositors that don't support dirty rects.
if supports_dirty_rects {
// Only allow splitting for normal content sized tiles
if ctx.current_tile_size == state.resource_cache.texture_cache.default_picture_tile_size() {
let max_split_level = 3;
// Consider splitting / merging dirty regions
self.root.maybe_merge_or_split(
0,
&self.current_descriptor.prims,
max_split_level,
);
}
}
// The dirty rect will be set correctly by now. If the underlying platform
// doesn't support partial updates, and this tile isn't valid, force the dirty
// rect to be the size of the entire tile.
if !self.is_valid && !supports_dirty_rects {
self.local_dirty_rect = self.local_tile_rect;
}
// See if this tile is a simple color, in which case we can just draw
// it as a rect, and avoid allocating a texture surface and drawing it.
// TODO(gw): Initial native compositor interface doesn't support simple
// color tiles. We can definitely support this in DC, so this
// should be added as a follow up.
let is_simple_prim =
ctx.backdrop.map_or(false, |b| b.kind.is_some()) &&
self.current_descriptor.prims.len() == 1 &&
self.is_opaque &&
supports_simple_prims;
// Set up the backing surface for this tile.
let surface = if is_simple_prim {
// If we determine the tile can be represented by a color, set the
// surface unconditionally (this will drop any previously used
// texture cache backing surface).
match ctx.backdrop.unwrap().kind {
Some(BackdropKind::Color { color }) => {
TileSurface::Color {
color,
}
}
Some(BackdropKind::Clear) => {
TileSurface::Clear
}
None => {
// This should be prevented by the is_simple_prim check above.
unreachable!();
}
}
} else {
// If this tile will be backed by a surface, we want to retain
// the texture handle from the previous frame, if possible. If
// the tile was previously a color, or not set, then just set
// up a new texture cache handle.
match self.surface.take() {
Some(TileSurface::Texture { descriptor }) => {
// Reuse the existing descriptor and vis mask
TileSurface::Texture {
descriptor,
}
}
Some(TileSurface::Color { .. }) | Some(TileSurface::Clear) | None => {
// This is the case where we are constructing a tile surface that
// involves drawing to a texture. Create the correct surface
// descriptor depending on the compositing mode that will read
// the output.
let descriptor = match state.composite_state.compositor_kind {
CompositorKind::Draw { .. } => {
// For a texture cache entry, create an invalid handle that
// will be allocated when update_picture_cache is called.
SurfaceTextureDescriptor::TextureCache {
handle: TextureCacheHandle::invalid(),
}
}
CompositorKind::Native { .. } => {
// Create a native surface surface descriptor, but don't allocate
// a surface yet. The surface is allocated *after* occlusion
// culling occurs, so that only visible tiles allocate GPU memory.
SurfaceTextureDescriptor::Native {
id: None,
}
}
};
TileSurface::Texture {
descriptor,
}
}
}
};
// Store the current surface backing info for use during batching.
self.surface = Some(surface);
true
}
}
/// Defines a key that uniquely identifies a primitive instance.
#[derive(Debug, Copy, Clone)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct PrimitiveDescriptor {
/// Uniquely identifies the content of the primitive template.
pub prim_uid: ItemUid,
/// The clip rect for this primitive. Included here in
/// dependencies since there is no entry in the clip chain
/// dependencies for the local clip rect.
pub prim_clip_box: PictureBox2D,
/// The number of extra dependencies that this primitive has.
transform_dep_count: u8,
image_dep_count: u8,
opacity_binding_dep_count: u8,
clip_dep_count: u8,
color_binding_dep_count: u8,
}
impl PartialEq for PrimitiveDescriptor {
fn eq(&self, other: &Self) -> bool {
const EPSILON: f32 = 0.001;
if self.prim_uid != other.prim_uid {
return false;
}
if !self.prim_clip_box.min.x.approx_eq_eps(&other.prim_clip_box.min.x, &EPSILON) {
return false;
}
if !self.prim_clip_box.min.y.approx_eq_eps(&other.prim_clip_box.min.y, &EPSILON) {
return false;
}
if !self.prim_clip_box.max.x.approx_eq_eps(&other.prim_clip_box.max.x, &EPSILON) {
return false;
}
if !self.prim_clip_box.max.y.approx_eq_eps(&other.prim_clip_box.max.y, &EPSILON) {
return false;
}
true
}
}
/// A small helper to compare two arrays of primitive dependencies.
struct CompareHelper<'a, T> where T: Copy {
offset_curr: usize,
offset_prev: usize,
curr_items: &'a [T],
prev_items: &'a [T],
}
impl<'a, T> CompareHelper<'a, T> where T: Copy + PartialEq {
/// Construct a new compare helper for a current / previous set of dependency information.
fn new(
prev_items: &'a [T],
curr_items: &'a [T],
) -> Self {
CompareHelper {
offset_curr: 0,
offset_prev: 0,
curr_items,
prev_items,
}
}
/// Reset the current position in the dependency array to the start
fn reset(&mut self) {
self.offset_prev = 0;
self.offset_curr = 0;
}
/// Test if two sections of the dependency arrays are the same, by checking both
/// item equality, and a user closure to see if the content of the item changed.
fn is_same<F>(
&self,
prev_count: u8,
curr_count: u8,
mut f: F,
opt_detail: Option<&mut CompareHelperResult<T>>,
) -> bool where F: FnMut(&T, &T) -> bool {
// If the number of items is different, trivial reject.
if prev_count != curr_count {
if let Some(detail) = opt_detail { *detail = CompareHelperResult::Count{ prev_count, curr_count }; }
return false;
}
// If both counts are 0, then no need to check these dependencies.
if curr_count == 0 {
if let Some(detail) = opt_detail { *detail = CompareHelperResult::Equal; }
return true;
}
// If both counts are u8::MAX, this is a sentinel that we can't compare these
// deps, so just trivial reject.
if curr_count as usize == MAX_PRIM_SUB_DEPS {
if let Some(detail) = opt_detail { *detail = CompareHelperResult::Sentinel; }
return false;
}
let end_prev = self.offset_prev + prev_count as usize;
let end_curr = self.offset_curr + curr_count as usize;
let curr_items = &self.curr_items[self.offset_curr .. end_curr];
let prev_items = &self.prev_items[self.offset_prev .. end_prev];
for (curr, prev) in curr_items.iter().zip(prev_items.iter()) {
if !f(prev, curr) {
if let Some(detail) = opt_detail { *detail = CompareHelperResult::PredicateTrue{ curr: *curr }; }
return false;
}
}
if let Some(detail) = opt_detail { *detail = CompareHelperResult::Equal; }
true
}
// Advance the prev dependency array by a given amount
fn advance_prev(&mut self, count: u8) {
self.offset_prev += count as usize;
}
// Advance the current dependency array by a given amount
fn advance_curr(&mut self, count: u8) {
self.offset_curr += count as usize;
}
}
/// Uniquely describes the content of this tile, in a way that can be
/// (reasonably) efficiently hashed and compared.
#[cfg_attr(any(feature="capture",feature="replay"), derive(Clone))]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct TileDescriptor {
/// List of primitive instance unique identifiers. The uid is guaranteed
/// to uniquely describe the content of the primitive template, while
/// the other parameters describe the clip chain and instance params.
pub prims: Vec<PrimitiveDescriptor>,
/// List of clip node descriptors.
clips: Vec<ItemUid>,
/// List of image keys that this tile depends on.
images: Vec<ImageDependency>,
/// The set of opacity bindings that this tile depends on.
// TODO(gw): Ugh, get rid of all opacity binding support!
opacity_bindings: Vec<OpacityBinding>,
/// List of the effects of transforms that we care about
/// tracking for this tile.
transforms: Vec<SpatialNodeKey>,
/// Picture space rect that contains valid pixels region of this tile.
pub local_valid_rect: PictureRect,
/// List of the effects of color that we care about
/// tracking for this tile.
color_bindings: Vec<ColorBinding>,
}
impl TileDescriptor {
fn new() -> Self {
TileDescriptor {
prims: Vec::new(),
clips: Vec::new(),
opacity_bindings: Vec::new(),
images: Vec::new(),
transforms: Vec::new(),
local_valid_rect: PictureRect::zero(),
color_bindings: Vec::new(),
}
}
/// Print debug information about this tile descriptor to a tree printer.
fn print(&self, pt: &mut dyn PrintTreePrinter) {
pt.new_level("current_descriptor".to_string());
pt.new_level("prims".to_string());
for prim in &self.prims {
pt.new_level(format!("prim uid={}", prim.prim_uid.get_uid()));
pt.add_item(format!("clip: p0={},{} p1={},{}",
prim.prim_clip_box.min.x,
prim.prim_clip_box.min.y,
prim.prim_clip_box.max.x,
prim.prim_clip_box.max.y,
));
pt.add_item(format!("deps: t={} i={} o={} c={} color={}",
prim.transform_dep_count,
prim.image_dep_count,
prim.opacity_binding_dep_count,
prim.clip_dep_count,
prim.color_binding_dep_count,
));
pt.end_level();
}
pt.end_level();
if !self.clips.is_empty() {
pt.new_level("clips".to_string());
for clip in &self.clips {
pt.new_level(format!("clip uid={}", clip.get_uid()));
pt.end_level();
}
pt.end_level();
}
if !self.images.is_empty() {
pt.new_level("images".to_string());
for info in &self.images {
pt.new_level(format!("key={:?}", info.key));
pt.add_item(format!("generation={:?}", info.generation));
pt.end_level();
}
pt.end_level();
}
if !self.opacity_bindings.is_empty() {
pt.new_level("opacity_bindings".to_string());
for opacity_binding in &self.opacity_bindings {
pt.new_level(format!("binding={:?}", opacity_binding));
pt.end_level();
}
pt.end_level();
}
if !self.transforms.is_empty() {
pt.new_level("transforms".to_string());
for transform in &self.transforms {
pt.new_level(format!("spatial_node={:?}", transform));
pt.end_level();
}
pt.end_level();
}
if !self.color_bindings.is_empty() {
pt.new_level("color_bindings".to_string());
for color_binding in &self.color_bindings {
pt.new_level(format!("binding={:?}", color_binding));
pt.end_level();
}
pt.end_level();
}
pt.end_level();
}
/// Clear the dependency information for a tile, when the dependencies
/// are being rebuilt.
fn clear(&mut self) {
self.prims.clear();
self.clips.clear();
self.opacity_bindings.clear();
self.images.clear();
self.transforms.clear();
self.local_valid_rect = PictureRect::zero();
self.color_bindings.clear();
}
}
/// Represents the dirty region of a tile cache picture.
#[derive(Clone)]
pub struct DirtyRegion {
/// The individual filters that make up this region.
pub filters: Vec<BatchFilter>,
/// The overall dirty rect, a combination of dirty_rects
pub combined: WorldRect,
/// Spatial node of the picture cache this region represents
spatial_node_index: SpatialNodeIndex,
}
impl DirtyRegion {
/// Construct a new dirty region tracker.
pub fn new(
spatial_node_index: SpatialNodeIndex,
) -> Self {
DirtyRegion {
filters: Vec::with_capacity(16),
combined: WorldRect::zero(),
spatial_node_index,
}
}
/// Reset the dirty regions back to empty
pub fn reset(
&mut self,
spatial_node_index: SpatialNodeIndex,
) {
self.filters.clear();
self.combined = WorldRect::zero();
self.spatial_node_index = spatial_node_index;
}
/// Add a dirty region to the tracker. Returns the visibility mask that corresponds to
/// this region in the tracker.
pub fn add_dirty_region(
&mut self,
rect_in_pic_space: PictureRect,
sub_slice_index: SubSliceIndex,
spatial_tree: &SpatialTree,
) {
let map_pic_to_world = SpaceMapper::new_with_target(
ROOT_SPATIAL_NODE_INDEX,
self.spatial_node_index,
WorldRect::max_rect(),
spatial_tree,
);
let world_rect = map_pic_to_world
.map(&rect_in_pic_space)
.expect("bug");
// Include this in the overall dirty rect
self.combined = self.combined.union(&world_rect);
self.filters.push(BatchFilter {
rect_in_pic_space,
sub_slice_index,
});
}
// TODO(gw): This returns a heap allocated object. Perhaps we can simplify this
// logic? Although - it's only used very rarely so it may not be an issue.
pub fn inflate(
&self,
inflate_amount: f32,
spatial_tree: &SpatialTree,
) -> DirtyRegion {
let map_pic_to_world = SpaceMapper::new_with_target(
ROOT_SPATIAL_NODE_INDEX,
self.spatial_node_index,
WorldRect::max_rect(),
spatial_tree,
);
let mut filters = Vec::with_capacity(self.filters.len());
let mut combined = WorldRect::zero();
for filter in &self.filters {
let rect_in_pic_space = filter.rect_in_pic_space.inflate(inflate_amount, inflate_amount);
let world_rect = map_pic_to_world
.map(&rect_in_pic_space)
.expect("bug");
combined = combined.union(&world_rect);
filters.push(BatchFilter {
rect_in_pic_space,
sub_slice_index: filter.sub_slice_index,
});
}
DirtyRegion {
filters,
combined,
spatial_node_index: self.spatial_node_index,
}
}
}
#[derive(Debug, Copy, Clone)]
pub enum BackdropKind {
Color {
color: ColorF,
},
Clear,
}
/// Stores information about the calculated opaque backdrop of this slice.
#[derive(Debug, Copy, Clone)]
pub struct BackdropInfo {
/// The picture space rectangle that is known to be opaque. This is used
/// to determine where subpixel AA can be used, and where alpha blending
/// can be disabled.
pub opaque_rect: PictureRect,
/// Kind of the backdrop
pub kind: Option<BackdropKind>,
}
impl BackdropInfo {
fn empty() -> Self {
BackdropInfo {
opaque_rect: PictureRect::zero(),
kind: None,
}
}
}
#[derive(Clone)]
pub struct TileCacheLoggerSlice {
pub serialized_slice: String,
pub local_to_world_transform: Transform3D<f32, PicturePixel, WorldPixel>,
}
#[cfg(any(feature = "capture", feature = "replay"))]
macro_rules! declare_tile_cache_logger_updatelists {
( $( $name:ident : $ty:ty, )+ ) => {
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
struct TileCacheLoggerUpdateListsSerializer {
pub ron_string: Vec<String>,
}
pub struct TileCacheLoggerUpdateLists {
$(
/// Generate storage, one per interner.
/// the tuple is a workaround to avoid the need for multiple
/// fields that start with $name (macro concatenation).
/// the string is .ron serialized updatelist at capture time;
/// the updates is the list of DataStore updates (avoid UpdateList
/// due to Default() requirements on the Keys) reconstructed at
/// load time.
pub $name: (Vec<String>, Vec<UpdateList<<$ty as Internable>::Key>>),
)+
}
impl TileCacheLoggerUpdateLists {
pub fn new() -> Self {
TileCacheLoggerUpdateLists {
$(
$name : ( Vec::new(), Vec::new() ),
)+
}
}
/// serialize all interners in updates to .ron
#[cfg(feature = "capture")]
fn serialize_updates(
&mut self,
updates: &InternerUpdates
) {
$(
self.$name.0.push(ron::ser::to_string_pretty(&updates.$name, Default::default()).unwrap());
)+
}
fn is_empty(&self) -> bool {
$(
if !self.$name.0.is_empty() { return false; }
)+
true
}
#[cfg(feature = "capture")]
fn to_ron(&self) -> String {
let mut serializer =
TileCacheLoggerUpdateListsSerializer { ron_string: Vec::new() };
$(
serializer.ron_string.push(
ron::ser::to_string_pretty(&self.$name.0, Default::default()).unwrap());
)+
ron::ser::to_string_pretty(&serializer, Default::default()).unwrap()
}
#[cfg(feature = "replay")]
pub fn from_ron(&mut self, text: &str) {
let serializer : TileCacheLoggerUpdateListsSerializer =
match ron::de::from_str(&text) {
Ok(data) => { data }
Err(e) => {
println!("ERROR: failed to deserialize updatelist: {:?}\n{:?}", &text, e);
return;
}
};
let mut index = 0;
$(
let ron_lists : Vec<String> = ron::de::from_str(&serializer.ron_string[index]).unwrap();
self.$name.1 = ron_lists.iter()
.map( |list| ron::de::from_str(&list).unwrap() )
.collect();
index = index + 1;
)+
// error: value assigned to `index` is never read
let _ = index;
}
/// helper method to add a stringified version of all interned keys into
/// a lookup table based on ItemUid. Use strings as a form of type erasure
/// so all UpdateLists can go into a single map.
/// Then during analysis, when we see an invalidation reason due to
/// "ItemUid such and such was added to the tile primitive list", the lookup
/// allows mapping that back into something readable.
#[cfg(feature = "replay")]
pub fn insert_in_lookup(
&mut self,
itemuid_to_string: &mut HashMap<ItemUid, String>)
{
$(
{
for list in &self.$name.1 {
for insertion in &list.insertions {
itemuid_to_string.insert(
insertion.uid,
format!("{:?}", insertion.value));
}
}
}
)+
}
}
}
}
#[cfg(any(feature = "capture", feature = "replay"))]
crate::enumerate_interners!(declare_tile_cache_logger_updatelists);
#[cfg(not(any(feature = "capture", feature = "replay")))]
pub struct TileCacheLoggerUpdateLists {
}
#[cfg(not(any(feature = "capture", feature = "replay")))]
impl TileCacheLoggerUpdateLists {
pub fn new() -> Self { TileCacheLoggerUpdateLists {} }
fn is_empty(&self) -> bool { true }
}
/// Log tile cache activity for one single frame.
/// Also stores the commands sent to the interning data_stores
/// so we can see which items were created or destroyed this frame,
/// and correlate that with tile invalidation activity.
pub struct TileCacheLoggerFrame {
/// slices in the frame, one per take_context call
pub slices: Vec<TileCacheLoggerSlice>,
/// interning activity
pub update_lists: TileCacheLoggerUpdateLists
}
impl TileCacheLoggerFrame {
pub fn new() -> Self {
TileCacheLoggerFrame {
slices: Vec::new(),
update_lists: TileCacheLoggerUpdateLists::new()
}
}
pub fn is_empty(&self) -> bool {
self.slices.is_empty() && self.update_lists.is_empty()
}
}
/// Log tile cache activity whenever anything happens in take_context.
pub struct TileCacheLogger {
/// next write pointer
pub write_index : usize,
/// ron serialization of tile caches;
pub frames: Vec<TileCacheLoggerFrame>
}
impl TileCacheLogger {
pub fn new(
num_frames: usize
) -> Self {
let mut frames = Vec::with_capacity(num_frames);
for _i in 0..num_frames { // no Clone so no resize
frames.push(TileCacheLoggerFrame::new());
}
TileCacheLogger {
write_index: 0,
frames
}
}
pub fn is_enabled(&self) -> bool {
!self.frames.is_empty()
}
#[cfg(feature = "capture")]
pub fn add(
&mut self,
serialized_slice: String,
local_to_world_transform: Transform3D<f32, PicturePixel, WorldPixel>
) {
if !self.is_enabled() {
return;
}
self.frames[self.write_index].slices.push(
TileCacheLoggerSlice {
serialized_slice,
local_to_world_transform });
}
#[cfg(feature = "capture")]
pub fn serialize_updates(&mut self, updates: &InternerUpdates) {
if !self.is_enabled() {
return;
}
self.frames[self.write_index].update_lists.serialize_updates(updates);
}
/// see if anything was written in this frame, and if so,
/// advance the write index in a circular way and clear the
/// recorded string.
pub fn advance(&mut self) {
if !self.is_enabled() || self.frames[self.write_index].is_empty() {
return;
}
self.write_index = self.write_index + 1;
if self.write_index >= self.frames.len() {
self.write_index = 0;
}
self.frames[self.write_index] = TileCacheLoggerFrame::new();
}
#[cfg(feature = "capture")]
pub fn save_capture(
&self, root: &PathBuf
) {
if !self.is_enabled() {
return;
}
use std::fs;
info!("saving tile cache log");
let path_tile_cache = root.join("tile_cache");
if !path_tile_cache.is_dir() {
fs::create_dir(&path_tile_cache).unwrap();
}
let mut files_written = 0;
for ix in 0..self.frames.len() {
// ...and start with write_index, since that's the oldest entry
// that we're about to overwrite. However when we get to
// save_capture, we've add()ed entries but haven't advance()d yet,
// so the actual oldest entry is write_index + 1
let index = (self.write_index + 1 + ix) % self.frames.len();
if self.frames[index].is_empty() {
continue;
}
let filename = path_tile_cache.join(format!("frame{:05}.ron", files_written));
let mut output = File::create(filename).unwrap();
output.write_all(b"// slice data\n").unwrap();
output.write_all(b"[\n").unwrap();
for item in &self.frames[index].slices {
output.write_all(b"( transform:\n").unwrap();
let transform =
ron::ser::to_string_pretty(
&item.local_to_world_transform, Default::default()).unwrap();
output.write_all(transform.as_bytes()).unwrap();
output.write_all(b",\n tile_cache:\n").unwrap();
output.write_all(item.serialized_slice.as_bytes()).unwrap();
output.write_all(b"\n),\n").unwrap();
}
output.write_all(b"]\n\n").unwrap();
output.write_all(b"// @@@ chunk @@@\n\n").unwrap();
output.write_all(b"// interning data\n").unwrap();
output.write_all(self.frames[index].update_lists.to_ron().as_bytes()).unwrap();
files_written = files_written + 1;
}
}
}
/// Represents the native surfaces created for a picture cache, if using
/// a native compositor. An opaque and alpha surface is always created,
/// but tiles are added to a surface based on current opacity. If the
/// calculated opacity of a tile changes, the tile is invalidated and
/// attached to a different native surface. This means that we don't
/// need to invalidate the entire surface if only some tiles are changing
/// opacity. It also means we can take advantage of opaque tiles on cache
/// slices where only some of the tiles are opaque. There is an assumption
/// that creating a native surface is cheap, and only when a tile is added
/// to a surface is there a significant cost. This assumption holds true
/// for the current native compositor implementations on Windows and Mac.
pub struct NativeSurface {
/// Native surface for opaque tiles
pub opaque: NativeSurfaceId,
/// Native surface for alpha tiles
pub alpha: NativeSurfaceId,
}
/// Hash key for an external native compositor surface
#[derive(PartialEq, Eq, Hash)]
pub struct ExternalNativeSurfaceKey {
/// The YUV/RGB image keys that are used to draw this surface.
pub image_keys: [ImageKey; 3],
/// The current device size of the surface.
pub size: DeviceIntSize,
/// True if this is an 'external' compositor surface created via
/// Compositor::create_external_surface.
pub is_external_surface: bool,
}
/// Information about a native compositor surface cached between frames.
pub struct ExternalNativeSurface {
/// If true, the surface was used this frame. Used for a simple form
/// of GC to remove old surfaces.
pub used_this_frame: bool,
/// The native compositor surface handle
pub native_surface_id: NativeSurfaceId,
/// List of image keys, and current image generations, that are drawn in this surface.
/// The image generations are used to check if the compositor surface is dirty and
/// needs to be updated.
pub image_dependencies: [ImageDependency; 3],
}
/// The key that identifies a tile cache instance. For now, it's simple the index of
/// the slice as it was created during scene building.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct SliceId(usize);
impl SliceId {
pub fn new(index: usize) -> Self {
SliceId(index)
}
}
/// Information that is required to reuse or create a new tile cache. Created
/// during scene building and passed to the render backend / frame builder.
pub struct TileCacheParams {
// Index of the slice (also effectively the key of the tile cache, though we use SliceId where that matters)
pub slice: usize,
// Flags describing content of this cache (e.g. scrollbars)
pub slice_flags: SliceFlags,
// The anchoring spatial node / scroll root
pub spatial_node_index: SpatialNodeIndex,
// Optional background color of this tilecache. If present, can be used as an optimization
// to enable opaque blending and/or subpixel AA in more places.
pub background_color: Option<ColorF>,
// List of clips shared by all prims that are promoted to this tile cache
pub shared_clips: Vec<ClipInstance>,
// The clip chain handle representing `shared_clips`
pub shared_clip_chain: ClipChainId,
// Virtual surface sizes are always square, so this represents both the width and height
pub virtual_surface_size: i32,
// The number of compositor surfaces that are being requested for this tile cache.
// This is only a suggestion - the tile cache will clamp this as a reasonable number
// and only promote a limited number of surfaces.
pub compositor_surface_count: usize,
}
/// Defines which sub-slice (effectively a z-index) a primitive exists on within
/// a picture cache instance.
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
#[derive(Debug, Copy, Clone, PartialEq)]
pub struct SubSliceIndex(u8);
impl SubSliceIndex {
pub const DEFAULT: SubSliceIndex = SubSliceIndex(0);
pub fn new(index: usize) -> Self {
SubSliceIndex(index as u8)
}
/// Return true if this sub-slice is the primary sub-slice (for now, we assume
/// that only the primary sub-slice may be opaque and support subpixel AA, for example).
pub fn is_primary(&self) -> bool {
self.0 == 0
}
}
/// Wrapper struct around an external surface descriptor with a little more information
/// that the picture caching code needs.
pub struct CompositorSurface {
// External surface descriptor used by compositing logic
pub descriptor: ExternalSurfaceDescriptor,
// The compositor surface rect + any intersecting prims. Later prims that intersect
// with this must be added to the next sub-slice.
prohibited_rect: PictureRect,
// If the compositor surface content is opaque.
pub is_opaque: bool,
}
/// A SubSlice represents a potentially overlapping set of tiles within a picture cache. Most
/// picture cache instances will have only a single sub-slice. The exception to this is when
/// a picture cache has compositor surfaces, in which case sub slices are used to interleave
/// content under or order the compositor surface(s).
pub struct SubSlice {
/// Hash of tiles present in this picture.
pub tiles: FastHashMap<TileOffset, Box<Tile>>,
/// The allocated compositor surfaces for this picture cache. May be None if
/// not using native compositor, or if the surface was destroyed and needs
/// to be reallocated next time this surface contains valid tiles.
pub native_surface: Option<NativeSurface>,
/// List of compositor surfaces that have been promoted from primitives
/// in this tile cache.
pub compositor_surfaces: Vec<CompositorSurface>,
/// List of visible tiles to be composited for this subslice
pub composite_tiles: Vec<CompositeTile>,
/// Compositor descriptors of visible, opaque tiles (used by composite_state.push_surface)
pub opaque_tile_descriptors: Vec<CompositeTileDescriptor>,
/// Compositor descriptors of visible, alpha tiles (used by composite_state.push_surface)
pub alpha_tile_descriptors: Vec<CompositeTileDescriptor>,
}
impl SubSlice {
/// Construct a new sub-slice
fn new() -> Self {
SubSlice {
tiles: FastHashMap::default(),
native_surface: None,
compositor_surfaces: Vec::new(),
composite_tiles: Vec::new(),
opaque_tile_descriptors: Vec::new(),
alpha_tile_descriptors: Vec::new(),
}
}
/// Reset the list of compositor surfaces that follow this sub-slice.
/// Built per-frame, since APZ may change whether an image is suitable to be a compositor surface.
fn reset(&mut self) {
self.compositor_surfaces.clear();
self.composite_tiles.clear();
self.opaque_tile_descriptors.clear();
self.alpha_tile_descriptors.clear();
}
/// Resize the tile grid to match a new tile bounds
fn resize(&mut self, new_tile_rect: TileRect) -> FastHashMap<TileOffset, Box<Tile>> {
let mut old_tiles = mem::replace(&mut self.tiles, FastHashMap::default());
self.tiles.reserve(new_tile_rect.area() as usize);
for y in new_tile_rect.min.y .. new_tile_rect.max.y {
for x in new_tile_rect.min.x .. new_tile_rect.max.x {
let key = TileOffset::new(x, y);
let tile = old_tiles
.remove(&key)
.unwrap_or_else(|| {
Box::new(Tile::new(key))
});
self.tiles.insert(key, tile);
}
}
old_tiles
}
}
/// Represents a cache of tiles that make up a picture primitives.
pub struct TileCacheInstance {
/// Index of the tile cache / slice for this frame builder. It's determined
/// by the setup_picture_caching method during flattening, which splits the
/// picture tree into multiple slices. It's used as a simple input to the tile
/// keys. It does mean we invalidate tiles if a new layer gets inserted / removed
/// between display lists - this seems very unlikely to occur on most pages, but
/// can be revisited if we ever notice that.
pub slice: usize,
/// Propagated information about the slice
pub slice_flags: SliceFlags,
/// The currently selected tile size to use for this cache
pub current_tile_size: DeviceIntSize,
/// The list of sub-slices in this tile cache
pub sub_slices: Vec<SubSlice>,
/// The positioning node for this tile cache.
pub spatial_node_index: SpatialNodeIndex,
/// List of opacity bindings, with some extra information
/// about whether they changed since last frame.
opacity_bindings: FastHashMap<PropertyBindingId, OpacityBindingInfo>,
/// Switch back and forth between old and new bindings hashmaps to avoid re-allocating.
old_opacity_bindings: FastHashMap<PropertyBindingId, OpacityBindingInfo>,
/// A helper to compare transforms between previous and current frame.
spatial_node_comparer: SpatialNodeComparer,
/// List of color bindings, with some extra information
/// about whether they changed since last frame.
color_bindings: FastHashMap<PropertyBindingId, ColorBindingInfo>,
/// Switch back and forth between old and new bindings hashmaps to avoid re-allocating.
old_color_bindings: FastHashMap<PropertyBindingId, ColorBindingInfo>,
/// The current dirty region tracker for this picture.
pub dirty_region: DirtyRegion,
/// Current size of tiles in picture units.
tile_size: PictureSize,
/// Tile coords of the currently allocated grid.
tile_rect: TileRect,
/// Pre-calculated versions of the tile_rect above, used to speed up the
/// calculations in get_tile_coords_for_rect.
tile_bounds_p0: TileOffset,
tile_bounds_p1: TileOffset,
/// Local rect (unclipped) of the picture this cache covers.
pub local_rect: PictureRect,
/// The local clip rect, from the shared clips of this picture.
pub local_clip_rect: PictureRect,
/// The surface index that this tile cache will be drawn into.
surface_index: SurfaceIndex,
/// The background color from the renderer. If this is set opaque, we know it's
/// fine to clear the tiles to this and allow subpixel text on the first slice.
pub background_color: Option<ColorF>,
/// Information about the calculated backdrop content of this cache.
pub backdrop: BackdropInfo,
/// The allowed subpixel mode for this surface, which depends on the detected
/// opacity of the background.
pub subpixel_mode: SubpixelMode,
/// A list of clip handles that exist on every (top-level) primitive in this picture.
/// It's often the case that these are root / fixed position clips. By handling them
/// here, we can avoid applying them to the items, which reduces work, but more importantly
/// reduces invalidations.
pub shared_clips: Vec<ClipInstance>,
/// The clip chain that represents the shared_clips above. Used to build the local
/// clip rect for this tile cache.
shared_clip_chain: ClipChainId,
/// The number of frames until this cache next evaluates what tile size to use.
/// If a picture rect size is regularly changing just around a size threshold,
/// we don't want to constantly invalidate and reallocate different tile size
/// configuration each frame.
frames_until_size_eval: usize,
/// For DirectComposition, virtual surfaces don't support negative coordinates. However,
/// picture cache tile coordinates can be negative. To handle this, we apply an offset
/// to each tile in DirectComposition. We want to change this as little as possible,
/// to avoid invalidating tiles. However, if we have a picture cache tile coordinate
/// which is outside the virtual surface bounds, we must change this to allow
/// correct remapping of the coordinates passed to BeginDraw in DC.
virtual_offset: DeviceIntPoint,
/// keep around the hash map used as compare_cache to avoid reallocating it each
/// frame.
compare_cache: FastHashMap<PrimitiveComparisonKey, PrimitiveCompareResult>,
/// The currently considered tile size override. Used to check if we should
/// re-evaluate tile size, even if the frame timer hasn't expired.
tile_size_override: Option<DeviceIntSize>,
/// A cache of compositor surfaces that are retained between frames
pub external_native_surface_cache: FastHashMap<ExternalNativeSurfaceKey, ExternalNativeSurface>,
/// Current frame ID of this tile cache instance. Used for book-keeping / garbage collecting
frame_id: FrameId,
/// Registered transform in CompositeState for this picture cache
pub transform_index: CompositorTransformIndex,
/// Current transform mapping local picture space to compositor surface space
local_to_surface: ScaleOffset,
/// If true, we need to invalidate all tiles during `post_update`
invalidate_all_tiles: bool,
/// Current transform mapping compositor surface space to final device space
surface_to_device: ScaleOffset,
/// The current raster scale for tiles in this cache
current_raster_scale: f32,
/// Depth of off-screen surfaces that are currently pushed during dependency updates
current_surface_traversal_depth: usize,
}
enum SurfacePromotionResult {
Failed,
Success,
}
impl TileCacheInstance {
pub fn new(params: TileCacheParams) -> Self {
// Determine how many sub-slices we need. Clamp to an arbitrary limit to ensure
// we don't create a huge number of OS compositor tiles and sub-slices.
let sub_slice_count = params.compositor_surface_count.min(MAX_COMPOSITOR_SURFACES) + 1;
let mut sub_slices = Vec::with_capacity(sub_slice_count);
for _ in 0 .. sub_slice_count {
sub_slices.push(SubSlice::new());
}
TileCacheInstance {
slice: params.slice,
slice_flags: params.slice_flags,
spatial_node_index: params.spatial_node_index,
sub_slices,
opacity_bindings: FastHashMap::default(),
old_opacity_bindings: FastHashMap::default(),
spatial_node_comparer: SpatialNodeComparer::new(),
color_bindings: FastHashMap::default(),
old_color_bindings: FastHashMap::default(),
dirty_region: DirtyRegion::new(params.spatial_node_index),
tile_size: PictureSize::zero(),
tile_rect: TileRect::zero(),
tile_bounds_p0: TileOffset::zero(),
tile_bounds_p1: TileOffset::zero(),
local_rect: PictureRect::zero(),
local_clip_rect: PictureRect::zero(),
surface_index: SurfaceIndex(0),
background_color: params.background_color,
backdrop: BackdropInfo::empty(),
subpixel_mode: SubpixelMode::Allow,
shared_clips: params.shared_clips,
shared_clip_chain: params.shared_clip_chain,
current_tile_size: DeviceIntSize::zero(),
frames_until_size_eval: 0,
// Default to centering the virtual offset in the middle of the DC virtual surface
virtual_offset: DeviceIntPoint::new(
params.virtual_surface_size / 2,
params.virtual_surface_size / 2,
),
compare_cache: FastHashMap::default(),
tile_size_override: None,
external_native_surface_cache: FastHashMap::default(),
frame_id: FrameId::INVALID,
transform_index: CompositorTransformIndex::INVALID,
surface_to_device: ScaleOffset::identity(),
local_to_surface: ScaleOffset::identity(),
invalidate_all_tiles: true,
current_raster_scale: 1.0,
current_surface_traversal_depth: 0,
}
}
/// Return the total number of tiles allocated by this tile cache
pub fn tile_count(&self) -> usize {
self.tile_rect.area() as usize * self.sub_slices.len()
}
/// Reset this tile cache with the updated parameters from a new scene
/// that has arrived. This allows the tile cache to be retained across
/// new scenes.
pub fn prepare_for_new_scene(
&mut self,
params: TileCacheParams,
resource_cache: &mut ResourceCache,
) {
// We should only receive updated state for matching slice key
assert_eq!(self.slice, params.slice);
// Determine how many sub-slices we need, based on how many compositor surface prims are
// in the supplied primitive list.
let required_sub_slice_count = params.compositor_surface_count.min(MAX_COMPOSITOR_SURFACES) + 1;
if self.sub_slices.len() != required_sub_slice_count {
self.tile_rect = TileRect::zero();
if self.sub_slices.len() > required_sub_slice_count {
let old_sub_slices = self.sub_slices.split_off(required_sub_slice_count);
for mut sub_slice in old_sub_slices {
for tile in sub_slice.tiles.values_mut() {
if let Some(TileSurface::Texture { descriptor: SurfaceTextureDescriptor::Native { ref mut id, .. }, .. }) = tile.surface {
if let Some(id) = id.take() {
resource_cache.destroy_compositor_tile(id);
}
}
}
if let Some(native_surface) = sub_slice.native_surface {
resource_cache.destroy_compositor_surface(native_surface.opaque);
resource_cache.destroy_compositor_surface(native_surface.alpha);
}
}
} else {
while self.sub_slices.len() < required_sub_slice_count {
self.sub_slices.push(SubSlice::new());
}
}
}
// Store the parameters from the scene builder for this slice. Other
// params in the tile cache are retained and reused, or are always
// updated during pre/post_update.
self.slice_flags = params.slice_flags;
self.spatial_node_index = params.spatial_node_index;
self.background_color = params.background_color;
self.shared_clips = params.shared_clips;
self.shared_clip_chain = params.shared_clip_chain;
// Since the slice flags may have changed, ensure we re-evaluate the
// appropriate tile size for this cache next update.
self.frames_until_size_eval = 0;
}
/// Destroy any manually managed resources before this picture cache is
/// destroyed, such as native compositor surfaces.
pub fn destroy(
self,
resource_cache: &mut ResourceCache,
) {
for sub_slice in self.sub_slices {
if let Some(native_surface) = sub_slice.native_surface {
resource_cache.destroy_compositor_surface(native_surface.opaque);
resource_cache.destroy_compositor_surface(native_surface.alpha);
}
}
for (_, external_surface) in self.external_native_surface_cache {
resource_cache.destroy_compositor_surface(external_surface.native_surface_id)
}
}
/// Get the tile coordinates for a given rectangle.
fn get_tile_coords_for_rect(
&self,
rect: &PictureRect,
) -> (TileOffset, TileOffset) {
// Get the tile coordinates in the picture space.
let mut p0 = TileOffset::new(
(rect.min.x / self.tile_size.width).floor() as i32,
(rect.min.y / self.tile_size.height).floor() as i32,
);
let mut p1 = TileOffset::new(
(rect.max.x / self.tile_size.width).ceil() as i32,
(rect.max.y / self.tile_size.height).ceil() as i32,
);
// Clamp the tile coordinates here to avoid looping over irrelevant tiles later on.
p0.x = clamp(p0.x, self.tile_bounds_p0.x, self.tile_bounds_p1.x);
p0.y = clamp(p0.y, self.tile_bounds_p0.y, self.tile_bounds_p1.y);
p1.x = clamp(p1.x, self.tile_bounds_p0.x, self.tile_bounds_p1.x);
p1.y = clamp(p1.y, self.tile_bounds_p0.y, self.tile_bounds_p1.y);
(p0, p1)
}
/// Update transforms, opacity, color bindings and tile rects.
pub fn pre_update(
&mut self,
pic_rect: PictureRect,
surface_index: SurfaceIndex,
frame_context: &FrameVisibilityContext,
frame_state: &mut FrameVisibilityState,
) -> WorldRect {
self.surface_index = surface_index;
self.local_rect = pic_rect;
self.local_clip_rect = PictureRect::max_rect();
for sub_slice in &mut self.sub_slices {
sub_slice.reset();
}
// Reset the opaque rect + subpixel mode, as they are calculated
// during the prim dependency checks.
self.backdrop = BackdropInfo::empty();
let pic_to_world_mapper = SpaceMapper::new_with_target(
ROOT_SPATIAL_NODE_INDEX,
self.spatial_node_index,
frame_context.global_screen_world_rect,
frame_context.spatial_tree,
);
// If there is a valid set of shared clips, build a clip chain instance for this,
// which will provide a local clip rect. This is useful for establishing things
// like whether the backdrop rect supplied by Gecko can be considered opaque.
if self.shared_clip_chain != ClipChainId::NONE {
let shared_clips = &mut frame_state.scratch.picture.clip_chain_ids;
shared_clips.clear();
let map_local_to_surface = SpaceMapper::new(
self.spatial_node_index,
pic_rect,
);
let mut current_clip_chain_id = self.shared_clip_chain;
while current_clip_chain_id != ClipChainId::NONE {
shared_clips.push(current_clip_chain_id);
let clip_chain_node = &frame_state.clip_store.clip_chain_nodes[current_clip_chain_id.0 as usize];
current_clip_chain_id = clip_chain_node.parent_clip_chain_id;
}
frame_state.clip_store.set_active_clips(
LayoutRect::max_rect(),
self.spatial_node_index,
map_local_to_surface.ref_spatial_node_index,
&shared_clips,
frame_context.spatial_tree,
&mut frame_state.data_stores.clip,
);
let clip_chain_instance = frame_state.clip_store.build_clip_chain_instance(
pic_rect.cast_unit(),
&map_local_to_surface,
&pic_to_world_mapper,
frame_context.spatial_tree,
frame_state.gpu_cache,
frame_state.resource_cache,
frame_context.global_device_pixel_scale,
&frame_context.global_screen_world_rect,
&mut frame_state.data_stores.clip,
true,
false,
);
// Ensure that if the entire picture cache is clipped out, the local
// clip rect is zero. This makes sure we don't register any occluders
// that are actually off-screen.
self.local_clip_rect = clip_chain_instance.map_or(PictureRect::zero(), |clip_chain_instance| {
clip_chain_instance.pic_clip_rect
});
}
// Advance the current frame ID counter for this picture cache (must be done
// after any retained prev state is taken above).
self.frame_id.advance();
// Notify the spatial node comparer that a new frame has started, and the
// current reference spatial node for this tile cache.
self.spatial_node_comparer.next_frame(self.spatial_node_index);
// At the start of the frame, step through each current compositor surface
// and mark it as unused. Later, this is used to free old compositor surfaces.
// TODO(gw): In future, we might make this more sophisticated - for example,
// retaining them for >1 frame if unused, or retaining them in some
// kind of pool to reduce future allocations.
for external_native_surface in self.external_native_surface_cache.values_mut() {
external_native_surface.used_this_frame = false;
}
// Only evaluate what tile size to use fairly infrequently, so that we don't end
// up constantly invalidating and reallocating tiles if the picture rect size is
// changing near a threshold value.
if self.frames_until_size_eval == 0 ||
self.tile_size_override != frame_context.config.tile_size_override {
// Work out what size tile is appropriate for this picture cache.
let desired_tile_size = match frame_context.config.tile_size_override {
Some(tile_size_override) => {
tile_size_override
}
None => {
if self.slice_flags.contains(SliceFlags::IS_SCROLLBAR) {
if pic_rect.width() <= pic_rect.height() {
TILE_SIZE_SCROLLBAR_VERTICAL
} else {
TILE_SIZE_SCROLLBAR_HORIZONTAL
}
} else {
frame_state.resource_cache.texture_cache.default_picture_tile_size()
}
}
};
// If the desired tile size has changed, then invalidate and drop any
// existing tiles.
if desired_tile_size != self.current_tile_size {
for sub_slice in &mut self.sub_slices {
// Destroy any native surfaces on the tiles that will be dropped due
// to resizing.
if let Some(native_surface) = sub_slice.native_surface.take() {
frame_state.resource_cache.destroy_compositor_surface(native_surface.opaque);
frame_state.resource_cache.destroy_compositor_surface(native_surface.alpha);
}
sub_slice.tiles.clear();
}
self.tile_rect = TileRect::zero();
self.current_tile_size = desired_tile_size;
}
// Reset counter until next evaluating the desired tile size. This is an
// arbitrary value.
self.frames_until_size_eval = 120;
self.tile_size_override = frame_context.config.tile_size_override;
}
// Get the complete scale-offset from local space to device space
let local_to_device = get_relative_scale_offset(
self.spatial_node_index,
ROOT_SPATIAL_NODE_INDEX,
frame_context.spatial_tree,
);
// Get the compositor transform, which depends on pinch-zoom mode
let mut surface_to_device = local_to_device;
if frame_context.config.low_quality_pinch_zoom {
surface_to_device.scale.x /= self.current_raster_scale;
surface_to_device.scale.y /= self.current_raster_scale;
} else {
surface_to_device.scale.x = 1.0;
surface_to_device.scale.y = 1.0;
}
// Use that compositor transform to calculate a relative local to surface
let local_to_surface = local_to_device.accumulate(&surface_to_device.inverse());
const EPSILON: f32 = 0.001;
let compositor_translation_changed =
!surface_to_device.offset.x.approx_eq_eps(&self.surface_to_device.offset.x, &EPSILON) ||
!surface_to_device.offset.y.approx_eq_eps(&self.surface_to_device.offset.y, &EPSILON);
let compositor_scale_changed =
!surface_to_device.scale.x.approx_eq_eps(&self.surface_to_device.scale.x, &EPSILON) ||
!surface_to_device.scale.y.approx_eq_eps(&self.surface_to_device.scale.y, &EPSILON);
let surface_scale_changed =
!local_to_surface.scale.x.approx_eq_eps(&self.local_to_surface.scale.x, &EPSILON) ||
!local_to_surface.scale.y.approx_eq_eps(&self.local_to_surface.scale.y, &EPSILON);
if compositor_translation_changed ||
compositor_scale_changed ||
surface_scale_changed ||
frame_context.config.force_invalidation {
frame_state.composite_state.dirty_rects_are_valid = false;
}
self.surface_to_device = surface_to_device;
self.local_to_surface = local_to_surface;
self.invalidate_all_tiles = surface_scale_changed || frame_context.config.force_invalidation;
// Do a hacky diff of opacity binding values from the last frame. This is
// used later on during tile invalidation tests.
let current_properties = frame_context.scene_properties.float_properties();
mem::swap(&mut self.opacity_bindings, &mut self.old_opacity_bindings);
self.opacity_bindings.clear();
for (id, value) in current_properties {
let changed = match self.old_opacity_bindings.get(id) {
Some(old_property) => !old_property.value.approx_eq(value),
None => true,
};
self.opacity_bindings.insert(*id, OpacityBindingInfo {
value: *value,
changed,
});
}
// Do a hacky diff of color binding values from the last frame. This is
// used later on during tile invalidation tests.
let current_properties = frame_context.scene_properties.color_properties();
mem::swap(&mut self.color_bindings, &mut self.old_color_bindings);
self.color_bindings.clear();
for (id, value) in current_properties {
let changed = match self.old_color_bindings.get(id) {
Some(old_property) => old_property.value != (*value).into(),
None => true,
};
self.color_bindings.insert(*id, ColorBindingInfo {
value: (*value).into(),
changed,
});
}
let world_tile_size = WorldSize::new(
self.current_tile_size.width as f32 / frame_context.global_device_pixel_scale.0,
self.current_tile_size.height as f32 / frame_context.global_device_pixel_scale.0,
);
self.tile_size = PictureSize::new(
world_tile_size.width / self.local_to_surface.scale.x,
world_tile_size.height / self.local_to_surface.scale.y,
);
let screen_rect_in_pic_space = pic_to_world_mapper
.unmap(&frame_context.global_screen_world_rect)
.expect("unable to unmap screen rect");
// Inflate the needed rect a bit, so that we retain tiles that we have drawn
// but have just recently gone off-screen. This means that we avoid re-drawing
// tiles if the user is scrolling up and down small amounts, at the cost of
// a bit of extra texture memory.
let desired_rect_in_pic_space = screen_rect_in_pic_space
.inflate(0.0, 1.0 * self.tile_size.height);
let needed_rect_in_pic_space = desired_rect_in_pic_space
.intersection(&pic_rect)
.unwrap_or_else(Box2D::zero);
let p0 = needed_rect_in_pic_space.min;
let p1 = needed_rect_in_pic_space.max;
let x0 = (p0.x / self.tile_size.width).floor() as i32;
let x1 = (p1.x / self.tile_size.width).ceil() as i32;
let y0 = (p0.y / self.tile_size.height).floor() as i32;
let y1 = (p1.y / self.tile_size.height).ceil() as i32;
let new_tile_rect = TileRect {
min: TileOffset::new(x0, y0),
max: TileOffset::new(x1, y1),
};
// Determine whether the current bounds of the tile grid will exceed the
// bounds of the DC virtual surface, taking into account the current
// virtual offset. If so, we need to invalidate all tiles, and set up
// a new virtual offset, centered around the current tile grid.
let virtual_surface_size = frame_context.config.compositor_kind.get_virtual_surface_size();
// We only need to invalidate in this case if the underlying platform
// uses virtual surfaces.
if virtual_surface_size > 0 {
// Get the extremities of the tile grid after virtual offset is applied
let tx0 = self.virtual_offset.x + x0 * self.current_tile_size.width;
let ty0 = self.virtual_offset.y + y0 * self.current_tile_size.height;
let tx1 = self.virtual_offset.x + (x1+1) * self.current_tile_size.width;
let ty1 = self.virtual_offset.y + (y1+1) * self.current_tile_size.height;
let need_new_virtual_offset = tx0 < 0 ||
ty0 < 0 ||
tx1 >= virtual_surface_size ||
ty1 >= virtual_surface_size;
if need_new_virtual_offset {
// Calculate a new virtual offset, centered around the middle of the
// current tile grid. This means we won't need to invalidate and get
// a new offset for a long time!
self.virtual_offset = DeviceIntPoint::new(
(virtual_surface_size/2) - ((x0 + x1) / 2) * self.current_tile_size.width,
(virtual_surface_size/2) - ((y0 + y1) / 2) * self.current_tile_size.height,
);
// Invalidate all native tile surfaces. They will be re-allocated next time
// they are scheduled to be rasterized.
for sub_slice in &mut self.sub_slices {
for tile in sub_slice.tiles.values_mut() {
if let Some(TileSurface::Texture { descriptor: SurfaceTextureDescriptor::Native { ref mut id, .. }, .. }) = tile.surface {
if let Some(id) = id.take() {
frame_state.resource_cache.destroy_compositor_tile(id);
tile.surface = None;
// Invalidate the entire tile to force a redraw.
// TODO(gw): Add a new invalidation reason for virtual offset changing
tile.invalidate(None, InvalidationReason::CompositorKindChanged);
}
}
}
// Destroy the native virtual surfaces. They will be re-allocated next time a tile
// that references them is scheduled to draw.
if let Some(native_surface) = sub_slice.native_surface.take() {
frame_state.resource_cache.destroy_compositor_surface(native_surface.opaque);
frame_state.resource_cache.destroy_compositor_surface(native_surface.alpha);
}
}
}
}
// Rebuild the tile grid if the picture cache rect has changed.
if new_tile_rect != self.tile_rect {
for sub_slice in &mut self.sub_slices {
let mut old_tiles = sub_slice.resize(new_tile_rect);
// When old tiles that remain after the loop, dirty rects are not valid.
if !old_tiles.is_empty() {
frame_state.composite_state.dirty_rects_are_valid = false;
}
// Any old tiles that remain after the loop above are going to be dropped. For
// simple composite mode, the texture cache handle will expire and be collected
// by the texture cache. For native compositor mode, we need to explicitly
// invoke a callback to the client to destroy that surface.
frame_state.composite_state.destroy_native_tiles(
old_tiles.values_mut(),
frame_state.resource_cache,
);
}
}
// This is duplicated information from tile_rect, but cached here to avoid
// redundant calculations during get_tile_coords_for_rect
self.tile_bounds_p0 = TileOffset::new(x0, y0);
self.tile_bounds_p1 = TileOffset::new(x1, y1);
self.tile_rect = new_tile_rect;
let mut world_culling_rect = WorldRect::zero();
let mut ctx = TilePreUpdateContext {
pic_to_world_mapper,
background_color: self.background_color,
global_screen_world_rect: frame_context.global_screen_world_rect,
tile_size: self.tile_size,
frame_id: self.frame_id,
};
// Pre-update each tile
for sub_slice in &mut self.sub_slices {
for tile in sub_slice.tiles.values_mut() {
tile.pre_update(&ctx);
// Only include the tiles that are currently in view into the world culling
// rect. This is a very important optimization for a couple of reasons:
// (1) Primitives that intersect with tiles in the grid that are not currently
// visible can be skipped from primitive preparation, clip chain building
// and tile dependency updates.
// (2) When we need to allocate an off-screen surface for a child picture (for
// example a CSS filter) we clip the size of the GPU surface to the world
// culling rect below (to ensure we draw enough of it to be sampled by any
// tiles that reference it). Making the world culling rect only affected
// by visible tiles (rather than the entire virtual tile display port) can
// result in allocating _much_ smaller GPU surfaces for cases where the
// true off-screen surface size is very large.
if tile.is_visible {
world_culling_rect = world_culling_rect.union(&tile.world_tile_rect);
}
}
// The background color can only be applied to the first sub-slice.
ctx.background_color = None;
}
// If compositor mode is changed, need to drop all incompatible tiles.
match frame_context.config.compositor_kind {
CompositorKind::Draw { .. } => {
for sub_slice in &mut self.sub_slices {
for tile in sub_slice.tiles.values_mut() {
if let Some(TileSurface::Texture { descriptor: SurfaceTextureDescriptor::Native { ref mut id, .. }, .. }) = tile.surface {
if let Some(id) = id.take() {
frame_state.resource_cache.destroy_compositor_tile(id);
}
tile.surface = None;
// Invalidate the entire tile to force a redraw.
tile.invalidate(None, InvalidationReason::CompositorKindChanged);
}
}
if let Some(native_surface) = sub_slice.native_surface.take() {
frame_state.resource_cache.destroy_compositor_surface(native_surface.opaque);
frame_state.resource_cache.destroy_compositor_surface(native_surface.alpha);
}
}
for (_, external_surface) in self.external_native_surface_cache.drain() {
frame_state.resource_cache.destroy_compositor_surface(external_surface.native_surface_id)
}
}
CompositorKind::Native { .. } => {
// This could hit even when compositor mode is not changed,
// then we need to check if there are incompatible tiles.
for sub_slice in &mut self.sub_slices {
for tile in sub_slice.tiles.values_mut() {
if let Some(TileSurface::Texture { descriptor: SurfaceTextureDescriptor::TextureCache { .. }, .. }) = tile.surface {
tile.surface = None;
// Invalidate the entire tile to force a redraw.
tile.invalidate(None, InvalidationReason::CompositorKindChanged);
}
}
}
}
}
world_culling_rect
}
fn can_promote_to_surface(
&mut self,
flags: PrimitiveFlags,
prim_clip_chain: &ClipChainInstance,
prim_spatial_node_index: SpatialNodeIndex,
is_root_tile_cache: bool,
sub_slice_index: usize,
frame_context: &FrameVisibilityContext,
) -> SurfacePromotionResult {
// Check if this primitive _wants_ to be promoted to a compositor surface.
if !flags.contains(PrimitiveFlags::PREFER_COMPOSITOR_SURFACE) {
return SurfacePromotionResult::Failed;
}
// For now, only support a small (arbitrary) number of compositor surfaces.
if sub_slice_index == MAX_COMPOSITOR_SURFACES {
return SurfacePromotionResult::Failed;
}
// If a complex clip is being applied to this primitive, it can't be
// promoted directly to a compositor surface (we might be able to
// do this in limited cases in future, some native compositors do
// support rounded rect clips, for example)
if prim_clip_chain.needs_mask {
return SurfacePromotionResult::Failed;
}
// If not on the root picture cache, it has some kind of
// complex effect (such as a filter, mix-blend-mode or 3d transform).
if !is_root_tile_cache {
return SurfacePromotionResult::Failed;
}
let mapper : SpaceMapper<PicturePixel, WorldPixel> = SpaceMapper::new_with_target(
ROOT_SPATIAL_NODE_INDEX,
prim_spatial_node_index,
frame_context.global_screen_world_rect,
&frame_context.spatial_tree);
let transform = mapper.get_transform();
if !transform.is_2d_scale_translation() {
return SurfacePromotionResult::Failed;
}
if transform.m11 < 0.0 {
return SurfacePromotionResult::Failed;
}
if self.slice_flags.contains(SliceFlags::IS_BLEND_CONTAINER) {
return SurfacePromotionResult::Failed;
}
SurfacePromotionResult::Success
}
fn setup_compositor_surfaces_yuv(
&mut self,
sub_slice_index: usize,
prim_info: &mut PrimitiveDependencyInfo,
flags: PrimitiveFlags,
local_prim_rect: LayoutRect,
prim_spatial_node_index: SpatialNodeIndex,
pic_clip_rect: PictureRect,
frame_context: &FrameVisibilityContext,
image_dependencies: &[ImageDependency;3],
api_keys: &[ImageKey; 3],
resource_cache: &mut ResourceCache,
composite_state: &mut CompositeState,
gpu_cache: &mut GpuCache,
image_rendering: ImageRendering,
color_depth: ColorDepth,
color_space: YuvRangedColorSpace,
format: YuvFormat,
) -> bool {
for &key in api_keys {
if key != ImageKey::DUMMY {
// TODO: See comment in setup_compositor_surfaces_rgb.
resource_cache.request_image(ImageRequest {
key,
rendering: image_rendering,
tile: None,
},
gpu_cache,
);
}
}
self.setup_compositor_surfaces_impl(
sub_slice_index,
prim_info,
flags,
local_prim_rect,
prim_spatial_node_index,
pic_clip_rect,
frame_context,
ExternalSurfaceDependency::Yuv {
image_dependencies: *image_dependencies,
color_space,
format,
channel_bit_depth: color_depth.bit_depth(),
},
api_keys,
resource_cache,
composite_state,
image_rendering,
true,
)
}
fn setup_compositor_surfaces_rgb(
&mut self,
sub_slice_index: usize,
prim_info: &mut PrimitiveDependencyInfo,
flags: PrimitiveFlags,
local_prim_rect: LayoutRect,
prim_spatial_node_index: SpatialNodeIndex,
pic_clip_rect: PictureRect,
frame_context: &FrameVisibilityContext,
image_dependency: ImageDependency,
api_key: ImageKey,
resource_cache: &mut ResourceCache,
composite_state: &mut CompositeState,
gpu_cache: &mut GpuCache,
image_rendering: ImageRendering,
) -> bool {
let mut api_keys = [ImageKey::DUMMY; 3];
api_keys[0] = api_key;
// TODO: The picture compositing code requires images promoted
// into their own picture cache slices to be requested every
// frame even if they are not visible. However the image updates
// are only reached on the prepare pass for visible primitives.
// So we make sure to trigger an image request when promoting
// the image here.
resource_cache.request_image(ImageRequest {
key: api_key,
rendering: image_rendering,
tile: None,
},
gpu_cache,
);
let is_opaque = resource_cache.get_image_properties(api_key)
.map_or(false, |properties| properties.descriptor.is_opaque());
self.setup_compositor_surfaces_impl(
sub_slice_index,
prim_info,
flags,
local_prim_rect,
prim_spatial_node_index,
pic_clip_rect,
frame_context,
ExternalSurfaceDependency::Rgb {
image_dependency,
},
&api_keys,
resource_cache,
composite_state,
image_rendering,
is_opaque,
)
}
// returns false if composition is not available for this surface,
// and the non-compositor path should be used to draw it instead.
fn setup_compositor_surfaces_impl(
&mut self,
sub_slice_index: usize,
prim_info: &mut PrimitiveDependencyInfo,
flags: PrimitiveFlags,
local_prim_rect: LayoutRect,
prim_spatial_node_index: SpatialNodeIndex,
pic_clip_rect: PictureRect,
frame_context: &FrameVisibilityContext,
dependency: ExternalSurfaceDependency,
api_keys: &[ImageKey; 3],
resource_cache: &mut ResourceCache,
composite_state: &mut CompositeState,
image_rendering: ImageRendering,
is_opaque: bool,
) -> bool {
let map_local_to_surface = SpaceMapper::new_with_target(
self.spatial_node_index,
prim_spatial_node_index,
self.local_rect,
frame_context.spatial_tree,
);
// Map the primitive local rect into picture space.
let prim_rect = match map_local_to_surface.map(&local_prim_rect) {
Some(rect) => rect,
None => return true,
};
// If the rect is invalid, no need to create dependencies.
if prim_rect.is_empty() {
return true;
}
let pic_to_world_mapper = SpaceMapper::new_with_target(
ROOT_SPATIAL_NODE_INDEX,
self.spatial_node_index,
frame_context.global_screen_world_rect,
frame_context.spatial_tree,
);
let world_clip_rect = pic_to_world_mapper
.map(&prim_info.prim_clip_box)
.expect("bug: unable to map clip to world space");
let is_visible = world_clip_rect.intersects(&frame_context.global_screen_world_rect);
if !is_visible {
return true;
}
let prim_offset = ScaleOffset::from_offset(local_prim_rect.min.to_vector().cast_unit());
let local_prim_to_device = get_relative_scale_offset(
prim_spatial_node_index,
ROOT_SPATIAL_NODE_INDEX,
frame_context.spatial_tree,
);
let normalized_prim_to_device = prim_offset.accumulate(&local_prim_to_device);
let local_to_surface = ScaleOffset::identity();
let surface_to_device = normalized_prim_to_device;
let compositor_transform_index = composite_state.register_transform(
local_to_surface,
surface_to_device,
);
let surface_size = composite_state.get_surface_rect(
&local_prim_rect,
&local_prim_rect,
compositor_transform_index,
).size();
let clip_rect = (world_clip_rect * frame_context.global_device_pixel_scale).round();
if surface_size.width >= MAX_COMPOSITOR_SURFACES_SIZE ||
surface_size.height >= MAX_COMPOSITOR_SURFACES_SIZE {
return false;
}
// If this primitive is an external image, and supports being used
// directly by a native compositor, then lookup the external image id
// so we can pass that through.
let external_image_id = if flags.contains(PrimitiveFlags::SUPPORTS_EXTERNAL_COMPOSITOR_SURFACE) {
resource_cache.get_image_properties(api_keys[0])
.and_then(|properties| properties.external_image)
.and_then(|image| Some(image.id))
} else {
None
};
// When using native compositing, we need to find an existing native surface
// handle to use, or allocate a new one. For existing native surfaces, we can
// also determine whether this needs to be updated, depending on whether the
// image generation(s) of the planes have changed since last composite.
let (native_surface_id, update_params) = match composite_state.compositor_kind {
CompositorKind::Draw { .. } => {
(None, None)
}
CompositorKind::Native { .. } => {
let native_surface_size = surface_size.to_i32();
let key = ExternalNativeSurfaceKey {
image_keys: *api_keys,
size: native_surface_size,
is_external_surface: external_image_id.is_some(),
};
let native_surface = self.external_native_surface_cache
.entry(key)
.or_insert_with(|| {
// No existing surface, so allocate a new compositor surface.
let native_surface_id = match external_image_id {
Some(_external_image) => {
// If we have a suitable external image, then create an external
// surface to attach to.
resource_cache.create_compositor_external_surface(is_opaque)
}
None => {
// Otherwise create a normal compositor surface and a single
// compositor tile that covers the entire surface.
let native_surface_id =
resource_cache.create_compositor_surface(
DeviceIntPoint::zero(),
native_surface_size,
is_opaque,
);
let tile_id = NativeTileId {
surface_id: native_surface_id,
x: 0,
y: 0,
};
resource_cache.create_compositor_tile(tile_id);
native_surface_id
}
};
ExternalNativeSurface {
used_this_frame: true,
native_surface_id,
image_dependencies: [ImageDependency::INVALID; 3],
}
});
// Mark that the surface is referenced this frame so that the
// backing native surface handle isn't freed.
native_surface.used_this_frame = true;
let update_params = match external_image_id {
Some(external_image) => {
// If this is an external image surface, then there's no update
// to be done. Just attach the current external image to the surface
// and we're done.
resource_cache.attach_compositor_external_image(
native_surface.native_surface_id,
external_image,
);
None
}
None => {
// If the image dependencies match, there is no need to update
// the backing native surface.
match dependency {
ExternalSurfaceDependency::Yuv{ image_dependencies, .. } => {
if image_dependencies == native_surface.image_dependencies {
None
} else {
Some(native_surface_size)
}
},
ExternalSurfaceDependency::Rgb{ image_dependency, .. } => {
if image_dependency == native_surface.image_dependencies[0] {
None
} else {
Some(native_surface_size)
}
},
}
}
};
(Some(native_surface.native_surface_id), update_params)
}
};
// For compositor surfaces, if we didn't find an earlier sub-slice to add to,
// we know we can append to the current slice.
assert!(sub_slice_index < self.sub_slices.len() - 1);
let sub_slice = &mut self.sub_slices[sub_slice_index];
// Each compositor surface allocates a unique z-id
sub_slice.compositor_surfaces.push(CompositorSurface {
prohibited_rect: pic_clip_rect,
is_opaque,
descriptor: ExternalSurfaceDescriptor {
local_surface_size: local_prim_rect.size(),
local_rect: prim_rect,
local_clip_rect: prim_info.prim_clip_box,
dependency,
image_rendering,
clip_rect,
transform_index: compositor_transform_index,
z_id: ZBufferId::invalid(),
native_surface_id,
update_params,
},
});
true
}
/// Push an estimated rect for an off-screen surface during dependency updates. This is
/// a workaround / hack that allows the picture cache code to know when it should be
/// processing primitive dependencies as a single atomic unit. In future, we aim to remove
/// this hack by having the primitive dependencies stored _within_ each owning picture.
/// This is part of the work required to support child picture caching anyway!
pub fn push_surface(
&mut self,
estimated_local_rect: LayoutRect,
surface_spatial_node_index: SpatialNodeIndex,
spatial_tree: &SpatialTree,
) {
// Only need to evaluate sub-slice regions if we have compositor surfaces present
if self.current_surface_traversal_depth == 0 && self.sub_slices.len() > 1 {
let map_local_to_surface = SpaceMapper::new_with_target(
self.spatial_node_index,
surface_spatial_node_index,
self.local_rect,
spatial_tree,
);
if let Some(pic_rect) = map_local_to_surface.map(&estimated_local_rect) {
// Find the first sub-slice we can add this primitive to (we want to add
// prims to the primary surface if possible, so they get subpixel AA).
for sub_slice in &mut self.sub_slices {
let mut intersects_prohibited_region = false;
for surface in &mut sub_slice.compositor_surfaces {
if pic_rect.intersects(&surface.prohibited_rect) {
surface.prohibited_rect = surface.prohibited_rect.union(&pic_rect);
intersects_prohibited_region = true;
}
}
if !intersects_prohibited_region {
break;
}
}
}
}
self.current_surface_traversal_depth += 1;
}
/// Pop an off-screen surface off the stack during dependency updates
pub fn pop_surface(&mut self) {
self.current_surface_traversal_depth -= 1;
}
/// Update the dependencies for each tile for a given primitive instance.
pub fn update_prim_dependencies(
&mut self,
prim_instance: &mut PrimitiveInstance,
prim_spatial_node_index: SpatialNodeIndex,
local_prim_rect: LayoutRect,
frame_context: &FrameVisibilityContext,
data_stores: &DataStores,
clip_store: &ClipStore,
pictures: &[PicturePrimitive],
resource_cache: &mut ResourceCache,
color_bindings: &ColorBindingStorage,
surface_stack: &[SurfaceIndex],
composite_state: &mut CompositeState,
gpu_cache: &mut GpuCache,
is_root_tile_cache: bool,
) {
// This primitive exists on the last element on the current surface stack.
profile_scope!("update_prim_dependencies");
let prim_surface_index = *surface_stack.last().unwrap();
let prim_clip_chain = &prim_instance.vis.clip_chain;
// If the primitive is directly drawn onto this picture cache surface, then
// the pic_clip_rect is in the same space. If not, we need to map it from
// the surface space into the picture cache space.
let on_picture_surface = prim_surface_index == self.surface_index;
let pic_clip_rect = if on_picture_surface {
prim_clip_chain.pic_clip_rect
} else {
// We want to get the rect in the tile cache surface space that this primitive
// occupies, in order to enable correct invalidation regions. Each surface
// that exists in the chain between this primitive and the tile cache surface
// may have an arbitrary inflation factor (for example, in the case of a series
// of nested blur elements). To account for this, step through the current
// surface stack, mapping the primitive rect into each surface space, including
// the inflation factor from each intermediate surface.
let mut current_pic_clip_rect = prim_clip_chain.pic_clip_rect;
let mut current_spatial_node_index = frame_context
.surfaces[prim_surface_index.0]
.surface_spatial_node_index;
for surface_index in surface_stack.iter().rev() {
let surface = &frame_context.surfaces[surface_index.0];
let map_local_to_surface = SpaceMapper::new_with_target(
surface.surface_spatial_node_index,
current_spatial_node_index,
surface.rect,
frame_context.spatial_tree,
);
// Map the rect into the parent surface, and inflate if this surface requires
// it. If the rect can't be mapping (e.g. due to an invalid transform) then
// just bail out from the dependencies and cull this primitive.
current_pic_clip_rect = match map_local_to_surface.map(¤t_pic_clip_rect) {
Some(rect) => {
rect.inflate(surface.inflation_factor, surface.inflation_factor)
}
None => {
return;
}
};
current_spatial_node_index = surface.surface_spatial_node_index;
}
current_pic_clip_rect
};
// Get the tile coordinates in the picture space.
let (p0, p1) = self.get_tile_coords_for_rect(&pic_clip_rect);
// If the primitive is outside the tiling rects, it's known to not
// be visible.
if p0.x == p1.x || p0.y == p1.y {
return;
}
// Build the list of resources that this primitive has dependencies on.
let mut prim_info = PrimitiveDependencyInfo::new(
prim_instance.uid(),
pic_clip_rect,
);
let mut sub_slice_index = self.sub_slices.len() - 1;
// Only need to evaluate sub-slice regions if we have compositor surfaces present
if sub_slice_index > 0 {
// Find the first sub-slice we can add this primitive to (we want to add
// prims to the primary surface if possible, so they get subpixel AA).
for (i, sub_slice) in self.sub_slices.iter_mut().enumerate() {
let mut intersects_prohibited_region = false;
for surface in &mut sub_slice.compositor_surfaces {
if pic_clip_rect.intersects(&surface.prohibited_rect) {
surface.prohibited_rect = surface.prohibited_rect.union(&pic_clip_rect);
intersects_prohibited_region = true;
}
}
if !intersects_prohibited_region {
sub_slice_index = i;
break;
}
}
}
// Include the prim spatial node, if differs relative to cache root.
if prim_spatial_node_index != self.spatial_node_index {
prim_info.spatial_nodes.push(prim_spatial_node_index);
}
// If there was a clip chain, add any clip dependencies to the list for this tile.
let clip_instances = &clip_store
.clip_node_instances[prim_clip_chain.clips_range.to_range()];
for clip_instance in clip_instances {
prim_info.clips.push(clip_instance.handle.uid());
// If the clip has the same spatial node, the relative transform
// will always be the same, so there's no need to depend on it.
if clip_instance.spatial_node_index != self.spatial_node_index
&& !prim_info.spatial_nodes.contains(&clip_instance.spatial_node_index) {
prim_info.spatial_nodes.push(clip_instance.spatial_node_index);
}
}
// Certain primitives may select themselves to be a backdrop candidate, which is
// then applied below.
let mut backdrop_candidate = None;
// For pictures, we don't (yet) know the valid clip rect, so we can't correctly
// use it to calculate the local bounding rect for the tiles. If we include them
// then we may calculate a bounding rect that is too large, since it won't include
// the clip bounds of the picture. Excluding them from the bounding rect here
// fixes any correctness issues (the clips themselves are considered when we
// consider the bounds of the primitives that are *children* of the picture),
// however it does potentially result in some un-necessary invalidations of a
// tile (in cases where the picture local rect affects the tile, but the clip
// rect eventually means it doesn't affect that tile).
// TODO(gw): Get picture clips earlier (during the initial picture traversal
// pass) so that we can calculate these correctly.
match prim_instance.kind {
PrimitiveInstanceKind::Picture { pic_index,.. } => {
// Pictures can depend on animated opacity bindings.
let pic = &pictures[pic_index.0];
if let Some(PictureCompositeMode::Filter(Filter::Opacity(binding, _))) = pic.requested_composite_mode {
prim_info.opacity_bindings.push(binding.into());
}
}
PrimitiveInstanceKind::Rectangle { data_handle, color_binding_index, .. } => {
// Rectangles can only form a backdrop candidate if they are known opaque.
// TODO(gw): We could resolve the opacity binding here, but the common
// case for background rects is that they don't have animated opacity.
let color = match data_stores.prim[data_handle].kind {
PrimitiveTemplateKind::Rectangle { color, .. } => {
frame_context.scene_properties.resolve_color(&color)
}
_ => unreachable!(),
};
if color.a >= 1.0 {
backdrop_candidate = Some(BackdropInfo {
opaque_rect: pic_clip_rect,
kind: Some(BackdropKind::Color { color }),
});
}
if color_binding_index != ColorBindingIndex::INVALID {
prim_info.color_binding = Some(color_bindings[color_binding_index].into());
}
}
PrimitiveInstanceKind::Image { data_handle, ref mut is_compositor_surface, .. } => {
let image_key = &data_stores.image[data_handle];
let image_data = &image_key.kind;
let mut promote_to_surface = false;
match self.can_promote_to_surface(image_key.common.flags,
prim_clip_chain,
prim_spatial_node_index,
is_root_tile_cache,
sub_slice_index,
frame_context) {
SurfacePromotionResult::Failed => {
}
SurfacePromotionResult::Success => {
promote_to_surface = true;
}
}
// Native OS compositors (DC and CA, at least) support premultiplied alpha
// only. If we have an image that's not pre-multiplied alpha, we can't promote it.
if image_data.alpha_type == AlphaType::Alpha {
promote_to_surface = false;
}
if let Some(image_properties) = resource_cache.get_image_properties(image_data.key) {
// For an image to be a possible opaque backdrop, it must:
// - Have a valid, opaque image descriptor
// - Not use tiling (since they can fail to draw)
// - Not having any spacing / padding
// - Have opaque alpha in the instance (flattened) color
if image_properties.descriptor.is_opaque() &&
image_properties.tiling.is_none() &&
image_data.tile_spacing == LayoutSize::zero() &&
image_data.color.a >= 1.0 {
backdrop_candidate = Some(BackdropInfo {
opaque_rect: pic_clip_rect,
kind: None,
});
}
}
if promote_to_surface {
promote_to_surface = self.setup_compositor_surfaces_rgb(
sub_slice_index,
&mut prim_info,
image_key.common.flags,
local_prim_rect,
prim_spatial_node_index,
pic_clip_rect,
frame_context,
ImageDependency {
key: image_data.key,
generation: resource_cache.get_image_generation(image_data.key),
},
image_data.key,
resource_cache,
composite_state,
gpu_cache,
image_data.image_rendering,
);
}
*is_compositor_surface = promote_to_surface;
if promote_to_surface {
prim_instance.vis.state = VisibilityState::Culled;
return;
} else {
prim_info.images.push(ImageDependency {
key: image_data.key,
generation: resource_cache.get_image_generation(image_data.key),
});
}
}
PrimitiveInstanceKind::YuvImage { data_handle, ref mut is_compositor_surface, .. } => {
let prim_data = &data_stores.yuv_image[data_handle];
let mut promote_to_surface = match self.can_promote_to_surface(
prim_data.common.flags,
prim_clip_chain,
prim_spatial_node_index,
is_root_tile_cache,
sub_slice_index,
frame_context) {
SurfacePromotionResult::Failed => false,
SurfacePromotionResult::Success => true,
};
// TODO(gw): When we support RGBA images for external surfaces, we also
// need to check if opaque (YUV images are implicitly opaque).
// If this primitive is being promoted to a surface, construct an external
// surface descriptor for use later during batching and compositing. We only
// add the image keys for this primitive as a dependency if this is _not_
// a promoted surface, since we don't want the tiles to invalidate when the
// video content changes, if it's a compositor surface!
if promote_to_surface {
// Build dependency for each YUV plane, with current image generation for
// later detection of when the composited surface has changed.
let mut image_dependencies = [ImageDependency::INVALID; 3];
for (key, dep) in prim_data.kind.yuv_key.iter().cloned().zip(image_dependencies.iter_mut()) {
*dep = ImageDependency {
key,
generation: resource_cache.get_image_generation(key),
}
}
promote_to_surface = self.setup_compositor_surfaces_yuv(
sub_slice_index,
&mut prim_info,
prim_data.common.flags,
local_prim_rect,
prim_spatial_node_index,
pic_clip_rect,
frame_context,
&image_dependencies,
&prim_data.kind.yuv_key,
resource_cache,
composite_state,
gpu_cache,
prim_data.kind.image_rendering,
prim_data.kind.color_depth,
prim_data.kind.color_space.with_range(prim_data.kind.color_range),
prim_data.kind.format,
);
}
// Store on the YUV primitive instance whether this is a promoted surface.
// This is used by the batching code to determine whether to draw the
// image to the content tiles, or just a transparent z-write.
*is_compositor_surface = promote_to_surface;
if promote_to_surface {
prim_instance.vis.state = VisibilityState::Culled;
return;
} else {
prim_info.images.extend(
prim_data.kind.yuv_key.iter().map(|key| {
ImageDependency {
key: *key,
generation: resource_cache.get_image_generation(*key),
}
})
);
}
}
PrimitiveInstanceKind::ImageBorder { data_handle, .. } => {
let border_data = &data_stores.image_border[data_handle].kind;
prim_info.images.push(ImageDependency {
key: border_data.request.key,
generation: resource_cache.get_image_generation(border_data.request.key),
});
}
PrimitiveInstanceKind::Clear { .. } => {
backdrop_candidate = Some(BackdropInfo {
opaque_rect: pic_clip_rect,
kind: Some(BackdropKind::Clear),
});
}
PrimitiveInstanceKind::LinearGradient { data_handle, .. }
| PrimitiveInstanceKind::CachedLinearGradient { data_handle, .. } => {
let gradient_data = &data_stores.linear_grad[data_handle];
if gradient_data.stops_opacity.is_opaque
&& gradient_data.tile_spacing == LayoutSize::zero()
{
backdrop_candidate = Some(BackdropInfo {
opaque_rect: pic_clip_rect,
kind: None,
});
}
}
PrimitiveInstanceKind::ConicGradient { data_handle, .. } => {
let gradient_data = &data_stores.conic_grad[data_handle];
if gradient_data.stops_opacity.is_opaque
&& gradient_data.tile_spacing == LayoutSize::zero()
{
backdrop_candidate = Some(BackdropInfo {
opaque_rect: pic_clip_rect,
kind: None,
});
}
}
PrimitiveInstanceKind::RadialGradient { data_handle, .. } => {
let gradient_data = &data_stores.radial_grad[data_handle];
if gradient_data.stops_opacity.is_opaque
&& gradient_data.tile_spacing == LayoutSize::zero()
{
backdrop_candidate = Some(BackdropInfo {
opaque_rect: pic_clip_rect,
kind: None,
});
}
}
PrimitiveInstanceKind::LineDecoration { .. } |
PrimitiveInstanceKind::NormalBorder { .. } |
PrimitiveInstanceKind::TextRun { .. } |
PrimitiveInstanceKind::Backdrop { .. } => {
// These don't contribute dependencies
}
};
// If this primitive considers itself a backdrop candidate, apply further
// checks to see if it matches all conditions to be a backdrop.
let mut vis_flags = PrimitiveVisibilityFlags::empty();
let sub_slice = &mut self.sub_slices[sub_slice_index];
if let Some(backdrop_candidate) = backdrop_candidate {
let is_suitable_backdrop = match backdrop_candidate.kind {
Some(BackdropKind::Clear) => {
// Clear prims are special - they always end up in their own slice,
// and always set the backdrop. In future, we hope to completely
// remove clear prims, since they don't integrate with the compositing
// system cleanly.
true
}
Some(BackdropKind::Color { .. }) | None => {
// Check a number of conditions to see if we can consider this
// primitive as an opaque backdrop rect. Several of these are conservative
// checks and could be relaxed in future. However, these checks
// are quick and capture the common cases of background rects and images.
// Specifically, we currently require:
// - The primitive is on the main picture cache surface.
// - Same coord system as picture cache (ensures rects are axis-aligned).
// - No clip masks exist.
let same_coord_system = {
let prim_spatial_node = &frame_context.spatial_tree
.spatial_nodes[prim_spatial_node_index.0 as usize];
let surface_spatial_node = &frame_context.spatial_tree
.spatial_nodes[self.spatial_node_index.0 as usize];
prim_spatial_node.coordinate_system_id == surface_spatial_node.coordinate_system_id
};
same_coord_system && on_picture_surface
}
};
if sub_slice_index == 0 &&
is_suitable_backdrop &&
sub_slice.compositor_surfaces.is_empty() &&
!prim_clip_chain.needs_mask {
if backdrop_candidate.opaque_rect.contains_box(&self.backdrop.opaque_rect) {
self.backdrop.opaque_rect = backdrop_candidate.opaque_rect;
}
if let Some(kind) = backdrop_candidate.kind {
if backdrop_candidate.opaque_rect.contains_box(&self.local_rect) {
// If we have a color backdrop, mark the visibility flags
// of the primitive so it is skipped during batching (and
// also clears any previous primitives).
if let BackdropKind::Color { .. } = kind {
vis_flags |= PrimitiveVisibilityFlags::IS_BACKDROP;
}
self.backdrop.kind = Some(kind);
}
}
}
}
// Record any new spatial nodes in the used list.
for spatial_node_index in &prim_info.spatial_nodes {
self.spatial_node_comparer.register_used_transform(
*spatial_node_index,
self.frame_id,
frame_context.spatial_tree,
);
}
// Truncate the lengths of dependency arrays to the max size we can handle.
// Any arrays this size or longer will invalidate every frame.
prim_info.clips.truncate(MAX_PRIM_SUB_DEPS);
prim_info.opacity_bindings.truncate(MAX_PRIM_SUB_DEPS);
prim_info.spatial_nodes.truncate(MAX_PRIM_SUB_DEPS);
prim_info.images.truncate(MAX_PRIM_SUB_DEPS);
// Normalize the tile coordinates before adding to tile dependencies.
// For each affected tile, mark any of the primitive dependencies.
for y in p0.y .. p1.y {
for x in p0.x .. p1.x {
// TODO(gw): Convert to 2d array temporarily to avoid hash lookups per-tile?
let key = TileOffset::new(x, y);
let tile = sub_slice.tiles.get_mut(&key).expect("bug: no tile");
tile.add_prim_dependency(&prim_info);
}
}
prim_instance.vis.state = VisibilityState::Coarse {
filter: BatchFilter {
rect_in_pic_space: pic_clip_rect,
sub_slice_index: SubSliceIndex::new(sub_slice_index),
},
vis_flags,
};
}
/// Print debug information about this picture cache to a tree printer.
fn print(&self) {
// TODO(gw): This initial implementation is very basic - just printing
// the picture cache state to stdout. In future, we can
// make this dump each frame to a file, and produce a report
// stating which frames had invalidations. This will allow
// diff'ing the invalidation states in a visual tool.
let mut pt = PrintTree::new("Picture Cache");
pt.new_level(format!("Slice {:?}", self.slice));
pt.add_item(format!("background_color: {:?}", self.background_color));
for (sub_slice_index, sub_slice) in self.sub_slices.iter().enumerate() {
pt.new_level(format!("SubSlice {:?}", sub_slice_index));
for y in self.tile_bounds_p0.y .. self.tile_bounds_p1.y {
for x in self.tile_bounds_p0.x .. self.tile_bounds_p1.x {
let key = TileOffset::new(x, y);
let tile = &sub_slice.tiles[&key];
tile.print(&mut pt);
}
}
pt.end_level();
}
pt.end_level();
}
fn calculate_subpixel_mode(&self) -> SubpixelMode {
let has_opaque_bg_color = self.background_color.map_or(false, |c| c.a >= 1.0);
// If the overall tile cache is known opaque, subpixel AA is allowed everywhere
if has_opaque_bg_color {
return SubpixelMode::Allow;
}
// If we didn't find any valid opaque backdrop, no subpixel AA allowed
if self.backdrop.opaque_rect.is_empty() {
return SubpixelMode::Deny;
}
// If the opaque backdrop rect covers the entire tile cache surface,
// we can allow subpixel AA anywhere, skipping the per-text-run tests
// later on during primitive preparation.
if self.backdrop.opaque_rect.contains_box(&self.local_rect) {
return SubpixelMode::Allow;
}
// If none of the simple cases above match, we need test where we can support subpixel AA.
// TODO(gw): In future, it may make sense to have > 1 inclusion rect,
// but this handles the common cases.
// TODO(gw): If a text run gets animated such that it's moving in a way that is
// sometimes intersecting with the video rect, this can result in subpixel
// AA flicking on/off for that text run. It's probably very rare, but
// something we should handle in future.
SubpixelMode::Conditional {
allowed_rect: self.backdrop.opaque_rect,
}
}
/// Apply any updates after prim dependency updates. This applies
/// any late tile invalidations, and sets up the dirty rect and
/// set of tile blits.
pub fn post_update(
&mut self,
frame_context: &FrameVisibilityContext,
frame_state: &mut FrameVisibilityState,
) {
assert!(self.current_surface_traversal_depth == 0);
self.dirty_region.reset(self.spatial_node_index);
self.subpixel_mode = self.calculate_subpixel_mode();
self.transform_index = frame_state.composite_state.register_transform(
self.local_to_surface,
// TODO(gw): Once we support scaling of picture cache tiles during compositing,
// that transform gets plugged in here!
self.surface_to_device,
);
let map_pic_to_world = SpaceMapper::new_with_target(
ROOT_SPATIAL_NODE_INDEX,
self.spatial_node_index,
frame_context.global_screen_world_rect,
frame_context.spatial_tree,
);
// A simple GC of the native external surface cache, to remove and free any
// surfaces that were not referenced during the update_prim_dependencies pass.
self.external_native_surface_cache.retain(|_, surface| {
if !surface.used_this_frame {
// If we removed an external surface, we need to mark the dirty rects as
// invalid so a full composite occurs on the next frame.
frame_state.composite_state.dirty_rects_are_valid = false;
frame_state.resource_cache.destroy_compositor_surface(surface.native_surface_id);
}
surface.used_this_frame
});
let pic_to_world_mapper = SpaceMapper::new_with_target(
ROOT_SPATIAL_NODE_INDEX,
self.spatial_node_index,
frame_context.global_screen_world_rect,
frame_context.spatial_tree,
);
let mut ctx = TilePostUpdateContext {
pic_to_world_mapper,
global_device_pixel_scale: frame_context.global_device_pixel_scale,
local_clip_rect: self.local_clip_rect,
backdrop: None,
opacity_bindings: &self.opacity_bindings,
color_bindings: &self.color_bindings,
current_tile_size: self.current_tile_size,
local_rect: self.local_rect,
z_id: ZBufferId::invalid(),
invalidate_all: self.invalidate_all_tiles,
};
let mut state = TilePostUpdateState {
resource_cache: frame_state.resource_cache,
composite_state: frame_state.composite_state,
compare_cache: &mut self.compare_cache,
spatial_node_comparer: &mut self.spatial_node_comparer,
};
// Step through each tile and invalidate if the dependencies have changed. Determine
// the current opacity setting and whether it's changed.
for (i, sub_slice) in self.sub_slices.iter_mut().enumerate().rev() {
// The backdrop is only relevant for the first sub-slice
if i == 0 {
ctx.backdrop = Some(self.backdrop);
}
for compositor_surface in sub_slice.compositor_surfaces.iter_mut().rev() {
compositor_surface.descriptor.z_id = state.composite_state.z_generator.next();
}
ctx.z_id = state.composite_state.z_generator.next();
for tile in sub_slice.tiles.values_mut() {
tile.post_update(&ctx, &mut state, frame_context);
}
}
// Register any opaque external compositor surfaces as potential occluders. This
// is especially useful when viewing video in full-screen mode, as it is
// able to occlude every background tile (avoiding allocation, rasterizion
// and compositing).
for sub_slice in &self.sub_slices {
for compositor_surface in &sub_slice.compositor_surfaces {
if compositor_surface.is_opaque {
let local_surface_rect = compositor_surface
.descriptor
.local_rect
.intersection(&compositor_surface.descriptor.local_clip_rect)
.and_then(|r| {
r.intersection(&self.local_clip_rect)
});
if let Some(local_surface_rect) = local_surface_rect {
let world_surface_rect = map_pic_to_world
.map(&local_surface_rect)
.expect("bug: unable to map external surface to world space");
frame_state.composite_state.register_occluder(
compositor_surface.descriptor.z_id,
world_surface_rect,
);
}
}
}
}
// Register the opaque region of this tile cache as an occluder, which
// is used later in the frame to occlude other tiles.
if !self.backdrop.opaque_rect.is_empty() {
let z_id_backdrop = frame_state.composite_state.z_generator.next();
let backdrop_rect = self.backdrop.opaque_rect
.intersection(&self.local_rect)
.and_then(|r| {
r.intersection(&self.local_clip_rect)
});
if let Some(backdrop_rect) = backdrop_rect {
let world_backdrop_rect = map_pic_to_world
.map(&backdrop_rect)
.expect("bug: unable to map backdrop to world space");
// Since we register the entire backdrop rect, use the opaque z-id for the
// picture cache slice.
frame_state.composite_state.register_occluder(
z_id_backdrop,
world_backdrop_rect,
);
}
}
}
}
pub struct PictureScratchBuffer {
surface_stack: Vec<SurfaceIndex>,
clip_chain_ids: Vec<ClipChainId>,
}
impl Default for PictureScratchBuffer {
fn default() -> Self {
PictureScratchBuffer {
surface_stack: Vec::new(),
clip_chain_ids: Vec::new(),
}
}
}
impl PictureScratchBuffer {
pub fn begin_frame(&mut self) {
self.surface_stack.clear();
self.clip_chain_ids.clear();
}
pub fn recycle(&mut self, recycler: &mut Recycler) {
recycler.recycle_vec(&mut self.surface_stack);
}
}
/// Maintains a stack of picture and surface information, that
/// is used during the initial picture traversal.
pub struct PictureUpdateState<'a> {
surfaces: &'a mut Vec<SurfaceInfo>,
surface_stack: Vec<SurfaceIndex>,
}
impl<'a> PictureUpdateState<'a> {
pub fn update_all(
buffers: &mut PictureScratchBuffer,
surfaces: &'a mut Vec<SurfaceInfo>,
pic_index: PictureIndex,
picture_primitives: &mut [PicturePrimitive],
frame_context: &FrameBuildingContext,
gpu_cache: &mut GpuCache,
clip_store: &ClipStore,
data_stores: &mut DataStores,
tile_caches: &mut FastHashMap<SliceId, Box<TileCacheInstance>>,
) {
profile_scope!("UpdatePictures");
profile_marker!("UpdatePictures");
let mut state = PictureUpdateState {
surfaces,
surface_stack: buffers.surface_stack.take().cleared(),
};
state.surface_stack.push(SurfaceIndex(0));
state.update(
pic_index,
picture_primitives,
frame_context,
gpu_cache,
clip_store,
data_stores,
tile_caches,
);
buffers.surface_stack = state.surface_stack.take();
}
/// Return the current surface
fn current_surface(&self) -> &SurfaceInfo {
&self.surfaces[self.surface_stack.last().unwrap().0]
}
/// Return the current surface (mutable)
fn current_surface_mut(&mut self) -> &mut SurfaceInfo {
&mut self.surfaces[self.surface_stack.last().unwrap().0]
}
/// Push a new surface onto the update stack.
fn push_surface(
&mut self,
surface: SurfaceInfo,
) -> SurfaceIndex {
let surface_index = SurfaceIndex(self.surfaces.len());
self.surfaces.push(surface);
self.surface_stack.push(surface_index);
surface_index
}
/// Pop a surface on the way up the picture traversal
fn pop_surface(&mut self) -> SurfaceIndex{
self.surface_stack.pop().unwrap()
}
/// Update a picture, determining surface configuration,
/// rasterization roots, and (in future) whether there
/// are cached surfaces that can be used by this picture.
fn update(
&mut self,
pic_index: PictureIndex,
picture_primitives: &mut [PicturePrimitive],
frame_context: &FrameBuildingContext,
gpu_cache: &mut GpuCache,
clip_store: &ClipStore,
data_stores: &mut DataStores,
tile_caches: &mut FastHashMap<SliceId, Box<TileCacheInstance>>,
) {
if let Some(prim_list) = picture_primitives[pic_index.0].pre_update(
self,
frame_context,
tile_caches,
) {
for child_pic_index in &prim_list.child_pictures {
self.update(
*child_pic_index,
picture_primitives,
frame_context,
gpu_cache,
clip_store,
data_stores,
tile_caches,
);
}
picture_primitives[pic_index.0].post_update(
prim_list,
self,
frame_context,
data_stores,
);
}
}
}
#[derive(Debug, Copy, Clone, PartialEq)]
#[cfg_attr(feature = "capture", derive(Serialize))]
pub struct SurfaceIndex(pub usize);
pub const ROOT_SURFACE_INDEX: SurfaceIndex = SurfaceIndex(0);
/// Describes the render task configuration for a picture surface.
#[derive(Debug)]
pub enum SurfaceRenderTasks {
/// The common type of surface is a single render task
Simple(RenderTaskId),
/// Some surfaces draw their content, and then have further tasks applied
/// to that input (such as blur passes for shadows). These tasks have a root
/// (the output of the surface), and a port (for attaching child task dependencies
/// to the content).
Chained { root_task_id: RenderTaskId, port_task_id: RenderTaskId },
/// Picture caches are a single surface consisting of multiple render
/// tasks, one per tile with dirty content.
Tiled(Vec<RenderTaskId>),
}
/// Information about an offscreen surface. For now,
/// it contains information about the size and coordinate
/// system of the surface. In the future, it will contain
/// information about the contents of the surface, which
/// will allow surfaces to be cached / retained between
/// frames and display lists.
#[derive(Debug)]
pub struct SurfaceInfo {
/// A local rect defining the size of this surface, in the
/// coordinate system of the surface itself.
pub rect: PictureRect,
/// Part of the surface that we know to be opaque.
pub opaque_rect: PictureRect,
/// Helper structs for mapping local rects in different
/// coordinate systems into the surface coordinates.
pub map_local_to_surface: SpaceMapper<LayoutPixel, PicturePixel>,
/// Defines the positioning node for the surface itself,
/// and the rasterization root for this surface.
pub raster_spatial_node_index: SpatialNodeIndex,
pub surface_spatial_node_index: SpatialNodeIndex,
/// This is set when the render task is created.
pub render_tasks: Option<SurfaceRenderTasks>,
/// How much the local surface rect should be inflated (for blur radii).
pub inflation_factor: f32,
/// The device pixel ratio specific to this surface.
pub device_pixel_scale: DevicePixelScale,
/// The scale factors of the surface to raster transform.
pub scale_factors: (f32, f32),
/// The allocated raster rect for this surface
pub raster_rect: Option<DeviceRect>,
}
impl SurfaceInfo {
pub fn new(
surface_spatial_node_index: SpatialNodeIndex,
raster_spatial_node_index: SpatialNodeIndex,
inflation_factor: f32,
world_rect: WorldRect,
spatial_tree: &SpatialTree,
device_pixel_scale: DevicePixelScale,
scale_factors: (f32, f32),
) -> Self {
let map_surface_to_world = SpaceMapper::new_with_target(
ROOT_SPATIAL_NODE_INDEX,
surface_spatial_node_index,
world_rect,
spatial_tree,
);
let pic_bounds = map_surface_to_world
.unmap(&map_surface_to_world.bounds)
.unwrap_or_else(PictureRect::max_rect);
let map_local_to_surface = SpaceMapper::new(
surface_spatial_node_index,
pic_bounds,
);
SurfaceInfo {
rect: PictureRect::zero(),
opaque_rect: PictureRect::zero(),
map_local_to_surface,
render_tasks: None,
raster_spatial_node_index,
surface_spatial_node_index,
inflation_factor,
device_pixel_scale,
scale_factors,
raster_rect: None,
}
}
pub fn get_raster_rect(&self) -> DeviceRect {
self.raster_rect.expect("bug: queried before surface was initialized")
}
}
#[derive(Debug)]
#[cfg_attr(feature = "capture", derive(Serialize))]
pub struct RasterConfig {
/// How this picture should be composited into
/// the parent surface.
pub composite_mode: PictureCompositeMode,
/// Index to the surface descriptor for this
/// picture.
pub surface_index: SurfaceIndex,
/// Whether this picture establishes a rasterization root.
pub establishes_raster_root: bool,
/// Scaling factor applied to fit within MAX_SURFACE_SIZE when
/// establishing a raster root.
/// Most code doesn't need to know about it, since it is folded
/// into device_pixel_scale when the rendertask is set up.
/// However e.g. text rasterization uses it to ensure consistent
/// on-screen font size.
pub root_scaling_factor: f32,
/// The world rect of this picture clipped to the current culling
/// rect. This is used for determining the size of the render
/// target rect for this surface, and calculating raster scale
/// factors.
pub clipped_bounding_rect: WorldRect,
}
bitflags! {
/// A set of flags describing why a picture may need a backing surface.
#[cfg_attr(feature = "capture", derive(Serialize))]
pub struct BlitReason: u32 {
/// Mix-blend-mode on a child that requires isolation.
const ISOLATE = 1;
/// Clip node that _might_ require a surface.
const CLIP = 2;
/// Preserve-3D requires a surface for plane-splitting.
const PRESERVE3D = 4;
/// A backdrop that is reused which requires a surface.
const BACKDROP = 8;
}
}
/// Specifies how this Picture should be composited
/// onto the target it belongs to.
#[allow(dead_code)]
#[derive(Debug, Clone)]
#[cfg_attr(feature = "capture", derive(Serialize))]
pub enum PictureCompositeMode {
/// Apply CSS mix-blend-mode effect.
MixBlend(MixBlendMode),
/// Apply a CSS filter (except component transfer).
Filter(Filter),
/// Apply a component transfer filter.
ComponentTransferFilter(FilterDataHandle),
/// Draw to intermediate surface, copy straight across. This
/// is used for CSS isolation, and plane splitting.
Blit(BlitReason),
/// Used to cache a picture as a series of tiles.
TileCache {
slice_id: SliceId,
},
/// Apply an SVG filter
SvgFilter(Vec<FilterPrimitive>, Vec<SFilterData>),
}
impl PictureCompositeMode {
pub fn inflate_picture_rect(&self, picture_rect: PictureRect, scale_factors: (f32, f32)) -> PictureRect {
let mut result_rect = picture_rect;
match self {
PictureCompositeMode::Filter(filter) => match filter {
Filter::Blur(width, height) => {
let width_factor = clamp_blur_radius(*width, scale_factors).ceil() * BLUR_SAMPLE_SCALE;
let height_factor = clamp_blur_radius(*height, scale_factors).ceil() * BLUR_SAMPLE_SCALE;
result_rect = picture_rect.inflate(width_factor, height_factor);
},
Filter::DropShadows(shadows) => {
let mut max_inflation: f32 = 0.0;
for shadow in shadows {
max_inflation = max_inflation.max(shadow.blur_radius);
}
max_inflation = clamp_blur_radius(max_inflation, scale_factors).ceil() * BLUR_SAMPLE_SCALE;
result_rect = picture_rect.inflate(max_inflation, max_inflation);
},
_ => {}
}
PictureCompositeMode::SvgFilter(primitives, _) => {
let mut output_rects = Vec::with_capacity(primitives.len());
for (cur_index, primitive) in primitives.iter().enumerate() {
let output_rect = match primitive.kind {
FilterPrimitiveKind::Blur(ref primitive) => {
let input = primitive.input.to_index(cur_index).map(|index| output_rects[index]).unwrap_or(picture_rect);
let width_factor = primitive.width.round() * BLUR_SAMPLE_SCALE;
let height_factor = primitive.height.round() * BLUR_SAMPLE_SCALE;
input.inflate(width_factor, height_factor)
}
FilterPrimitiveKind::DropShadow(ref primitive) => {
let inflation_factor = primitive.shadow.blur_radius.ceil() * BLUR_SAMPLE_SCALE;
let input = primitive.input.to_index(cur_index).map(|index| output_rects[index]).unwrap_or(picture_rect);
let shadow_rect = input.inflate(inflation_factor, inflation_factor);
input.union(&shadow_rect.translate(primitive.shadow.offset * Scale::new(1.0)))
}
FilterPrimitiveKind::Blend(ref primitive) => {
primitive.input1.to_index(cur_index).map(|index| output_rects[index]).unwrap_or(picture_rect)
.union(&primitive.input2.to_index(cur_index).map(|index| output_rects[index]).unwrap_or(picture_rect))
}
FilterPrimitiveKind::Composite(ref primitive) => {
primitive.input1.to_index(cur_index).map(|index| output_rects[index]).unwrap_or(picture_rect)
.union(&primitive.input2.to_index(cur_index).map(|index| output_rects[index]).unwrap_or(picture_rect))
}
FilterPrimitiveKind::Identity(ref primitive) =>
primitive.input.to_index(cur_index).map(|index| output_rects[index]).unwrap_or(picture_rect),
FilterPrimitiveKind::Opacity(ref primitive) =>
primitive.input.to_index(cur_index).map(|index| output_rects[index]).unwrap_or(picture_rect),
FilterPrimitiveKind::ColorMatrix(ref primitive) =>
primitive.input.to_index(cur_index).map(|index| output_rects[index]).unwrap_or(picture_rect),
FilterPrimitiveKind::ComponentTransfer(ref primitive) =>
primitive.input.to_index(cur_index).map(|index| output_rects[index]).unwrap_or(picture_rect),
FilterPrimitiveKind::Offset(ref primitive) => {
let input_rect = primitive.input.to_index(cur_index).map(|index| output_rects[index]).unwrap_or(picture_rect);
input_rect.translate(primitive.offset * Scale::new(1.0))
},
FilterPrimitiveKind::Flood(..) => picture_rect,
};
output_rects.push(output_rect);
result_rect = result_rect.union(&output_rect);
}
}
_ => {},
}
result_rect
}
}
/// Enum value describing the place of a picture in a 3D context.
#[derive(Clone, Debug)]
#[cfg_attr(feature = "capture", derive(Serialize))]
pub enum Picture3DContext<C> {
/// The picture is not a part of 3D context sub-hierarchy.
Out,
/// The picture is a part of 3D context.
In {
/// Additional data per child for the case of this a root of 3D hierarchy.
root_data: Option<Vec<C>>,
/// The spatial node index of an "ancestor" element, i.e. one
/// that establishes the transformed element's containing block.
///
/// See CSS spec draft for more details:
/// https://drafts.csswg.org/css-transforms-2/#accumulated-3d-transformation-matrix-computation
ancestor_index: SpatialNodeIndex,
},
}
/// Information about a preserve-3D hierarchy child that has been plane-split
/// and ordered according to the view direction.
#[derive(Clone, Debug)]
#[cfg_attr(feature = "capture", derive(Serialize))]
pub struct OrderedPictureChild {
pub anchor: PlaneSplitAnchor,
pub spatial_node_index: SpatialNodeIndex,
pub gpu_address: GpuCacheAddress,
}
bitflags! {
/// A set of flags describing why a picture may need a backing surface.
#[cfg_attr(feature = "capture", derive(Serialize))]
pub struct ClusterFlags: u32 {
/// Whether this cluster is visible when the position node is a backface.
const IS_BACKFACE_VISIBLE = 1;
/// This flag is set during the first pass picture traversal, depending on whether
/// the cluster is visible or not. It's read during the second pass when primitives
/// consult their owning clusters to see if the primitive itself is visible.
const IS_VISIBLE = 2;
/// Is a backdrop-filter cluster that requires special handling during post_update.
const IS_BACKDROP_FILTER = 4;
}
}
/// Descriptor for a cluster of primitives. For now, this is quite basic but will be
/// extended to handle more spatial clustering of primitives.
#[cfg_attr(feature = "capture", derive(Serialize))]
pub struct PrimitiveCluster {
/// The positioning node for this cluster.
pub spatial_node_index: SpatialNodeIndex,
/// The bounding rect of the cluster, in the local space of the spatial node.
/// This is used to quickly determine the overall bounding rect for a picture
/// during the first picture traversal, which is needed for local scale
/// determination, and render task size calculations.
bounding_rect: LayoutRect,
/// a part of the cluster that we know to be opaque if any. Does not always
/// describe the entire opaque region, but all content within that rect must
/// be opaque.
pub opaque_rect: LayoutRect,
/// The range of primitive instance indices associated with this cluster.
pub prim_range: Range<usize>,
/// Various flags / state for this cluster.
pub flags: ClusterFlags,
}
impl PrimitiveCluster {
/// Construct a new primitive cluster for a given positioning node.
fn new(
spatial_node_index: SpatialNodeIndex,
flags: ClusterFlags,
first_instance_index: usize,
) -> Self {
PrimitiveCluster {
bounding_rect: LayoutRect::zero(),
opaque_rect: LayoutRect::zero(),
spatial_node_index,
flags,
prim_range: first_instance_index..first_instance_index
}
}
/// Return true if this cluster is compatible with the given params
pub fn is_compatible(
&self,
spatial_node_index: SpatialNodeIndex,
flags: ClusterFlags,
) -> bool {
self.flags == flags && self.spatial_node_index == spatial_node_index
}
pub fn prim_range(&self) -> Range<usize> {
self.prim_range.clone()
}
/// Add a primitive instance to this cluster, at the start or end
fn add_instance(
&mut self,
culling_rect: &LayoutRect,
instance_index: usize,
) {
debug_assert_eq!(instance_index, self.prim_range.end);
self.bounding_rect = self.bounding_rect.union(culling_rect);
self.prim_range.end += 1;
}
}
/// A list of primitive instances that are added to a picture
/// This ensures we can keep a list of primitives that
/// are pictures, for a fast initial traversal of the picture
/// tree without walking the instance list.
#[cfg_attr(feature = "capture", derive(Serialize))]
pub struct PrimitiveList {
/// List of primitives grouped into clusters.
pub clusters: Vec<PrimitiveCluster>,
pub prim_instances: Vec<PrimitiveInstance>,
pub child_pictures: Vec<PictureIndex>,
/// The number of preferred compositor surfaces that were found when
/// adding prims to this list.
pub compositor_surface_count: usize,
}
impl PrimitiveList {
/// Construct an empty primitive list. This is
/// just used during the take_context / restore_context
/// borrow check dance, which will be removed as the
/// picture traversal pass is completed.
pub fn empty() -> Self {
PrimitiveList {
clusters: Vec::new(),
prim_instances: Vec::new(),
child_pictures: Vec::new(),
compositor_surface_count: 0,
}
}
/// Add a primitive instance to the end of the list
pub fn add_prim(
&mut self,
prim_instance: PrimitiveInstance,
prim_rect: LayoutRect,
spatial_node_index: SpatialNodeIndex,
prim_flags: PrimitiveFlags,
) {
let mut flags = ClusterFlags::empty();
// Pictures are always put into a new cluster, to make it faster to
// iterate all pictures in a given primitive list.
match prim_instance.kind {
PrimitiveInstanceKind::Picture { pic_index, .. } => {
self.child_pictures.push(pic_index);
}
PrimitiveInstanceKind::Backdrop { .. } => {
flags.insert(ClusterFlags::IS_BACKDROP_FILTER);
}
_ => {}
}
if prim_flags.contains(PrimitiveFlags::IS_BACKFACE_VISIBLE) {
flags.insert(ClusterFlags::IS_BACKFACE_VISIBLE);
}
if prim_flags.contains(PrimitiveFlags::PREFER_COMPOSITOR_SURFACE) {
self.compositor_surface_count += 1;
}
let culling_rect = prim_instance.clip_set.local_clip_rect
.intersection(&prim_rect)
.unwrap_or_else(LayoutRect::zero);
// Primitive lengths aren't evenly distributed among primitive lists:
// We often have a large amount of single primitive lists, a
// few below 20~30 primitives, and even fewer lists (maybe a couple)
// in the multiple hundreds with nothing in between.
// We can see in profiles that reallocating vectors while pushing
// primitives is taking a large amount of the total scene build time,
// so we take advantage of what we know about the length distributions
// to go for an adapted vector growth pattern that avoids over-allocating
// for the many small allocations while avoiding a lot of reallocation by
// quickly converging to the common sizes.
// Rust's default vector growth strategy (when pushing elements one by one)
// is to double the capacity every time.
let prims_len = self.prim_instances.len();
if prims_len == self.prim_instances.capacity() {
let next_alloc = match prims_len {
1 ..= 31 => 32 - prims_len,
32 ..= 256 => 512 - prims_len,
_ => prims_len * 2,
};
self.prim_instances.reserve(next_alloc);
}
let instance_index = prims_len;
self.prim_instances.push(prim_instance);
if let Some(cluster) = self.clusters.last_mut() {
if cluster.is_compatible(spatial_node_index, flags) {
cluster.add_instance(&culling_rect, instance_index);
return;
}
}
// Same idea with clusters, using a different distribution.
let clusters_len = self.clusters.len();
if clusters_len == self.clusters.capacity() {
let next_alloc = match clusters_len {
1 ..= 15 => 16 - clusters_len,
16 ..= 127 => 128 - clusters_len,
_ => clusters_len * 2,
};
self.clusters.reserve(next_alloc);
}
let mut cluster = PrimitiveCluster::new(
spatial_node_index,
flags,
instance_index,
);
cluster.add_instance(&culling_rect, instance_index);
self.clusters.push(cluster);
}
/// Returns true if there are no clusters (and thus primitives)
pub fn is_empty(&self) -> bool {
self.clusters.is_empty()
}
}
/// Defines configuration options for a given picture primitive.
#[cfg_attr(feature = "capture", derive(Serialize))]
pub struct PictureOptions {
/// If true, WR should inflate the bounding rect of primitives when
/// using a filter effect that requires inflation.
pub inflate_if_required: bool,
}
impl Default for PictureOptions {
fn default() -> Self {
PictureOptions {
inflate_if_required: true,
}
}
}
#[cfg_attr(feature = "capture", derive(Serialize))]
pub struct PicturePrimitive {
/// List of primitives, and associated info for this picture.
pub prim_list: PrimitiveList,
#[cfg_attr(feature = "capture", serde(skip))]
pub state: Option<PictureState>,
/// If true, apply the local clip rect to primitive drawn
/// in this picture.
pub apply_local_clip_rect: bool,
/// If false and transform ends up showing the back of the picture,
/// it will be considered invisible.
pub is_backface_visible: bool,
pub primary_render_task_id: Option<RenderTaskId>,
/// If a mix-blend-mode, contains the render task for
/// the readback of the framebuffer that we use to sample
/// from in the mix-blend-mode shader.
/// For drop-shadow filter, this will store the original
/// picture task which would be rendered on screen after
/// blur pass.
pub secondary_render_task_id: Option<RenderTaskId>,
/// How this picture should be composited.
/// If None, don't composite - just draw directly on parent surface.
pub requested_composite_mode: Option<PictureCompositeMode>,
pub raster_config: Option<RasterConfig>,
pub context_3d: Picture3DContext<OrderedPictureChild>,
// Optional cache handles for storing extra data
// in the GPU cache, depending on the type of
// picture.
pub extra_gpu_data_handles: SmallVec<[GpuCacheHandle; 1]>,
/// The spatial node index of this picture when it is
/// composited into the parent picture.
pub spatial_node_index: SpatialNodeIndex,
/// The conservative local rect of this picture. It is
/// built dynamically during the first picture traversal.
/// It is composed of already snapped primitives.
pub estimated_local_rect: LayoutRect,
/// The local rect of this picture. It is built
/// dynamically during the frame visibility update. It
/// differs from the estimated_local_rect because it
/// will not contain culled primitives, takes into
/// account surface inflation and the whole clip chain.
/// It is frequently the same, but may be quite
/// different depending on how much was culled.
pub precise_local_rect: LayoutRect,
/// Store the state of the previous precise local rect
/// for this picture. We need this in order to know when
/// to invalidate segments / drop-shadow gpu cache handles.
pub prev_precise_local_rect: LayoutRect,
/// If false, this picture needs to (re)build segments
/// if it supports segment rendering. This can occur
/// if the local rect of the picture changes due to
/// transform animation and/or scrolling.
pub segments_are_valid: bool,
/// The config options for this picture.
pub options: PictureOptions,
/// Set to true if we know for sure the picture is fully opaque.
pub is_opaque: bool,
}
impl PicturePrimitive {
pub fn print<T: PrintTreePrinter>(
&self,
pictures: &[Self],
self_index: PictureIndex,
pt: &mut T,
) {
pt.new_level(format!("{:?}", self_index));
pt.add_item(format!("cluster_count: {:?}", self.prim_list.clusters.len()));
pt.add_item(format!("estimated_local_rect: {:?}", self.estimated_local_rect));
pt.add_item(format!("precise_local_rect: {:?}", self.precise_local_rect));
pt.add_item(format!("spatial_node_index: {:?}", self.spatial_node_index));
pt.add_item(format!("raster_config: {:?}", self.raster_config));
pt.add_item(format!("requested_composite_mode: {:?}", self.requested_composite_mode));
for child_pic_index in &self.prim_list.child_pictures {
pictures[child_pic_index.0].print(pictures, *child_pic_index, pt);
}
pt.end_level();
}
/// Returns true if this picture supports segmented rendering.
pub fn can_use_segments(&self) -> bool {
match self.raster_config {
// TODO(gw): Support brush segment rendering for filter and mix-blend
// shaders. It's possible this already works, but I'm just
// applying this optimization to Blit mode for now.
Some(RasterConfig { composite_mode: PictureCompositeMode::MixBlend(..), .. }) |
Some(RasterConfig { composite_mode: PictureCompositeMode::Filter(..), .. }) |
Some(RasterConfig { composite_mode: PictureCompositeMode::ComponentTransferFilter(..), .. }) |
Some(RasterConfig { composite_mode: PictureCompositeMode::TileCache { .. }, .. }) |
Some(RasterConfig { composite_mode: PictureCompositeMode::SvgFilter(..), .. }) |
None => {
false
}
Some(RasterConfig { composite_mode: PictureCompositeMode::Blit(reason), ..}) => {
reason == BlitReason::CLIP
}
}
}
fn resolve_scene_properties(&mut self, properties: &SceneProperties) -> bool {
match self.requested_composite_mode {
Some(PictureCompositeMode::Filter(ref mut filter)) => {
match *filter {
Filter::Opacity(ref binding, ref mut value) => {
*value = properties.resolve_float(binding);
}
_ => {}
}
filter.is_visible()
}
_ => true,
}
}
pub fn is_visible(&self) -> bool {
match self.requested_composite_mode {
Some(PictureCompositeMode::Filter(ref filter)) => {
filter.is_visible()
}
_ => true,
}
}
// TODO(gw): We have the PictureOptions struct available. We
// should move some of the parameter list in this
// method to be part of the PictureOptions, and
// avoid adding new parameters here.
pub fn new_image(
requested_composite_mode: Option<PictureCompositeMode>,
context_3d: Picture3DContext<OrderedPictureChild>,
apply_local_clip_rect: bool,
flags: PrimitiveFlags,
prim_list: PrimitiveList,
spatial_node_index: SpatialNodeIndex,
options: PictureOptions,
) -> Self {
PicturePrimitive {
prim_list,
state: None,
primary_render_task_id: None,
secondary_render_task_id: None,
requested_composite_mode,
raster_config: None,
context_3d,
extra_gpu_data_handles: SmallVec::new(),
apply_local_clip_rect,
is_backface_visible: flags.contains(PrimitiveFlags::IS_BACKFACE_VISIBLE),
spatial_node_index,
estimated_local_rect: LayoutRect::zero(),
precise_local_rect: LayoutRect::zero(),
prev_precise_local_rect: LayoutRect::zero(),
options,
segments_are_valid: false,
is_opaque: false,
}
}
pub fn take_context(
&mut self,
pic_index: PictureIndex,
surface_spatial_node_index: SpatialNodeIndex,
raster_spatial_node_index: SpatialNodeIndex,
parent_surface_index: SurfaceIndex,
parent_subpixel_mode: SubpixelMode,
frame_state: &mut FrameBuildingState,
frame_context: &FrameBuildingContext,
scratch: &mut PrimitiveScratchBuffer,
tile_cache_logger: &mut TileCacheLogger,
tile_caches: &mut FastHashMap<SliceId, Box<TileCacheInstance>>,
) -> Option<(PictureContext, PictureState, PrimitiveList)> {
self.primary_render_task_id = None;
self.secondary_render_task_id = None;
if !self.is_visible() {
return None;
}
profile_scope!("take_context");
// Extract the raster and surface spatial nodes from the raster
// config, if this picture establishes a surface. Otherwise just
// pass in the spatial node indices from the parent context.
let (raster_spatial_node_index, surface_spatial_node_index, surface_index, inflation_factor) = match self.raster_config {
Some(ref raster_config) => {
let surface = &frame_state.surfaces[raster_config.surface_index.0];
(
surface.raster_spatial_node_index,
self.spatial_node_index,
raster_config.surface_index,
surface.inflation_factor,
)
}
None => {
(
raster_spatial_node_index,
surface_spatial_node_index,
parent_surface_index,
0.0,
)
}
};
let map_pic_to_world = SpaceMapper::new_with_target(
ROOT_SPATIAL_NODE_INDEX,
surface_spatial_node_index,
frame_context.global_screen_world_rect,
frame_context.spatial_tree,
);
let pic_bounds = map_pic_to_world
.unmap(&map_pic_to_world.bounds)
.unwrap_or_else(PictureRect::max_rect);
let map_local_to_pic = SpaceMapper::new(
surface_spatial_node_index,
pic_bounds,
);
let (map_raster_to_world, map_pic_to_raster) = create_raster_mappers(
surface_spatial_node_index,
raster_spatial_node_index,
frame_context.global_screen_world_rect,
frame_context.spatial_tree,
);
let plane_splitter = match self.context_3d {
Picture3DContext::Out => {
None
}
Picture3DContext::In { root_data: Some(_), .. } => {
Some(PlaneSplitter::new())
}
Picture3DContext::In { root_data: None, .. } => {
None
}
};
match self.raster_config {
Some(RasterConfig { surface_index, composite_mode: PictureCompositeMode::TileCache { slice_id }, .. }) => {
let tile_cache = tile_caches.get_mut(&slice_id).unwrap();
let mut debug_info = SliceDebugInfo::new();
let mut surface_tasks = Vec::with_capacity(tile_cache.tile_count());
let mut surface_local_rect = PictureRect::zero();
let device_pixel_scale = frame_state
.surfaces[surface_index.0]
.device_pixel_scale;
// Get the overall world space rect of the picture cache. Used to clip
// the tile rects below for occlusion testing to the relevant area.
let world_clip_rect = map_pic_to_world
.map(&tile_cache.local_clip_rect)
.expect("bug: unable to map clip rect")
.round();
let device_clip_rect = (world_clip_rect * frame_context.global_device_pixel_scale).round();
for (sub_slice_index, sub_slice) in tile_cache.sub_slices.iter_mut().enumerate() {
for tile in sub_slice.tiles.values_mut() {
surface_local_rect = surface_local_rect.union(&tile.current_descriptor.local_valid_rect);
if tile.is_visible {
// Get the world space rect that this tile will actually occupy on screen
let world_draw_rect = world_clip_rect.intersection(&tile.world_valid_rect);
// If that draw rect is occluded by some set of tiles in front of it,
// then mark it as not visible and skip drawing. When it's not occluded
// it will fail this test, and get rasterized by the render task setup
// code below.
match world_draw_rect {
Some(world_draw_rect) => {
// Only check for occlusion on visible tiles that are fixed position.
if tile_cache.spatial_node_index == ROOT_SPATIAL_NODE_INDEX &&
frame_state.composite_state.occluders.is_tile_occluded(tile.z_id, world_draw_rect) {
// If this tile has an allocated native surface, free it, since it's completely
// occluded. We will need to re-allocate this surface if it becomes visible,
// but that's likely to be rare (e.g. when there is no content display list
// for a frame or two during a tab switch).
let surface = tile.surface.as_mut().expect("no tile surface set!");
if let TileSurface::Texture { descriptor: SurfaceTextureDescriptor::Native { id, .. }, .. } = surface {
if let Some(id) = id.take() {
frame_state.resource_cache.destroy_compositor_tile(id);
}
}
tile.is_visible = false;
if frame_context.fb_config.testing {
debug_info.tiles.insert(
tile.tile_offset,
TileDebugInfo::Occluded,
);
}
continue;
}
}
None => {
tile.is_visible = false;
}
}
}
// If we get here, we want to ensure that the surface remains valid in the texture
// cache, _even if_ it's not visible due to clipping or being scrolled off-screen.
// This ensures that we retain valid tiles that are off-screen, but still in the
// display port of this tile cache instance.
if let Some(TileSurface::Texture { descriptor, .. }) = tile.surface.as_ref() {
if let SurfaceTextureDescriptor::TextureCache { ref handle, .. } = descriptor {
frame_state.resource_cache.texture_cache.request(
handle,
frame_state.gpu_cache,
);
}
}
// If the tile has been found to be off-screen / clipped, skip any further processing.
if !tile.is_visible {
if frame_context.fb_config.testing {
debug_info.tiles.insert(
tile.tile_offset,
TileDebugInfo::Culled,
);
}
continue;
}
if frame_context.debug_flags.contains(DebugFlags::PICTURE_CACHING_DBG) {
tile.root.draw_debug_rects(
&map_pic_to_world,
tile.is_opaque,
tile.current_descriptor.local_valid_rect,
scratch,
frame_context.global_device_pixel_scale,
);
let label_offset = DeviceVector2D::new(
20.0 + sub_slice_index as f32 * 20.0,
30.0 + sub_slice_index as f32 * 20.0,
);
let tile_device_rect = tile.world_tile_rect * frame_context.global_device_pixel_scale;
if tile_device_rect.height() >= label_offset.y {
let surface = tile.surface.as_ref().expect("no tile surface set!");
scratch.push_debug_string(
tile_device_rect.min + label_offset,
debug_colors::RED,
format!("{:?}: s={} is_opaque={} surface={} sub={}",
tile.id,
tile_cache.slice,
tile.is_opaque,
surface.kind(),
sub_slice_index,
),
);
}
}
if let TileSurface::Texture { descriptor, .. } = tile.surface.as_mut().unwrap() {
match descriptor {
SurfaceTextureDescriptor::TextureCache { ref handle, .. } => {
// Invalidate if the backing texture was evicted.
if frame_state.resource_cache.texture_cache.is_allocated(handle) {
// Request the backing texture so it won't get evicted this frame.
// We specifically want to mark the tile texture as used, even
// if it's detected not visible below and skipped. This is because
// we maintain the set of tiles we care about based on visibility
// during pre_update. If a tile still exists after that, we are
// assuming that it's either visible or we want to retain it for
// a while in case it gets scrolled back onto screen soon.
// TODO(gw): Consider switching to manual eviction policy?
frame_state.resource_cache.texture_cache.request(handle, frame_state.gpu_cache);
} else {
// If the texture was evicted on a previous frame, we need to assume
// that the entire tile rect is dirty.
tile.invalidate(None, InvalidationReason::NoTexture);
}
}
SurfaceTextureDescriptor::Native { id, .. } => {
if id.is_none() {
// There is no current surface allocation, so ensure the entire tile is invalidated
tile.invalidate(None, InvalidationReason::NoSurface);
}
}
}
}
// Ensure that the dirty rect doesn't extend outside the local valid rect.
tile.local_dirty_rect = tile.local_dirty_rect
.intersection(&tile.current_descriptor.local_valid_rect)
.unwrap_or_else(PictureRect::zero);
// Update the world/device dirty rect
let world_dirty_rect = map_pic_to_world.map(&tile.local_dirty_rect).expect("bug");
let device_rect = (tile.world_tile_rect * frame_context.global_device_pixel_scale).round();
tile.device_dirty_rect = (world_dirty_rect * frame_context.global_device_pixel_scale)
.round_out()
.intersection(&device_rect)
.unwrap_or_else(DeviceRect::zero);
if tile.is_valid {
if frame_context.fb_config.testing {
debug_info.tiles.insert(
tile.tile_offset,
TileDebugInfo::Valid,
);
}
} else {
// Add this dirty rect to the dirty region tracker. This must be done outside the if statement below,
// so that we include in the dirty region tiles that are handled by a background color only (no
// surface allocation).
tile_cache.dirty_region.add_dirty_region(
tile.local_dirty_rect,
SubSliceIndex::new(sub_slice_index),
frame_context.spatial_tree,
);
// Ensure that this texture is allocated.
if let TileSurface::Texture { ref mut descriptor } = tile.surface.as_mut().unwrap() {
match descriptor {
SurfaceTextureDescriptor::TextureCache { ref mut handle } => {
if !frame_state.resource_cache.texture_cache.is_allocated(handle) {
frame_state.resource_cache.texture_cache.update_picture_cache(
tile_cache.current_tile_size,
handle,
frame_state.gpu_cache,
);
}
}
SurfaceTextureDescriptor::Native { id } => {
if id.is_none() {
// Allocate a native surface id if we're in native compositing mode,
// and we don't have a surface yet (due to first frame, or destruction
// due to tile size changing etc).
if sub_slice.native_surface.is_none() {
let opaque = frame_state
.resource_cache
.create_compositor_surface(
tile_cache.virtual_offset,
tile_cache.current_tile_size,
true,
);
let alpha = frame_state
.resource_cache
.create_compositor_surface(
tile_cache.virtual_offset,
tile_cache.current_tile_size,
false,
);
sub_slice.native_surface = Some(NativeSurface {
opaque,
alpha,
});
}
// Create the tile identifier and allocate it.
let surface_id = if tile.is_opaque {
sub_slice.native_surface.as_ref().unwrap().opaque
} else {
sub_slice.native_surface.as_ref().unwrap().alpha
};
let tile_id = NativeTileId {
surface_id,
x: tile.tile_offset.x,
y: tile.tile_offset.y,
};
frame_state.resource_cache.create_compositor_tile(tile_id);
*id = Some(tile_id);
}
}
}
// The cast_unit() here is because the `content_origin` is expected to be in
// device pixels, however we're establishing raster roots for picture cache
// tiles meaning the `content_origin` needs to be in the local space of that root.
// TODO(gw): `content_origin` should actually be in RasterPixels to be consistent
// with both local / screen raster modes, but this involves a lot of
// changes to render task and picture code.
let content_origin_f = tile.local_tile_rect.min.cast_unit() * device_pixel_scale;
let content_origin = content_origin_f.round();
// TODO: these asserts used to have a threshold of 0.01 but failed intermittently the
// gfx/layers/apz/test/mochitest/test_group_double_tap_zoom-2.html test on android.
// moving the rectangles in space mapping conversion code to the Box2D representaton
// made the failure happen more often.
debug_assert!((content_origin_f.x - content_origin.x).abs() < 0.15);
debug_assert!((content_origin_f.y - content_origin.y).abs() < 0.15);
let surface = descriptor.resolve(
frame_state.resource_cache,
tile_cache.current_tile_size,
);
let scissor_rect = frame_state.composite_state.get_surface_rect(
&tile.local_dirty_rect,
&tile.local_tile_rect,
tile_cache.transform_index,
).to_i32();
let valid_rect = frame_state.composite_state.get_surface_rect(
&tile.current_descriptor.local_valid_rect,
&tile.local_tile_rect,
tile_cache.transform_index,
).to_i32();
let task_size = tile_cache.current_tile_size;
let batch_filter = BatchFilter {
rect_in_pic_space: tile.local_dirty_rect,
sub_slice_index: SubSliceIndex::new(sub_slice_index),
};
let render_task_id = frame_state.rg_builder.add().init(
RenderTask::new(
RenderTaskLocation::Static {
surface: StaticRenderTaskSurface::PictureCache {
surface,
},
rect: task_size.into(),
},
RenderTaskKind::new_picture(
task_size,
tile_cache.current_tile_size.to_f32(),
pic_index,
content_origin,
surface_spatial_node_index,
device_pixel_scale,
Some(batch_filter),
Some(scissor_rect),
Some(valid_rect),
)
),
);
surface_tasks.push(render_task_id);
}
if frame_context.fb_config.testing {
debug_info.tiles.insert(
tile.tile_offset,
TileDebugInfo::Dirty(DirtyTileDebugInfo {
local_valid_rect: tile.current_descriptor.local_valid_rect,
local_dirty_rect: tile.local_dirty_rect,
}),
);
}
}
let surface = tile.surface.as_ref().expect("no tile surface set!");
let descriptor = CompositeTileDescriptor {
surface_kind: surface.into(),
tile_id: tile.id,
};
let (surface, is_opaque) = match surface {
TileSurface::Color { color } => {
(CompositeTileSurface::Color { color: *color }, true)
}
TileSurface::Clear => {
// Clear tiles are rendered with blend mode pre-multiply-dest-out.
(CompositeTileSurface::Clear, false)
}
TileSurface::Texture { descriptor, .. } => {
let surface = descriptor.resolve(frame_state.resource_cache, tile_cache.current_tile_size);
(
CompositeTileSurface::Texture { surface },
tile.is_opaque
)
}
};
if is_opaque {
sub_slice.opaque_tile_descriptors.push(descriptor);
} else {
sub_slice.alpha_tile_descriptors.push(descriptor);
}
let composite_tile = CompositeTile {
kind: tile_kind(&surface, is_opaque),
surface,
local_rect: tile.local_tile_rect,
local_valid_rect: tile.current_descriptor.local_valid_rect,
local_dirty_rect: tile.local_dirty_rect,
device_clip_rect,
z_id: tile.z_id,
transform_index: tile_cache.transform_index,
};
sub_slice.composite_tiles.push(composite_tile);
// Now that the tile is valid, reset the dirty rect.
tile.local_dirty_rect = PictureRect::zero();
tile.is_valid = true;
}
// Sort the tile descriptor lists, since iterating values in the tile_cache.tiles
// hashmap doesn't provide any ordering guarantees, but we want to detect the
// composite descriptor as equal if the tiles list is the same, regardless of
// ordering.
sub_slice.opaque_tile_descriptors.sort_by_key(|desc| desc.tile_id);
sub_slice.alpha_tile_descriptors.sort_by_key(|desc| desc.tile_id);
}
// If invalidation debugging is enabled, dump the picture cache state to a tree printer.
if frame_context.debug_flags.contains(DebugFlags::INVALIDATION_DBG) {
tile_cache.print();
}
// If testing mode is enabled, write some information about the current state
// of this picture cache (made available in RenderResults).
if frame_context.fb_config.testing {
frame_state.composite_state
.picture_cache_debug
.slices
.insert(
tile_cache.slice,
debug_info,
);
}
// TODO(gw): Much of the SurfaceInfo related code assumes it is in device pixels, rather than
// raster pixels. Fixing that in one go is too invasive for now, but we need to
// start incrementally fixing up the unit types used around here.
let surface_raster_rect = map_pic_to_raster.map(&surface_local_rect).expect("bug: unable to map to raster");
let surface_device_rect = surface_raster_rect.cast_unit() * device_pixel_scale;
frame_state.init_surface_tiled(
surface_index,
surface_tasks,
surface_device_rect,
);
}
Some(ref mut raster_config) => {
let pic_rect = self.precise_local_rect.cast_unit();
let mut device_pixel_scale = frame_state
.surfaces[raster_config.surface_index.0]
.device_pixel_scale;
let scale_factors = frame_state
.surfaces[raster_config.surface_index.0]
.scale_factors;
// If the primitive has a filter that can sample with an offset, the clip rect has
// to take it into account.
let clip_inflation = match raster_config.composite_mode {
PictureCompositeMode::Filter(Filter::DropShadows(ref shadows)) => {
let mut max_offset = vec2(0.0, 0.0);
let mut min_offset = vec2(0.0, 0.0);
for shadow in shadows {
let offset = layout_vector_as_picture_vector(shadow.offset);
max_offset = max_offset.max(offset);
min_offset = min_offset.min(offset);
}
// Get the shadow offsets in world space.
let raster_min = map_pic_to_raster.map_vector(min_offset);
let raster_max = map_pic_to_raster.map_vector(max_offset);
let world_min = map_raster_to_world.map_vector(raster_min);
let world_max = map_raster_to_world.map_vector(raster_max);
// Grow the clip in the opposite direction of the shadow's offset.
SideOffsets2D::from_vectors_outer(
-world_max.max(vec2(0.0, 0.0)),
-world_min.min(vec2(0.0, 0.0)),
)
}
_ => SideOffsets2D::zero(),
};
let (mut clipped, mut unclipped) = match get_raster_rects(
pic_rect,
&map_pic_to_raster,
&map_raster_to_world,
raster_config.clipped_bounding_rect.outer_box(clip_inflation),
device_pixel_scale,
) {
Some(info) => info,
None => {
return None
}
};
let transform = map_pic_to_raster.get_transform();
/// If the picture (raster_config) establishes a raster root,
/// its requested resolution won't be clipped by the parent or
/// viewport; so we need to make sure the requested resolution is
/// "reasonable", ie. <= MAX_SURFACE_SIZE. If not, scale the
/// picture down until it fits that limit. This results in a new
/// device_rect, a new unclipped rect, and a new device_pixel_scale.
///
/// Since the adjusted device_pixel_scale is passed into the
/// RenderTask (and then the shader via RenderTaskData) this mostly
/// works transparently, reusing existing support for variable DPI
/// support. The on-the-fly scaling can be seen as on-the-fly,
/// per-task DPI adjustment. Logical pixels are unaffected.
///
/// The scaling factor is returned to the caller; blur radius,
/// font size, etc. need to be scaled accordingly.
fn adjust_scale_for_max_surface_size(
raster_config: &RasterConfig,
max_target_size: i32,
pic_rect: PictureRect,
map_pic_to_raster: &SpaceMapper<PicturePixel, RasterPixel>,
map_raster_to_world: &SpaceMapper<RasterPixel, WorldPixel>,
clipped_prim_bounding_rect: WorldRect,
device_pixel_scale : &mut DevicePixelScale,
device_rect: &mut DeviceRect,
unclipped: &mut DeviceRect) -> Option<f32>
{
let limit = if raster_config.establishes_raster_root {
MAX_SURFACE_SIZE
} else {
max_target_size as f32
};
if device_rect.width() > limit || device_rect.height() > limit {
// round_out will grow by 1 integer pixel if origin is on a
// fractional position, so keep that margin for error with -1:
let scale = (limit as f32 - 1.0) /
(f32::max(device_rect.width(), device_rect.height()));
*device_pixel_scale = *device_pixel_scale * Scale::new(scale);
let new_device_rect = device_rect.to_f32() * Scale::new(scale);
*device_rect = new_device_rect.round_out();
*unclipped = match get_raster_rects(
pic_rect,
&map_pic_to_raster,
&map_raster_to_world,
clipped_prim_bounding_rect,
*device_pixel_scale
) {
Some(info) => info.1,
None => {
return None
}
};
Some(scale)
}
else
{
None
}
}
let primary_render_task_id;
match raster_config.composite_mode {
PictureCompositeMode::TileCache { .. } => {
unreachable!("handled above");
}
PictureCompositeMode::Filter(Filter::Blur(width, height)) => {
let width_std_deviation = clamp_blur_radius(width, scale_factors) * device_pixel_scale.0;
let height_std_deviation = clamp_blur_radius(height, scale_factors) * device_pixel_scale.0;
let mut blur_std_deviation = DeviceSize::new(
width_std_deviation * scale_factors.0,
height_std_deviation * scale_factors.1
);
let mut device_rect = if self.options.inflate_if_required {
let inflation_factor = frame_state.surfaces[raster_config.surface_index.0].inflation_factor;
let inflation_factor = inflation_factor * device_pixel_scale.0;
// The clipped field is the part of the picture that is visible
// on screen. The unclipped field is the screen-space rect of
// the complete picture, if no screen / clip-chain was applied
// (this includes the extra space for blur region). To ensure
// that we draw a large enough part of the picture to get correct
// blur results, inflate that clipped area by the blur range, and
// then intersect with the total screen rect, to minimize the
// allocation size.
clipped
.inflate(inflation_factor * scale_factors.0, inflation_factor * scale_factors.1)
.intersection(&unclipped)
.unwrap()
} else {
clipped
};
let mut original_size = device_rect.size();
// Adjust the size to avoid introducing sampling errors during the down-scaling passes.
// what would be even better is to rasterize the picture at the down-scaled size
// directly.
let adjusted_size = BlurTask::adjusted_blur_source_size(
device_rect.size(),
blur_std_deviation,
);
device_rect.set_size(adjusted_size);
if let Some(scale) = adjust_scale_for_max_surface_size(
raster_config, frame_context.fb_config.max_target_size,
pic_rect, &map_pic_to_raster, &map_raster_to_world,
raster_config.clipped_bounding_rect,
&mut device_pixel_scale, &mut device_rect, &mut unclipped,
) {
blur_std_deviation = blur_std_deviation * scale;
original_size = original_size.to_f32() * scale;
raster_config.root_scaling_factor = scale;
}
let uv_rect_kind = calculate_uv_rect_kind(
&pic_rect,
&transform,
&device_rect,
device_pixel_scale,
);
let task_size = device_rect.size().to_i32();
let picture_task_id = frame_state.rg_builder.add().init(
RenderTask::new_dynamic(
task_size,
RenderTaskKind::new_picture(
task_size,
unclipped.size(),
pic_index,
device_rect.min,
surface_spatial_node_index,
device_pixel_scale,
None,
None,
None,
)
).with_uv_rect_kind(uv_rect_kind)
);
let blur_render_task_id = RenderTask::new_blur(
blur_std_deviation,
picture_task_id,
frame_state.rg_builder,
RenderTargetKind::Color,
None,
original_size.to_i32(),
);
primary_render_task_id = Some(blur_render_task_id);
frame_state.init_surface_chain(
raster_config.surface_index,
blur_render_task_id,
picture_task_id,
parent_surface_index,
device_rect,
);
}
PictureCompositeMode::Filter(Filter::DropShadows(ref shadows)) => {
let mut max_std_deviation = 0.0;
for shadow in shadows {
max_std_deviation = f32::max(max_std_deviation, shadow.blur_radius);
}
max_std_deviation = clamp_blur_radius(max_std_deviation, scale_factors) * device_pixel_scale.0;
let max_blur_range = max_std_deviation * BLUR_SAMPLE_SCALE;
// We cast clipped to f32 instead of casting unclipped to i32
// because unclipped can overflow an i32.
let mut device_rect = clipped
.inflate(max_blur_range * scale_factors.0, max_blur_range * scale_factors.1)
.intersection(&unclipped)
.unwrap();
let adjusted_size = BlurTask::adjusted_blur_source_size(
device_rect.size(),
DeviceSize::new(
max_std_deviation * scale_factors.0,
max_std_deviation * scale_factors.1
),
);
device_rect.set_size(adjusted_size);
if let Some(scale) = adjust_scale_for_max_surface_size(
raster_config, frame_context.fb_config.max_target_size,
pic_rect, &map_pic_to_raster, &map_raster_to_world,
raster_config.clipped_bounding_rect,
&mut device_pixel_scale, &mut device_rect, &mut unclipped,
) {
// std_dev adjusts automatically from using device_pixel_scale
raster_config.root_scaling_factor = scale;
}
let uv_rect_kind = calculate_uv_rect_kind(
&pic_rect,
&transform,
&device_rect,
device_pixel_scale,
);
let task_size = device_rect.size().to_i32();
let picture_task_id = frame_state.rg_builder.add().init(
RenderTask::new_dynamic(
task_size,
RenderTaskKind::new_picture(
task_size,
unclipped.size(),
pic_index,
device_rect.min,
surface_spatial_node_index,
device_pixel_scale,
None,
None,
None,
),
).with_uv_rect_kind(uv_rect_kind)
);
// Add this content picture as a dependency of the parent surface, to
// ensure it isn't free'd after the shadow uses it as an input.
frame_state.add_child_render_task(
parent_surface_index,
picture_task_id,
);
let mut blur_tasks = BlurTaskCache::default();
self.extra_gpu_data_handles.resize(shadows.len(), GpuCacheHandle::new());
let mut blur_render_task_id = picture_task_id;
for shadow in shadows {
let blur_radius = clamp_blur_radius(shadow.blur_radius, scale_factors) * device_pixel_scale.0;
blur_render_task_id = RenderTask::new_blur(
DeviceSize::new(
blur_radius * scale_factors.0,
blur_radius * scale_factors.1,
),
picture_task_id,
frame_state.rg_builder,
RenderTargetKind::Color,
Some(&mut blur_tasks),
device_rect.size().to_i32(),
);
}
primary_render_task_id = Some(blur_render_task_id);
self.secondary_render_task_id = Some(picture_task_id);
frame_state.init_surface_chain(
raster_config.surface_index,
blur_render_task_id,
picture_task_id,
parent_surface_index,
device_rect,
);
}
PictureCompositeMode::MixBlend(mode) if BlendMode::from_mix_blend_mode(
mode,
frame_context.fb_config.gpu_supports_advanced_blend,
frame_context.fb_config.advanced_blend_is_coherent,
frame_context.fb_config.dual_source_blending_is_enabled &&
frame_context.fb_config.dual_source_blending_is_supported,
).is_none() => {
if let Some(scale) = adjust_scale_for_max_surface_size(
raster_config, frame_context.fb_config.max_target_size,
pic_rect, &map_pic_to_raster, &map_raster_to_world,
raster_config.clipped_bounding_rect,
&mut device_pixel_scale, &mut clipped, &mut unclipped,
) {
raster_config.root_scaling_factor = scale;
}
let uv_rect_kind = calculate_uv_rect_kind(
&pic_rect,
&transform,
&clipped,
device_pixel_scale,
);
let parent_surface = &frame_state.surfaces[parent_surface_index.0];
let parent_raster_spatial_node_index = parent_surface.raster_spatial_node_index;
let parent_device_pixel_scale = parent_surface.device_pixel_scale;
// Create a space mapper that will allow mapping from the local rect
// of the mix-blend primitive into the space of the surface that we
// need to read back from. Note that we use the parent's raster spatial
// node here, so that we are in the correct device space of the parent
// surface, whether it establishes a raster root or not.
let map_pic_to_parent = SpaceMapper::new_with_target(
parent_raster_spatial_node_index,
self.spatial_node_index,
RasterRect::max_rect(), // TODO(gw): May need a conservative estimate?
frame_context.spatial_tree,
);
let pic_in_raster_space = map_pic_to_parent
.map(&pic_rect)
.expect("bug: unable to map mix-blend content into parent");
// Apply device pixel ratio for parent surface to get into device
// pixels for that surface.
let backdrop_rect = raster_rect_to_device_pixels(
pic_in_raster_space,
parent_device_pixel_scale,
);
let parent_surface_rect = parent_surface.get_raster_rect();
// If there is no available parent surface to read back from (for example, if
// the parent surface is affected by a clip that doesn't affect the child
// surface), then create a dummy 16x16 readback. In future, we could alter
// the composite mode of this primitive to skip the mix-blend, but for simplicity
// we just create a dummy readback for now.
let readback_task_id = match backdrop_rect.intersection(&parent_surface_rect) {
Some(available_rect) => {
// Calculate the UV coords necessary for the shader to sampler
// from the primitive rect within the readback region. This is
// 0..1 for aligned surfaces, but doing it this way allows
// accurate sampling if the primitive bounds have fractional values.
let backdrop_uv = calculate_uv_rect_kind(
&pic_rect,
&map_pic_to_parent.get_transform(),
&available_rect,
parent_device_pixel_scale,
);
frame_state.rg_builder.add().init(
RenderTask::new_dynamic(
available_rect.size().to_i32(),
RenderTaskKind::new_readback(Some(available_rect.min)),
).with_uv_rect_kind(backdrop_uv)
)
}
None => {
frame_state.rg_builder.add().init(
RenderTask::new_dynamic(
DeviceIntSize::new(16, 16),
RenderTaskKind::new_readback(None),
)
)
}
};
frame_state.add_child_render_task(
parent_surface_index,
readback_task_id,
);
self.secondary_render_task_id = Some(readback_task_id);
let task_size = clipped.size().to_i32();
let render_task_id = frame_state.rg_builder.add().init(
RenderTask::new_dynamic(
task_size,
RenderTaskKind::new_picture(
task_size,
unclipped.size(),
pic_index,
clipped.min,
surface_spatial_node_index,
device_pixel_scale,
None,
None,
None,
)
).with_uv_rect_kind(uv_rect_kind)
);
primary_render_task_id = Some(render_task_id);
frame_state.init_surface(
raster_config.surface_index,
render_task_id,
parent_surface_index,
clipped,
);
}
PictureCompositeMode::Filter(..) => {
if let Some(scale) = adjust_scale_for_max_surface_size(
raster_config, frame_context.fb_config.max_target_size,
pic_rect, &map_pic_to_raster, &map_raster_to_world,
raster_config.clipped_bounding_rect,
&mut device_pixel_scale, &mut clipped, &mut unclipped,
) {
raster_config.root_scaling_factor = scale;
}
let uv_rect_kind = calculate_uv_rect_kind(
&pic_rect,
&transform,
&clipped,
device_pixel_scale,
);
let task_size = clipped.size().to_i32();
let render_task_id = frame_state.rg_builder.add().init(
RenderTask::new_dynamic(
task_size,
RenderTaskKind::new_picture(
task_size,
unclipped.size(),
pic_index,
clipped.min,
surface_spatial_node_index,
device_pixel_scale,
None,
None,
None,
)
).with_uv_rect_kind(uv_rect_kind)
);
primary_render_task_id = Some(render_task_id);
frame_state.init_surface(
raster_config.surface_index,
render_task_id,
parent_surface_index,
clipped,
);
}
PictureCompositeMode::ComponentTransferFilter(..) => {
if let Some(scale) = adjust_scale_for_max_surface_size(
raster_config, frame_context.fb_config.max_target_size,
pic_rect, &map_pic_to_raster, &map_raster_to_world,
raster_config.clipped_bounding_rect,
&mut device_pixel_scale, &mut clipped, &mut unclipped,
) {
raster_config.root_scaling_factor = scale;
}
let uv_rect_kind = calculate_uv_rect_kind(
&pic_rect,
&transform,
&clipped,
device_pixel_scale,
);
let task_size = clipped.size().to_i32();
let render_task_id = frame_state.rg_builder.add().init(
RenderTask::new_dynamic(
task_size,
RenderTaskKind::new_picture(
task_size,
unclipped.size(),
pic_index,
clipped.min,
surface_spatial_node_index,
device_pixel_scale,
None,
None,
None,
)
).with_uv_rect_kind(uv_rect_kind)
);
primary_render_task_id = Some(render_task_id);
frame_state.init_surface(
raster_config.surface_index,
render_task_id,
parent_surface_index,
clipped,
);
}
PictureCompositeMode::MixBlend(..) |
PictureCompositeMode::Blit(_) => {
if let Some(scale) = adjust_scale_for_max_surface_size(
raster_config, frame_context.fb_config.max_target_size,
pic_rect, &map_pic_to_raster, &map_raster_to_world,
raster_config.clipped_bounding_rect,
&mut device_pixel_scale, &mut clipped, &mut unclipped,
) {
raster_config.root_scaling_factor = scale;
}
let uv_rect_kind = calculate_uv_rect_kind(
&pic_rect,
&transform,
&clipped,
device_pixel_scale,
);
let task_size = clipped.size().to_i32();
let render_task_id = frame_state.rg_builder.add().init(
RenderTask::new_dynamic(
task_size,
RenderTaskKind::new_picture(
task_size,
unclipped.size(),
pic_index,
clipped.min,
surface_spatial_node_index,
device_pixel_scale,
None,
None,
None,
)
).with_uv_rect_kind(uv_rect_kind)
);
primary_render_task_id = Some(render_task_id);
frame_state.init_surface(
raster_config.surface_index,
render_task_id,
parent_surface_index,
clipped,
);
}
PictureCompositeMode::SvgFilter(ref primitives, ref filter_datas) => {
if let Some(scale) = adjust_scale_for_max_surface_size(
raster_config, frame_context.fb_config.max_target_size,
pic_rect, &map_pic_to_raster, &map_raster_to_world,
raster_config.clipped_bounding_rect,
&mut device_pixel_scale, &mut clipped, &mut unclipped,
) {
raster_config.root_scaling_factor = scale;
}
let uv_rect_kind = calculate_uv_rect_kind(
&pic_rect,
&transform,
&clipped,
device_pixel_scale,
);
let task_size = clipped.size().to_i32();
let picture_task_id = frame_state.rg_builder.add().init(
RenderTask::new_dynamic(
task_size,
RenderTaskKind::new_picture(
task_size,
unclipped.size(),
pic_index,
clipped.min,
surface_spatial_node_index,
device_pixel_scale,
None,
None,
None,
)
).with_uv_rect_kind(uv_rect_kind)
);
let filter_task_id = RenderTask::new_svg_filter(
primitives,
filter_datas,
frame_state.rg_builder,
clipped.size().to_i32(),
uv_rect_kind,
picture_task_id,
device_pixel_scale,
);
primary_render_task_id = Some(filter_task_id);
frame_state.init_surface_chain(
raster_config.surface_index,
filter_task_id,
picture_task_id,
parent_surface_index,
clipped,
);
}
}
self.primary_render_task_id = primary_render_task_id;
// Update the device pixel ratio in the surface, in case it was adjusted due
// to the surface being too large. This ensures the correct scale is available
// in case it's used as input to a parent mix-blend-mode readback.
frame_state
.surfaces[raster_config.surface_index.0]
.device_pixel_scale = device_pixel_scale;
}
None => {}
};
#[cfg(feature = "capture")]
{
if frame_context.debug_flags.contains(DebugFlags::TILE_CACHE_LOGGING_DBG) {
if let Some(PictureCompositeMode::TileCache { slice_id }) = self.requested_composite_mode {
if let Some(ref tile_cache) = tile_caches.get(&slice_id) {
// extract just the fields that we're interested in
let mut tile_cache_tiny = TileCacheInstanceSerializer {
slice: tile_cache.slice,
tiles: FastHashMap::default(),
background_color: tile_cache.background_color,
};
// TODO(gw): Debug output only writes the primary sub-slice for now
for (key, tile) in &tile_cache.sub_slices.first().unwrap().tiles {
tile_cache_tiny.tiles.insert(*key, TileSerializer {
rect: tile.local_tile_rect,
current_descriptor: tile.current_descriptor.clone(),
id: tile.id,
root: tile.root.clone(),
background_color: tile.background_color,
invalidation_reason: tile.invalidation_reason.clone()
});
}
let text = ron::ser::to_string_pretty(&tile_cache_tiny, Default::default()).unwrap();
tile_cache_logger.add(text, map_pic_to_world.get_transform());
}
}
}
}
#[cfg(not(feature = "capture"))]
{
let _tile_cache_logger = tile_cache_logger; // unused variable fix
}
let state = PictureState {
//TODO: check for MAX_CACHE_SIZE here?
map_local_to_pic,
map_pic_to_world,
map_pic_to_raster,
map_raster_to_world,
plane_splitter,
};
let mut dirty_region_count = 0;
// If this is a picture cache, push the dirty region to ensure any
// child primitives are culled and clipped to the dirty rect(s).
if let Some(RasterConfig { composite_mode: PictureCompositeMode::TileCache { slice_id }, .. }) = self.raster_config {
let dirty_region = tile_caches[&slice_id].dirty_region.clone();
frame_state.push_dirty_region(dirty_region);
dirty_region_count += 1;
}
if inflation_factor > 0.0 {
let inflated_region = frame_state.current_dirty_region().inflate(
inflation_factor,
frame_context.spatial_tree,
);
frame_state.push_dirty_region(inflated_region);
dirty_region_count += 1;
}
// Disallow subpixel AA if an intermediate surface is needed.
// TODO(lsalzman): allow overriding parent if intermediate surface is opaque
let subpixel_mode = match self.raster_config {
Some(RasterConfig { ref composite_mode, .. }) => {
let subpixel_mode = match composite_mode {
PictureCompositeMode::TileCache { slice_id } => {
tile_caches[&slice_id].subpixel_mode
}
PictureCompositeMode::Blit(..) |
PictureCompositeMode::ComponentTransferFilter(..) |
PictureCompositeMode::Filter(..) |
PictureCompositeMode::MixBlend(..) |
PictureCompositeMode::SvgFilter(..) => {
// TODO(gw): We can take advantage of the same logic that
// exists in the opaque rect detection for tile
// caches, to allow subpixel text on other surfaces
// that can be detected as opaque.
SubpixelMode::Deny
}
};
subpixel_mode
}
None => {
SubpixelMode::Allow
}
};
// Still disable subpixel AA if parent forbids it
let subpixel_mode = match (parent_subpixel_mode, subpixel_mode) {
(SubpixelMode::Allow, SubpixelMode::Allow) => {
// Both parent and this surface unconditionally allow subpixel AA
SubpixelMode::Allow
}
(SubpixelMode::Allow, SubpixelMode::Conditional { allowed_rect }) => {
// Parent allows, but we are conditional subpixel AA
SubpixelMode::Conditional {
allowed_rect,
}
}
(SubpixelMode::Conditional { allowed_rect }, SubpixelMode::Allow) => {
// Propagate conditional subpixel mode to child pictures that allow subpixel AA
SubpixelMode::Conditional {
allowed_rect,
}
}
(SubpixelMode::Conditional { .. }, SubpixelMode::Conditional { ..}) => {
unreachable!("bug: only top level picture caches have conditional subpixel");
}
(SubpixelMode::Deny, _) | (_, SubpixelMode::Deny) => {
// Either parent or this surface explicitly deny subpixel, these take precedence
SubpixelMode::Deny
}
};
let context = PictureContext {
pic_index,
apply_local_clip_rect: self.apply_local_clip_rect,
raster_spatial_node_index,
surface_spatial_node_index,
surface_index,
dirty_region_count,
subpixel_mode,
};
let prim_list = mem::replace(&mut self.prim_list, PrimitiveList::empty());
Some((context, state, prim_list))
}
pub fn restore_context(
&mut self,
prim_list: PrimitiveList,
context: PictureContext,
state: PictureState,
frame_state: &mut FrameBuildingState,
) {
// Pop any dirty regions this picture set
for _ in 0 .. context.dirty_region_count {
frame_state.pop_dirty_region();
}
self.prim_list = prim_list;
self.state = Some(state);
}
pub fn take_state(&mut self) -> PictureState {
self.state.take().expect("bug: no state present!")
}
/// Add a primitive instance to the plane splitter. The function would generate
/// an appropriate polygon, clip it against the frustum, and register with the
/// given plane splitter.
pub fn add_split_plane(
splitter: &mut PlaneSplitter,
spatial_tree: &SpatialTree,
prim_spatial_node_index: SpatialNodeIndex,
original_local_rect: LayoutRect,
combined_local_clip_rect: &LayoutRect,
world_rect: WorldRect,
plane_split_anchor: PlaneSplitAnchor,
) -> bool {
let transform = spatial_tree
.get_world_transform(prim_spatial_node_index);
let matrix = transform.clone().into_transform().cast();
// Apply the local clip rect here, before splitting. This is
// because the local clip rect can't be applied in the vertex
// shader for split composites, since we are drawing polygons
// rather that rectangles. The interpolation still works correctly
// since we determine the UVs by doing a bilerp with a factor
// from the original local rect.
let local_rect = match original_local_rect
.intersection(combined_local_clip_rect)
{
Some(rect) => rect.cast(),
None => return false,
};
let world_rect = world_rect.cast();
match transform {
CoordinateSpaceMapping::Local => {
let polygon = Polygon::from_rect(
local_rect.to_rect() * Scale::new(1.0),
plane_split_anchor,
);
splitter.add(polygon);
}
CoordinateSpaceMapping::ScaleOffset(scale_offset) if scale_offset.scale == Vector2D::new(1.0, 1.0) => {
let inv_matrix = scale_offset.inverse().to_transform().cast();
let polygon = Polygon::from_transformed_rect_with_inverse(
local_rect.to_rect(),
&matrix,
&inv_matrix,
plane_split_anchor,
).unwrap();
splitter.add(polygon);
}
CoordinateSpaceMapping::ScaleOffset(_) |
CoordinateSpaceMapping::Transform(_) => {
let mut clipper = Clipper::new();
let results = clipper.clip_transformed(
Polygon::from_rect(
local_rect.to_rect(),
plane_split_anchor,
),
&matrix,
Some(world_rect.to_rect()),
);
if let Ok(results) = results {
for poly in results {
splitter.add(poly);
}
}
}
}
true
}
pub fn resolve_split_planes(
&mut self,
splitter: &mut PlaneSplitter,
gpu_cache: &mut GpuCache,
spatial_tree: &SpatialTree,
) {
let ordered = match self.context_3d {
Picture3DContext::In { root_data: Some(ref mut list), .. } => list,
_ => panic!("Expected to find 3D context root"),
};
ordered.clear();
// Process the accumulated split planes and order them for rendering.
// Z axis is directed at the screen, `sort` is ascending, and we need back-to-front order.
let sorted = splitter.sort(vec3(0.0, 0.0, 1.0));
ordered.reserve(sorted.len());
for poly in sorted {
let cluster = &self.prim_list.clusters[poly.anchor.cluster_index];
let spatial_node_index = cluster.spatial_node_index;
let transform = match spatial_tree
.get_world_transform(spatial_node_index)
.inverse()
{
Some(transform) => transform.into_transform(),
// logging this would be a bit too verbose
None => continue,
};
let local_points = [
transform.transform_point3d(poly.points[0].cast()),
transform.transform_point3d(poly.points[1].cast()),
transform.transform_point3d(poly.points[2].cast()),
transform.transform_point3d(poly.points[3].cast()),
];
// If any of the points are un-transformable, just drop this
// plane from drawing.
if local_points.iter().any(|p| p.is_none()) {
continue;
}
let p0 = local_points[0].unwrap();
let p1 = local_points[1].unwrap();
let p2 = local_points[2].unwrap();
let p3 = local_points[3].unwrap();
let gpu_blocks = [
[p0.x, p0.y, p1.x, p1.y].into(),
[p2.x, p2.y, p3.x, p3.y].into(),
];
let gpu_handle = gpu_cache.push_per_frame_blocks(&gpu_blocks);
let gpu_address = gpu_cache.get_address(&gpu_handle);
ordered.push(OrderedPictureChild {
anchor: poly.anchor,
spatial_node_index,
gpu_address,
});
}
}
/// Called during initial picture traversal, before we know the
/// bounding rect of children. It is possible to determine the
/// surface / raster config now though.
fn pre_update(
&mut self,
state: &mut PictureUpdateState,
frame_context: &FrameBuildingContext,
tile_caches: &mut FastHashMap<SliceId, Box<TileCacheInstance>>,
) -> Option<PrimitiveList> {
// Reset raster config in case we early out below.
self.raster_config = None;
// Resolve animation properties, and early out if the filter
// properties make this picture invisible.
if !self.resolve_scene_properties(frame_context.scene_properties) {
return None;
}
// For out-of-preserve-3d pictures, the backface visibility is determined by
// the local transform only.
// Note: we aren't taking the transform relativce to the parent picture,
// since picture tree can be more dense than the corresponding spatial tree.
if !self.is_backface_visible {
if let Picture3DContext::Out = self.context_3d {
match frame_context.spatial_tree.get_local_visible_face(self.spatial_node_index) {
VisibleFace::Front => {}
VisibleFace::Back => return None,
}
}
}
// See if this picture actually needs a surface for compositing.
// TODO(gw): FPC: Remove the actual / requested composite mode distinction.
let actual_composite_mode = self.requested_composite_mode.clone();
if let Some(composite_mode) = actual_composite_mode {
// Retrieve the positioning node information for the parent surface.
let parent_raster_node_index = state.current_surface().raster_spatial_node_index;
let parent_device_pixel_scale = state.current_surface().device_pixel_scale;
let surface_spatial_node_index = self.spatial_node_index;
let surface_to_parent_transform = frame_context.spatial_tree
.get_relative_transform(surface_spatial_node_index, parent_raster_node_index);
// Currently, we ensure that the scaling factor is >= 1.0 as a smaller scale factor can result in blurry output.
let mut min_scale = 1.0;
let mut max_scale = 1.0e32;
// Check if there is perspective or if an SVG filter is applied, and thus whether a new
// rasterization root should be established.
let establishes_raster_root = match composite_mode {
PictureCompositeMode::TileCache { slice_id } => {
let tile_cache = tile_caches.get_mut(&slice_id).unwrap();
// We only update the raster scale if we're in high quality zoom mode, or there is no
// pinch-zoom active. This means that in low quality pinch-zoom, we retain the initial
// scale factor until the zoom ends, then select a high quality zoom factor for the next
// frame to be drawn.
let update_raster_scale =
!frame_context.fb_config.low_quality_pinch_zoom ||
!frame_context.spatial_tree.spatial_nodes[tile_cache.spatial_node_index.0 as usize].is_ancestor_or_self_zooming;
if update_raster_scale {
// Get the complete scale-offset from local space to device space
let local_to_device = get_relative_scale_offset(
tile_cache.spatial_node_index,
ROOT_SPATIAL_NODE_INDEX,
frame_context.spatial_tree,
);
tile_cache.current_raster_scale = local_to_device.scale.x;
}
// We may need to minify when zooming out picture cache tiles
min_scale = 0.0;
if frame_context.fb_config.low_quality_pinch_zoom {
// Force the scale for this tile cache to be the currently selected
// local raster scale, so we don't need to rasterize tiles during
// the pinch-zoom.
min_scale = tile_cache.current_raster_scale;
max_scale = tile_cache.current_raster_scale;
}
// We know that picture cache tiles are always axis-aligned, but we want to establish
// raster roots for them, so that we can easily control the scale factors used depending
// on whether we want to zoom in high-performance or high-quality mode.
true
}
PictureCompositeMode::SvgFilter(..) => {
// Filters must be applied before transforms, to do this, we can mark this picture as establishing a raster root.
true
}
PictureCompositeMode::MixBlend(..) |
PictureCompositeMode::Filter(..) |
PictureCompositeMode::ComponentTransferFilter(..) |
PictureCompositeMode::Blit(..) => {
// TODO(gw): As follow ups, individually move each of these composite modes to create raster roots.
surface_to_parent_transform.is_perspective()
}
};
let (raster_spatial_node_index, device_pixel_scale) = if establishes_raster_root {
// If a raster root is established, this surface should be scaled based on the scale factors of the surface raster to parent raster transform.
// This scaling helps ensure that the content in this surface does not become blurry or pixelated when composited in the parent surface.
let scale_factors = surface_to_parent_transform.scale_factors();
// Pick the largest scale factor of the transform for the scaling factor.
let scaling_factor = scale_factors.0.max(scale_factors.1).max(min_scale).min(max_scale);
let device_pixel_scale = parent_device_pixel_scale * Scale::new(scaling_factor);
(surface_spatial_node_index, device_pixel_scale)
} else {
(parent_raster_node_index, parent_device_pixel_scale)
};
let scale_factors = frame_context
.spatial_tree
.get_relative_transform(surface_spatial_node_index, raster_spatial_node_index)
.scale_factors();
// This inflation factor is to be applied to all primitives within the surface.
// Only inflate if the caller hasn't already inflated the bounding rects for this filter.
let mut inflation_factor = 0.0;
if self.options.inflate_if_required {
match composite_mode {
PictureCompositeMode::Filter(Filter::Blur(width, height)) => {
let blur_radius = f32::max(clamp_blur_radius(width, scale_factors), clamp_blur_radius(height, scale_factors));
// The amount of extra space needed for primitives inside
// this picture to ensure the visibility check is correct.
inflation_factor = blur_radius * BLUR_SAMPLE_SCALE;
}
PictureCompositeMode::SvgFilter(ref primitives, _) => {
let mut max = 0.0;
for primitive in primitives {
if let FilterPrimitiveKind::Blur(ref blur) = primitive.kind {
max = f32::max(max, blur.width);
max = f32::max(max, blur.height);
}
}
inflation_factor = clamp_blur_radius(max, scale_factors) * BLUR_SAMPLE_SCALE;
}
PictureCompositeMode::Filter(Filter::DropShadows(ref shadows)) => {
// TODO(gw): This is incorrect, since we don't consider the drop shadow
// offset. However, fixing that is a larger task, so this is
// an improvement on the current case (this at least works where
// the offset of the drop-shadow is ~0, which is often true).
// Can't use max_by_key here since f32 isn't Ord
let mut max_blur_radius: f32 = 0.0;
for shadow in shadows {
max_blur_radius = max_blur_radius.max(shadow.blur_radius);
}
inflation_factor = clamp_blur_radius(max_blur_radius, scale_factors) * BLUR_SAMPLE_SCALE;
}
_ => {}
}
}
let surface = SurfaceInfo::new(
surface_spatial_node_index,
raster_spatial_node_index,
inflation_factor,
frame_context.global_screen_world_rect,
&frame_context.spatial_tree,
device_pixel_scale,
scale_factors,
);
self.raster_config = Some(RasterConfig {
composite_mode,
establishes_raster_root,
surface_index: state.push_surface(surface),
root_scaling_factor: 1.0,
clipped_bounding_rect: WorldRect::zero(),
});
}
Some(mem::replace(&mut self.prim_list, PrimitiveList::empty()))
}
/// Called after updating child pictures during the initial
/// picture traversal.
fn post_update(
&mut self,
prim_list: PrimitiveList,
state: &mut PictureUpdateState,
frame_context: &FrameBuildingContext,
data_stores: &mut DataStores,
) {
// Restore the pictures list used during recursion.
self.prim_list = prim_list;
let surface = state.current_surface_mut();
for cluster in &mut self.prim_list.clusters {
cluster.flags.remove(ClusterFlags::IS_VISIBLE);
// Skip the cluster if backface culled.
if !cluster.flags.contains(ClusterFlags::IS_BACKFACE_VISIBLE) {
// For in-preserve-3d primitives and pictures, the backface visibility is
// evaluated relative to the containing block.
if let Picture3DContext::In { ancestor_index, .. } = self.context_3d {
let mut face = VisibleFace::Front;
frame_context.spatial_tree.get_relative_transform_with_face(
cluster.spatial_node_index,
ancestor_index,
Some(&mut face),
);
if face == VisibleFace::Back {
continue
}
}
}
// No point including this cluster if it can't be transformed
let spatial_node = &frame_context
.spatial_tree
.spatial_nodes[cluster.spatial_node_index.0 as usize];
if !spatial_node.invertible {
continue;
}
// Update any primitives/cluster bounding rects that can only be done
// with information available during frame building.
if cluster.flags.contains(ClusterFlags::IS_BACKDROP_FILTER) {
let backdrop_to_world_mapper = SpaceMapper::new_with_target(
ROOT_SPATIAL_NODE_INDEX,
cluster.spatial_node_index,
LayoutRect::max_rect(),
frame_context.spatial_tree,
);
for prim_instance in &mut self.prim_list.prim_instances[cluster.prim_range()] {
match prim_instance.kind {
PrimitiveInstanceKind::Backdrop { data_handle, .. } => {
// The actual size and clip rect of this primitive are determined by computing the bounding
// box of the projected rect of the backdrop-filter element onto the backdrop.
let prim_data = &mut data_stores.backdrop[data_handle];
let spatial_node_index = prim_data.kind.spatial_node_index;
// We cannot use the relative transform between the backdrop and the element because
// that doesn't take into account any projection transforms that both spatial nodes are children of.
// Instead, we first project from the element to the world space and get a flattened 2D bounding rect
// in the screen space, we then map this rect from the world space to the backdrop space to get the
// proper bounding box where the backdrop-filter needs to be processed.
let prim_to_world_mapper = SpaceMapper::new_with_target(
ROOT_SPATIAL_NODE_INDEX,
spatial_node_index,
LayoutRect::max_rect(),
frame_context.spatial_tree,
);
// First map to the screen and get a flattened rect
let prim_rect = prim_to_world_mapper
.map(&prim_data.kind.border_rect)
.unwrap_or_else(LayoutRect::zero);
// Backwards project the flattened rect onto the backdrop
let prim_rect = backdrop_to_world_mapper
.unmap(&prim_rect)
.unwrap_or_else(LayoutRect::zero);
// TODO(aosmond): Is this safe? Updating the primitive size during
// frame building is usually problematic since scene building will cache
// the primitive information in the GPU already.
prim_data.common.prim_rect = prim_rect;
prim_instance.clip_set.local_clip_rect = prim_rect;
// Update the cluster bounding rect now that we have the backdrop rect.
cluster.bounding_rect = cluster.bounding_rect.union(&prim_rect);
}
_ => {
panic!("BUG: unexpected deferred primitive kind for cluster updates");
}
}
}
}
// Map the cluster bounding rect into the space of the surface, and
// include it in the surface bounding rect.
surface.map_local_to_surface.set_target_spatial_node(
cluster.spatial_node_index,
frame_context.spatial_tree,
);
// Mark the cluster visible, since it passed the invertible and
// backface checks.
cluster.flags.insert(ClusterFlags::IS_VISIBLE);
if let Some(cluster_rect) = surface.map_local_to_surface.map(&cluster.bounding_rect) {
surface.rect = surface.rect.union(&cluster_rect);
}
}
// If this picture establishes a surface, then map the surface bounding
// rect into the parent surface coordinate space, and propagate that up
// to the parent.
if let Some(ref mut raster_config) = self.raster_config {
let surface = state.current_surface_mut();
// Inflate the local bounding rect if required by the filter effect.
if self.options.inflate_if_required {
surface.rect = raster_config.composite_mode.inflate_picture_rect(surface.rect, surface.scale_factors);
}
let mut surface_rect = surface.rect * Scale::new(1.0);
// Pop this surface from the stack
let surface_index = state.pop_surface();
debug_assert_eq!(surface_index, raster_config.surface_index);
// Set the estimated and precise local rects. The precise local rect
// may be changed again during frame visibility.
self.estimated_local_rect = surface_rect;
self.precise_local_rect = surface_rect;
// Drop shadows draw both a content and shadow rect, so need to expand the local
// rect of any surfaces to be composited in parent surfaces correctly.
match raster_config.composite_mode {
PictureCompositeMode::Filter(Filter::DropShadows(ref shadows)) => {
for shadow in shadows {
let shadow_rect = self.estimated_local_rect.translate(shadow.offset);
surface_rect = surface_rect.union(&shadow_rect);
}
}
_ => {}
}
// Propagate up to parent surface, now that we know this surface's static rect
let parent_surface = state.current_surface_mut();
parent_surface.map_local_to_surface.set_target_spatial_node(
self.spatial_node_index,
frame_context.spatial_tree,
);
if let Some(parent_surface_rect) = parent_surface
.map_local_to_surface
.map(&surface_rect)
{
parent_surface.rect = parent_surface.rect.union(&parent_surface_rect);
}
}
}
pub fn prepare_for_render(
&mut self,
frame_context: &FrameBuildingContext,
frame_state: &mut FrameBuildingState,
data_stores: &mut DataStores,
) -> bool {
let mut pic_state_for_children = self.take_state();
if let Some(ref mut splitter) = pic_state_for_children.plane_splitter {
self.resolve_split_planes(
splitter,
&mut frame_state.gpu_cache,
&frame_context.spatial_tree,
);
}
let raster_config = match self.raster_config {
Some(ref mut raster_config) => raster_config,
None => {
return true
}
};
// TODO(gw): Almost all of the Picture types below use extra_gpu_cache_data
// to store the same type of data. The exception is the filter
// with a ColorMatrix, which stores the color matrix here. It's
// probably worth tidying this code up to be a bit more consistent.
// Perhaps store the color matrix after the common data, even though
// it's not used by that shader.
match raster_config.composite_mode {
PictureCompositeMode::TileCache { .. } => {}
PictureCompositeMode::Filter(Filter::Blur(..)) => {}
PictureCompositeMode::Filter(Filter::DropShadows(ref shadows)) => {
self.extra_gpu_data_handles.resize(shadows.len(), GpuCacheHandle::new());
for (shadow, extra_handle) in shadows.iter().zip(self.extra_gpu_data_handles.iter_mut()) {
if let Some(mut request) = frame_state.gpu_cache.request(extra_handle) {
// Basic brush primitive header is (see end of prepare_prim_for_render_inner in prim_store.rs)
// [brush specific data]
// [segment_rect, segment data]
let shadow_rect = self.precise_local_rect.translate(shadow.offset);
// ImageBrush colors
request.push(shadow.color.premultiplied());
request.push(PremultipliedColorF::WHITE);
request.push([
self.precise_local_rect.width(),
self.precise_local_rect.height(),
0.0,
0.0,
]);
// segment rect / extra data
request.push(shadow_rect);
request.push([0.0, 0.0, 0.0, 0.0]);
}
}
}
PictureCompositeMode::Filter(ref filter) => {
match *filter {
Filter::ColorMatrix(ref m) => {
if self.extra_gpu_data_handles.is_empty() {
self.extra_gpu_data_handles.push(GpuCacheHandle::new());
}
if let Some(mut request) = frame_state.gpu_cache.request(&mut self.extra_gpu_data_handles[0]) {
for i in 0..5 {
request.push([m[i*4], m[i*4+1], m[i*4+2], m[i*4+3]]);
}
}
}
Filter::Flood(ref color) => {
if self.extra_gpu_data_handles.is_empty() {
self.extra_gpu_data_handles.push(GpuCacheHandle::new());
}
if let Some(mut request) = frame_state.gpu_cache.request(&mut self.extra_gpu_data_handles[0]) {
request.push(color.to_array());
}
}
_ => {}
}
}
PictureCompositeMode::ComponentTransferFilter(handle) => {
let filter_data = &mut data_stores.filter_data[handle];
filter_data.update(frame_state);
}
PictureCompositeMode::MixBlend(..) |
PictureCompositeMode::Blit(_) |
PictureCompositeMode::SvgFilter(..) => {}
}
true
}
}
// Calculate a single homogeneous screen-space UV for a picture.
fn calculate_screen_uv(
local_pos: &PicturePoint,
transform: &PictureToRasterTransform,
rendered_rect: &DeviceRect,
device_pixel_scale: DevicePixelScale,
) -> DeviceHomogeneousVector {
let raster_pos = transform.transform_point2d_homogeneous(*local_pos);
DeviceHomogeneousVector::new(
(raster_pos.x * device_pixel_scale.0 - rendered_rect.min.x * raster_pos.w) / rendered_rect.width(),
(raster_pos.y * device_pixel_scale.0 - rendered_rect.min.y * raster_pos.w) / rendered_rect.height(),
0.0,
raster_pos.w,
)
}
// Calculate a UV rect within an image based on the screen space
// vertex positions of a picture.
fn calculate_uv_rect_kind(
pic_rect: &PictureRect,
transform: &PictureToRasterTransform,
rendered_rect: &DeviceRect,
device_pixel_scale: DevicePixelScale,
) -> UvRectKind {
let top_left = calculate_screen_uv(
&pic_rect.top_left(),
transform,
&rendered_rect,
device_pixel_scale,
);
let top_right = calculate_screen_uv(
&pic_rect.top_right(),
transform,
&rendered_rect,
device_pixel_scale,
);
let bottom_left = calculate_screen_uv(
&pic_rect.bottom_left(),
transform,
&rendered_rect,
device_pixel_scale,
);
let bottom_right = calculate_screen_uv(
&pic_rect.bottom_right(),
transform,
&rendered_rect,
device_pixel_scale,
);
UvRectKind::Quad {
top_left,
top_right,
bottom_left,
bottom_right,
}
}
fn create_raster_mappers(
surface_spatial_node_index: SpatialNodeIndex,
raster_spatial_node_index: SpatialNodeIndex,
world_rect: WorldRect,
spatial_tree: &SpatialTree,
) -> (SpaceMapper<RasterPixel, WorldPixel>, SpaceMapper<PicturePixel, RasterPixel>) {
let map_raster_to_world = SpaceMapper::new_with_target(
ROOT_SPATIAL_NODE_INDEX,
raster_spatial_node_index,
world_rect,
spatial_tree,
);
let raster_bounds = map_raster_to_world
.unmap(&world_rect)
.unwrap_or_else(RasterRect::max_rect);
let map_pic_to_raster = SpaceMapper::new_with_target(
raster_spatial_node_index,
surface_spatial_node_index,
raster_bounds,
spatial_tree,
);
(map_raster_to_world, map_pic_to_raster)
}
fn get_transform_key(
spatial_node_index: SpatialNodeIndex,
cache_spatial_node_index: SpatialNodeIndex,
spatial_tree: &SpatialTree,
) -> TransformKey {
// Note: this is the only place where we don't know beforehand if the tile-affecting
// spatial node is below or above the current picture.
let transform = if cache_spatial_node_index >= spatial_node_index {
spatial_tree
.get_relative_transform(
cache_spatial_node_index,
spatial_node_index,
)
} else {
spatial_tree
.get_relative_transform(
spatial_node_index,
cache_spatial_node_index,
)
};
transform.into()
}
/// A key for storing primitive comparison results during tile dependency tests.
#[derive(Debug, Copy, Clone, Eq, Hash, PartialEq)]
struct PrimitiveComparisonKey {
prev_index: PrimitiveDependencyIndex,
curr_index: PrimitiveDependencyIndex,
}
/// Information stored an image dependency
#[derive(Debug, Copy, Clone, PartialEq)]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct ImageDependency {
pub key: ImageKey,
pub generation: ImageGeneration,
}
impl ImageDependency {
pub const INVALID: ImageDependency = ImageDependency {
key: ImageKey::DUMMY,
generation: ImageGeneration::INVALID,
};
}
/// A helper struct to compare a primitive and all its sub-dependencies.
struct PrimitiveComparer<'a> {
clip_comparer: CompareHelper<'a, ItemUid>,
transform_comparer: CompareHelper<'a, SpatialNodeKey>,
image_comparer: CompareHelper<'a, ImageDependency>,
opacity_comparer: CompareHelper<'a, OpacityBinding>,
color_comparer: CompareHelper<'a, ColorBinding>,
resource_cache: &'a ResourceCache,
spatial_node_comparer: &'a mut SpatialNodeComparer,
opacity_bindings: &'a FastHashMap<PropertyBindingId, OpacityBindingInfo>,
color_bindings: &'a FastHashMap<PropertyBindingId, ColorBindingInfo>,
}
impl<'a> PrimitiveComparer<'a> {
fn new(
prev: &'a TileDescriptor,
curr: &'a TileDescriptor,
resource_cache: &'a ResourceCache,
spatial_node_comparer: &'a mut SpatialNodeComparer,
opacity_bindings: &'a FastHashMap<PropertyBindingId, OpacityBindingInfo>,
color_bindings: &'a FastHashMap<PropertyBindingId, ColorBindingInfo>,
) -> Self {
let clip_comparer = CompareHelper::new(
&prev.clips,
&curr.clips,
);
let transform_comparer = CompareHelper::new(
&prev.transforms,
&curr.transforms,
);
let image_comparer = CompareHelper::new(
&prev.images,
&curr.images,
);
let opacity_comparer = CompareHelper::new(
&prev.opacity_bindings,
&curr.opacity_bindings,
);
let color_comparer = CompareHelper::new(
&prev.color_bindings,
&curr.color_bindings,
);
PrimitiveComparer {
clip_comparer,
transform_comparer,
image_comparer,
opacity_comparer,
color_comparer,
resource_cache,
spatial_node_comparer,
opacity_bindings,
color_bindings,
}
}
fn reset(&mut self) {
self.clip_comparer.reset();
self.transform_comparer.reset();
self.image_comparer.reset();
self.opacity_comparer.reset();
self.color_comparer.reset();
}
fn advance_prev(&mut self, prim: &PrimitiveDescriptor) {
self.clip_comparer.advance_prev(prim.clip_dep_count);
self.transform_comparer.advance_prev(prim.transform_dep_count);
self.image_comparer.advance_prev(prim.image_dep_count);
self.opacity_comparer.advance_prev(prim.opacity_binding_dep_count);
self.color_comparer.advance_prev(prim.color_binding_dep_count);
}
fn advance_curr(&mut self, prim: &PrimitiveDescriptor) {
self.clip_comparer.advance_curr(prim.clip_dep_count);
self.transform_comparer.advance_curr(prim.transform_dep_count);
self.image_comparer.advance_curr(prim.image_dep_count);
self.opacity_comparer.advance_curr(prim.opacity_binding_dep_count);
self.color_comparer.advance_curr(prim.color_binding_dep_count);
}
/// Check if two primitive descriptors are the same.
fn compare_prim(
&mut self,
prev: &PrimitiveDescriptor,
curr: &PrimitiveDescriptor,
opt_detail: Option<&mut PrimitiveCompareResultDetail>,
) -> PrimitiveCompareResult {
let resource_cache = self.resource_cache;
let spatial_node_comparer = &mut self.spatial_node_comparer;
let opacity_bindings = self.opacity_bindings;
let color_bindings = self.color_bindings;
// Check equality of the PrimitiveDescriptor
if prev != curr {
if let Some(detail) = opt_detail {
*detail = PrimitiveCompareResultDetail::Descriptor{ old: *prev, new: *curr };
}
return PrimitiveCompareResult::Descriptor;
}
// Check if any of the clips this prim has are different.
let mut clip_result = CompareHelperResult::Equal;
if !self.clip_comparer.is_same(
prev.clip_dep_count,
curr.clip_dep_count,
|prev, curr| {
prev == curr
},
if opt_detail.is_some() { Some(&mut clip_result) } else { None }
) {
if let Some(detail) = opt_detail { *detail = PrimitiveCompareResultDetail::Clip{ detail: clip_result }; }
return PrimitiveCompareResult::Clip;
}
// Check if any of the transforms this prim has are different.
let mut transform_result = CompareHelperResult::Equal;
if !self.transform_comparer.is_same(
prev.transform_dep_count,
curr.transform_dep_count,
|prev, curr| {
spatial_node_comparer.are_transforms_equivalent(prev, curr)
},
if opt_detail.is_some() { Some(&mut transform_result) } else { None },
) {
if let Some(detail) = opt_detail {
*detail = PrimitiveCompareResultDetail::Transform{ detail: transform_result };
}
return PrimitiveCompareResult::Transform;
}
// Check if any of the images this prim has are different.
let mut image_result = CompareHelperResult::Equal;
if !self.image_comparer.is_same(
prev.image_dep_count,
curr.image_dep_count,
|prev, curr| {
prev == curr &&
resource_cache.get_image_generation(curr.key) == curr.generation
},
if opt_detail.is_some() { Some(&mut image_result) } else { None },
) {
if let Some(detail) = opt_detail {
*detail = PrimitiveCompareResultDetail::Image{ detail: image_result };
}
return PrimitiveCompareResult::Image;
}
// Check if any of the opacity bindings this prim has are different.
let mut bind_result = CompareHelperResult::Equal;
if !self.opacity_comparer.is_same(
prev.opacity_binding_dep_count,
curr.opacity_binding_dep_count,
|prev, curr| {
if prev != curr {
return false;
}
if let OpacityBinding::Binding(id) = curr {
if opacity_bindings
.get(id)
.map_or(true, |info| info.changed) {
return false;
}
}
true
},
if opt_detail.is_some() { Some(&mut bind_result) } else { None },
) {
if let Some(detail) = opt_detail {
*detail = PrimitiveCompareResultDetail::OpacityBinding{ detail: bind_result };
}
return PrimitiveCompareResult::OpacityBinding;
}
// Check if any of the color bindings this prim has are different.
let mut bind_result = CompareHelperResult::Equal;
if !self.color_comparer.is_same(
prev.color_binding_dep_count,
curr.color_binding_dep_count,
|prev, curr| {
if prev != curr {
return false;
}
if let ColorBinding::Binding(id) = curr {
if color_bindings
.get(id)
.map_or(true, |info| info.changed) {
return false;
}
}
true
},
if opt_detail.is_some() { Some(&mut bind_result) } else { None },
) {
if let Some(detail) = opt_detail {
*detail = PrimitiveCompareResultDetail::ColorBinding{ detail: bind_result };
}
return PrimitiveCompareResult::ColorBinding;
}
PrimitiveCompareResult::Equal
}
}
/// Details for a node in a quadtree that tracks dirty rects for a tile.
#[cfg_attr(any(feature="capture",feature="replay"), derive(Clone))]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub enum TileNodeKind {
Leaf {
/// The index buffer of primitives that affected this tile previous frame
#[cfg_attr(any(feature = "capture", feature = "replay"), serde(skip))]
prev_indices: Vec<PrimitiveDependencyIndex>,
/// The index buffer of primitives that affect this tile on this frame
#[cfg_attr(any(feature = "capture", feature = "replay"), serde(skip))]
curr_indices: Vec<PrimitiveDependencyIndex>,
/// A bitset of which of the last 64 frames have been dirty for this leaf.
#[cfg_attr(any(feature = "capture", feature = "replay"), serde(skip))]
dirty_tracker: u64,
/// The number of frames since this node split or merged.
#[cfg_attr(any(feature = "capture", feature = "replay"), serde(skip))]
frames_since_modified: usize,
},
Node {
/// The four children of this node
children: Vec<TileNode>,
},
}
/// The kind of modification that a tile wants to do
#[derive(Copy, Clone, PartialEq, Debug)]
enum TileModification {
Split,
Merge,
}
/// A node in the dirty rect tracking quadtree.
#[cfg_attr(any(feature="capture",feature="replay"), derive(Clone))]
#[cfg_attr(feature = "capture", derive(Serialize))]
#[cfg_attr(feature = "replay", derive(Deserialize))]
pub struct TileNode {
/// Leaf or internal node
pub kind: TileNodeKind,
/// Rect of this node in the same space as the tile cache picture
pub rect: PictureBox2D,
}
impl TileNode {
/// Construct a new leaf node, with the given primitive dependency index buffer
fn new_leaf(curr_indices: Vec<PrimitiveDependencyIndex>) -> Self {
TileNode {
kind: TileNodeKind::Leaf {
prev_indices: Vec::new(),
curr_indices,
dirty_tracker: 0,
frames_since_modified: 0,
},
rect: PictureBox2D::zero(),
}
}
/// Draw debug information about this tile node
fn draw_debug_rects(
&self,
pic_to_world_mapper: &SpaceMapper<PicturePixel, WorldPixel>,
is_opaque: bool,
local_valid_rect: PictureRect,
scratch: &mut PrimitiveScratchBuffer,
global_device_pixel_scale: DevicePixelScale,
) {
match self.kind {
TileNodeKind::Leaf { dirty_tracker, .. } => {
let color = if (dirty_tracker & 1) != 0 {
debug_colors::RED
} else if is_opaque {
debug_colors::GREEN
} else {
debug_colors::YELLOW
};
if let Some(local_rect) = local_valid_rect.intersection(&self.rect) {
let world_rect = pic_to_world_mapper
.map(&local_rect)
.unwrap();
let device_rect = world_rect * global_device_pixel_scale;
let outer_color = color.scale_alpha(0.3);
let inner_color = outer_color.scale_alpha(0.5);
scratch.push_debug_rect(
device_rect.inflate(-3.0, -3.0),
outer_color,
inner_color
);
}
}
TileNodeKind::Node { ref children, .. } => {
for child in children.iter() {
child.draw_debug_rects(
pic_to_world_mapper,
is_opaque,
local_valid_rect,
scratch,
global_device_pixel_scale,
);
}
}
}
}
/// Calculate the four child rects for a given node
fn get_child_rects(
rect: &PictureBox2D,
result: &mut [PictureBox2D; 4],
) {
let p0 = rect.min;
let p1 = rect.max;
let pc = p0 + rect.size() * 0.5;
*result = [
PictureBox2D::new(
p0,
pc,
),
PictureBox2D::new(
PicturePoint::new(pc.x, p0.y),
PicturePoint::new(p1.x, pc.y),
),
PictureBox2D::new(
PicturePoint::new(p0.x, pc.y),
PicturePoint::new(pc.x, p1.y),
),
PictureBox2D::new(
pc,
p1,
),
];
}
/// Called during pre_update, to clear the current dependencies
fn clear(
&mut self,
rect: PictureBox2D,
) {
self.rect = rect;
match self.kind {
TileNodeKind::Leaf { ref mut prev_indices, ref mut curr_indices, ref mut dirty_tracker, ref mut frames_since_modified } => {
// Swap current dependencies to be the previous frame
mem::swap(prev_indices, curr_indices);
curr_indices.clear();
// Note that another frame has passed in the dirty bit trackers
*dirty_tracker = *dirty_tracker << 1;
*frames_since_modified += 1;
}
TileNodeKind::Node { ref mut children, .. } => {
let mut child_rects = [PictureBox2D::zero(); 4];
TileNode::get_child_rects(&rect, &mut child_rects);
assert_eq!(child_rects.len(), children.len());
for (child, rect) in children.iter_mut().zip(child_rects.iter()) {
child.clear(*rect);
}
}
}
}
/// Add a primitive dependency to this node
fn add_prim(
&mut self,
index: PrimitiveDependencyIndex,
prim_rect: &PictureBox2D,
) {
match self.kind {
TileNodeKind::Leaf { ref mut curr_indices, .. } => {
curr_indices.push(index);
}
TileNodeKind::Node { ref mut children, .. } => {
for child in children.iter_mut() {
if child.rect.intersects(prim_rect) {
child.add_prim(index, prim_rect);
}
}
}
}
}
/// Apply a merge or split operation to this tile, if desired
fn maybe_merge_or_split(
&mut self,
level: i32,
curr_prims: &[PrimitiveDescriptor],
max_split_levels: i32,
) {
// Determine if this tile wants to split or merge
let mut tile_mod = None;
fn get_dirty_frames(
dirty_tracker: u64,
frames_since_modified: usize,
) -> Option<u32> {
// Only consider splitting or merging at least 64 frames since we last changed
if frames_since_modified > 64 {
// Each bit in the tracker is a frame that was recently invalidated
Some(dirty_tracker.count_ones())
} else {
None
}
}
match self.kind {
TileNodeKind::Leaf { dirty_tracker, frames_since_modified, .. } => {
// Only consider splitting if the tree isn't too deep.
if level < max_split_levels {
if let Some(dirty_frames) = get_dirty_frames(dirty_tracker, frames_since_modified) {
// If the tile has invalidated > 50% of the recent number of frames, split.
if dirty_frames > 32 {
tile_mod = Some(TileModification::Split);
}
}
}
}
TileNodeKind::Node { ref children, .. } => {
// There's two conditions that cause a node to merge its children:
// (1) If _all_ the child nodes are constantly invalidating, then we are wasting
// CPU time tracking dependencies for each child, so merge them.
// (2) If _none_ of the child nodes are recently invalid, then the page content
// has probably changed, and we no longer need to track fine grained dependencies here.
let mut static_count = 0;
let mut changing_count = 0;
for child in children {
// Only consider merging nodes at the edge of the tree.
if let TileNodeKind::Leaf { dirty_tracker, frames_since_modified, .. } = child.kind {
if let Some(dirty_frames) = get_dirty_frames(dirty_tracker, frames_since_modified) {
if dirty_frames == 0 {
// Hasn't been invalidated for some time
static_count += 1;
} else if dirty_frames == 64 {
// Is constantly being invalidated
changing_count += 1;
}
}
}
// Only merge if all the child tiles are in agreement. Otherwise, we have some
// that are invalidating / static, and it's worthwhile tracking dependencies for
// them individually.
if static_count == 4 || changing_count == 4 {
tile_mod = Some(TileModification::Merge);
}
}
}
}
match tile_mod {
Some(TileModification::Split) => {
// To split a node, take the current dependency index buffer for this node, and
// split it into child index buffers.
let curr_indices = match self.kind {
TileNodeKind::Node { .. } => {
unreachable!("bug - only leaves can split");
}
TileNodeKind::Leaf { ref mut curr_indices, .. } => {
curr_indices.take()
}
};
let mut child_rects = [PictureBox2D::zero(); 4];
TileNode::get_child_rects(&self.rect, &mut child_rects);
let mut child_indices = [
Vec::new(),
Vec::new(),
Vec::new(),
Vec::new(),
];
// Step through the index buffer, and add primitives to each of the children
// that they intersect.
for index in curr_indices {
let prim = &curr_prims[index.0 as usize];
for (child_rect, indices) in child_rects.iter().zip(child_indices.iter_mut()) {
if prim.prim_clip_box.intersects(child_rect) {
indices.push(index);
}
}
}
// Create the child nodes and switch from leaf -> node.
let children = child_indices
.iter_mut()
.map(|i| TileNode::new_leaf(mem::replace(i, Vec::new())))
.collect();
self.kind = TileNodeKind::Node {
children,
};
}
Some(TileModification::Merge) => {
// Construct a merged index buffer by collecting the dependency index buffers
// from each child, and merging them into a de-duplicated index buffer.
let merged_indices = match self.kind {
TileNodeKind::Node { ref mut children, .. } => {
let mut merged_indices = Vec::new();
for child in children.iter() {
let child_indices = match child.kind {
TileNodeKind::Leaf { ref curr_indices, .. } => {
curr_indices
}
TileNodeKind::Node { .. } => {
unreachable!("bug: child is not a leaf");
}
};
merged_indices.extend_from_slice(child_indices);
}
merged_indices.sort();
merged_indices.dedup();
merged_indices
}
TileNodeKind::Leaf { .. } => {
unreachable!("bug - trying to merge a leaf");
}
};
// Switch from a node to a leaf, with the combined index buffer
self.kind = TileNodeKind::Leaf {
prev_indices: Vec::new(),
curr_indices: merged_indices,
dirty_tracker: 0,
frames_since_modified: 0,
};
}
None => {
// If this node didn't merge / split, then recurse into children
// to see if they want to split / merge.
if let TileNodeKind::Node { ref mut children, .. } = self.kind {
for child in children.iter_mut() {
child.maybe_merge_or_split(
level+1,
curr_prims,
max_split_levels,
);
}
}
}
}
}
/// Update the dirty state of this node, building the overall dirty rect
fn update_dirty_rects(
&mut self,
prev_prims: &[PrimitiveDescriptor],
curr_prims: &[PrimitiveDescriptor],
prim_comparer: &mut PrimitiveComparer,
dirty_rect: &mut PictureBox2D,
compare_cache: &mut FastHashMap<PrimitiveComparisonKey, PrimitiveCompareResult>,
invalidation_reason: &mut Option<InvalidationReason>,
frame_context: &FrameVisibilityContext,
) {
match self.kind {
TileNodeKind::Node { ref mut children, .. } => {
for child in children.iter_mut() {
child.update_dirty_rects(
prev_prims,
curr_prims,
prim_comparer,
dirty_rect,
compare_cache,
invalidation_reason,
frame_context,
);
}
}
TileNodeKind::Leaf { ref prev_indices, ref curr_indices, ref mut dirty_tracker, .. } => {
// If the index buffers are of different length, they must be different
if prev_indices.len() == curr_indices.len() {
let mut prev_i0 = 0;
let mut prev_i1 = 0;
prim_comparer.reset();
// Walk each index buffer, comparing primitives
for (prev_index, curr_index) in prev_indices.iter().zip(curr_indices.iter()) {
let i0 = prev_index.0 as usize;
let i1 = curr_index.0 as usize;
// Advance the dependency arrays for each primitive (this handles
// prims that may be skipped by these index buffers).
for i in prev_i0 .. i0 {
prim_comparer.advance_prev(&prev_prims[i]);
}
for i in prev_i1 .. i1 {
prim_comparer.advance_curr(&curr_prims[i]);
}
// Compare the primitives, caching the result in a hash map
// to save comparisons in other tree nodes.
let key = PrimitiveComparisonKey {
prev_index: *prev_index,
curr_index: *curr_index,
};
#[cfg(any(feature = "capture", feature = "replay"))]
let mut compare_detail = PrimitiveCompareResultDetail::Equal;
#[cfg(any(feature = "capture", feature = "replay"))]
let prim_compare_result_detail =
if frame_context.debug_flags.contains(DebugFlags::TILE_CACHE_LOGGING_DBG) {
Some(&mut compare_detail)
} else {
None
};
#[cfg(not(any(feature = "capture", feature = "replay")))]
let compare_detail = PrimitiveCompareResultDetail::Equal;
#[cfg(not(any(feature = "capture", feature = "replay")))]
let prim_compare_result_detail = None;
let prim_compare_result = *compare_cache
.entry(key)
.or_insert_with(|| {
let prev = &prev_prims[i0];
let curr = &curr_prims[i1];
prim_comparer.compare_prim(prev, curr, prim_compare_result_detail)
});
// If not the same, mark this node as dirty and update the dirty rect
if prim_compare_result != PrimitiveCompareResult::Equal {
if invalidation_reason.is_none() {
*invalidation_reason = Some(InvalidationReason::Content {
prim_compare_result,
prim_compare_result_detail: Some(compare_detail)
});
}
*dirty_rect = self.rect.union(dirty_rect);
*dirty_tracker = *dirty_tracker | 1;
break;
}
prev_i0 = i0;
prev_i1 = i1;
}
} else {
if invalidation_reason.is_none() {
// if and only if tile logging is enabled, do the expensive step of
// converting indices back to ItemUids and allocating old and new vectors
// to store them in.
#[cfg(any(feature = "capture", feature = "replay"))]
{
if frame_context.debug_flags.contains(DebugFlags::TILE_CACHE_LOGGING_DBG) {
let old = prev_indices.iter().map( |i| prev_prims[i.0 as usize].prim_uid ).collect();
let new = curr_indices.iter().map( |i| curr_prims[i.0 as usize].prim_uid ).collect();
*invalidation_reason = Some(InvalidationReason::PrimCount {
old: Some(old),
new: Some(new) });
} else {
*invalidation_reason = Some(InvalidationReason::PrimCount {
old: None,
new: None });
}
}
#[cfg(not(any(feature = "capture", feature = "replay")))]
{
*invalidation_reason = Some(InvalidationReason::PrimCount {
old: None,
new: None });
}
}
*dirty_rect = self.rect.union(dirty_rect);
*dirty_tracker = *dirty_tracker | 1;
}
}
}
}
}
impl CompositeState {
// A helper function to destroy all native surfaces for a given list of tiles
pub fn destroy_native_tiles<'a, I: Iterator<Item = &'a mut Box<Tile>>>(
&mut self,
tiles_iter: I,
resource_cache: &mut ResourceCache,
) {
// Any old tiles that remain after the loop above are going to be dropped. For
// simple composite mode, the texture cache handle will expire and be collected
// by the texture cache. For native compositor mode, we need to explicitly
// invoke a callback to the client to destroy that surface.
if let CompositorKind::Native { .. } = self.compositor_kind {
for tile in tiles_iter {
// Only destroy native surfaces that have been allocated. It's
// possible for display port tiles to be created that never
// come on screen, and thus never get a native surface allocated.
if let Some(TileSurface::Texture { descriptor: SurfaceTextureDescriptor::Native { ref mut id, .. }, .. }) = tile.surface {
if let Some(id) = id.take() {
resource_cache.destroy_compositor_tile(id);
}
}
}
}
}
}
pub fn get_raster_rects(
pic_rect: PictureRect,
map_to_raster: &SpaceMapper<PicturePixel, RasterPixel>,
map_to_world: &SpaceMapper<RasterPixel, WorldPixel>,
prim_bounding_rect: WorldRect,
device_pixel_scale: DevicePixelScale,
) -> Option<(DeviceRect, DeviceRect)> {
let unclipped_raster_rect = map_to_raster.map(&pic_rect)?;
let unclipped = raster_rect_to_device_pixels(
unclipped_raster_rect,
device_pixel_scale,
);
let unclipped_world_rect = map_to_world.map(&unclipped_raster_rect)?;
let clipped_world_rect = unclipped_world_rect.intersection(&prim_bounding_rect)?;
// We don't have to be able to do the back-projection from world into raster.
// Rendering only cares one way, so if that fails, we fall back to the full rect.
let clipped_raster_rect = match map_to_world.unmap(&clipped_world_rect) {
Some(rect) => rect.intersection(&unclipped_raster_rect)?,
None => return Some((unclipped, unclipped)),
};
let clipped = raster_rect_to_device_pixels(
clipped_raster_rect,
device_pixel_scale,
);
// Ensure that we won't try to allocate a zero-sized clip render task.
if clipped.is_empty() {
return None;
}
Some((clipped, unclipped))
}
fn get_relative_scale_offset(
child_spatial_node_index: SpatialNodeIndex,
parent_spatial_node_index: SpatialNodeIndex,
spatial_tree: &SpatialTree,
) -> ScaleOffset {
let transform = spatial_tree.get_relative_transform(
child_spatial_node_index,
parent_spatial_node_index,
);
let mut scale_offset = match transform {
CoordinateSpaceMapping::Local => ScaleOffset::identity(),
CoordinateSpaceMapping::ScaleOffset(scale_offset) => scale_offset,
CoordinateSpaceMapping::Transform(m) => {
ScaleOffset::from_transform(&m).expect("bug: pictures caches don't support complex transforms")
}
};
// Compositors expect things to be aligned on device pixels. Logic at a higher level ensures that is
// true, but floating point inaccuracy can sometimes result in small differences, so remove
// them here.
scale_offset.offset = scale_offset.offset.round();
scale_offset
}