base64/decode.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
use std::{error, fmt, str};
use byteorder::{BigEndian, ByteOrder};
use ::{Config, STANDARD};
use tables;
// decode logic operates on chunks of 8 input bytes without padding
const INPUT_CHUNK_LEN: usize = 8;
const DECODED_CHUNK_LEN: usize = 6;
// we read a u64 and write a u64, but a u64 of input only yields 6 bytes of output, so the last
// 2 bytes of any output u64 should not be counted as written to (but must be available in a
// slice).
const DECODED_CHUNK_SUFFIX: usize = 2;
// how many u64's of input to handle at a time
const CHUNKS_PER_FAST_LOOP_BLOCK: usize = 4;
const INPUT_BLOCK_LEN: usize = CHUNKS_PER_FAST_LOOP_BLOCK * INPUT_CHUNK_LEN;
// includes the trailing 2 bytes for the final u64 write
const DECODED_BLOCK_LEN: usize =
CHUNKS_PER_FAST_LOOP_BLOCK * DECODED_CHUNK_LEN + DECODED_CHUNK_SUFFIX;
/// Errors that can occur while decoding.
#[derive(Clone, Debug, PartialEq, Eq)]
pub enum DecodeError {
/// An invalid byte was found in the input. The offset and offending byte are provided.
InvalidByte(usize, u8),
/// The length of the input is invalid.
InvalidLength,
/// The last non-padding input symbol's encoded 6 bits have nonzero bits that will be discarded.
/// This is indicative of corrupted or truncated Base64.
/// Unlike InvalidByte, which reports symbols that aren't in the alphabet, this error is for
/// symbols that are in the alphabet but represent nonsensical encodings.
InvalidLastSymbol(usize, u8),
}
impl fmt::Display for DecodeError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
DecodeError::InvalidByte(index, byte) => {
write!(f, "Invalid byte {}, offset {}.", byte, index)
}
DecodeError::InvalidLength => write!(f, "Encoded text cannot have a 6-bit remainder."),
DecodeError::InvalidLastSymbol(index, byte) => {
write!(f, "Invalid last symbol {}, offset {}.", byte, index)
}
}
}
}
impl error::Error for DecodeError {
fn description(&self) -> &str {
match *self {
DecodeError::InvalidByte(_, _) => "invalid byte",
DecodeError::InvalidLength => "invalid length",
DecodeError::InvalidLastSymbol(_, _) => "invalid last symbol",
}
}
fn cause(&self) -> Option<&error::Error> {
None
}
}
///Decode from string reference as octets.
///Returns a Result containing a Vec<u8>.
///Convenience `decode_config(input, base64::STANDARD);`.
///
///# Example
///
///```rust
///extern crate base64;
///
///fn main() {
/// let bytes = base64::decode("aGVsbG8gd29ybGQ=").unwrap();
/// println!("{:?}", bytes);
///}
///```
pub fn decode<T: ?Sized + AsRef<[u8]>>(input: &T) -> Result<Vec<u8>, DecodeError> {
decode_config(input, STANDARD)
}
///Decode from string reference as octets.
///Returns a Result containing a Vec<u8>.
///
///# Example
///
///```rust
///extern crate base64;
///
///fn main() {
/// let bytes = base64::decode_config("aGVsbG8gd29ybGR+Cg==", base64::STANDARD).unwrap();
/// println!("{:?}", bytes);
///
/// let bytes_url = base64::decode_config("aGVsbG8gaW50ZXJuZXR-Cg==", base64::URL_SAFE).unwrap();
/// println!("{:?}", bytes_url);
///}
///```
pub fn decode_config<T: ?Sized + AsRef<[u8]>>(
input: &T,
config: Config,
) -> Result<Vec<u8>, DecodeError> {
let mut buffer = Vec::<u8>::with_capacity(input.as_ref().len() * 4 / 3);
decode_config_buf(input, config, &mut buffer).map(|_| buffer)
}
///Decode from string reference as octets.
///Writes into the supplied buffer to avoid allocation.
///Returns a Result containing an empty tuple, aka ().
///
///# Example
///
///```rust
///extern crate base64;
///
///fn main() {
/// let mut buffer = Vec::<u8>::new();
/// base64::decode_config_buf("aGVsbG8gd29ybGR+Cg==", base64::STANDARD, &mut buffer).unwrap();
/// println!("{:?}", buffer);
///
/// buffer.clear();
///
/// base64::decode_config_buf("aGVsbG8gaW50ZXJuZXR-Cg==", base64::URL_SAFE, &mut buffer)
/// .unwrap();
/// println!("{:?}", buffer);
///}
///```
pub fn decode_config_buf<T: ?Sized + AsRef<[u8]>>(
input: &T,
config: Config,
buffer: &mut Vec<u8>,
) -> Result<(), DecodeError> {
let input_bytes = input.as_ref();
let starting_output_len = buffer.len();
let num_chunks = num_chunks(input_bytes);
let decoded_len_estimate = num_chunks
.checked_mul(DECODED_CHUNK_LEN)
.and_then(|p| p.checked_add(starting_output_len))
.expect("Overflow when calculating output buffer length");
buffer.resize(decoded_len_estimate, 0);
let bytes_written;
{
let buffer_slice = &mut buffer.as_mut_slice()[starting_output_len..];
bytes_written = decode_helper(input_bytes, num_chunks, config, buffer_slice)?;
}
buffer.truncate(starting_output_len + bytes_written);
Ok(())
}
/// Decode the input into the provided output slice.
///
/// This will not write any bytes past exactly what is decoded (no stray garbage bytes at the end).
///
/// If you don't know ahead of time what the decoded length should be, size your buffer with a
/// conservative estimate for the decoded length of an input: 3 bytes of output for every 4 bytes of
/// input, rounded up, or in other words `(input_len + 3) / 4 * 3`.
///
/// If the slice is not large enough, this will panic.
pub fn decode_config_slice<T: ?Sized + AsRef<[u8]>>(
input: &T,
config: Config,
output: &mut [u8],
) -> Result<usize, DecodeError> {
let input_bytes = input.as_ref();
decode_helper(input_bytes, num_chunks(input_bytes), config, output)
}
/// Return the number of input chunks (including a possibly partial final chunk) in the input
fn num_chunks(input: &[u8]) -> usize {
input
.len()
.checked_add(INPUT_CHUNK_LEN - 1)
.expect("Overflow when calculating number of chunks in input")
/ INPUT_CHUNK_LEN
}
/// Helper to avoid duplicating num_chunks calculation, which is costly on short inputs.
/// Returns the number of bytes written, or an error.
// We're on the fragile edge of compiler heuristics here. If this is not inlined, slow. If this is
// inlined(always), a different slow. plain ol' inline makes the benchmarks happiest at the moment,
// but this is fragile and the best setting changes with only minor code modifications.
#[inline]
fn decode_helper(
input: &[u8],
num_chunks: usize,
config: Config,
output: &mut [u8],
) -> Result<usize, DecodeError> {
let char_set = config.char_set;
let decode_table = char_set.decode_table();
let remainder_len = input.len() % INPUT_CHUNK_LEN;
// Because the fast decode loop writes in groups of 8 bytes (unrolled to
// CHUNKS_PER_FAST_LOOP_BLOCK times 8 bytes, where possible) and outputs 8 bytes at a time (of
// which only 6 are valid data), we need to be sure that we stop using the fast decode loop
// soon enough that there will always be 2 more bytes of valid data written after that loop.
let trailing_bytes_to_skip = match remainder_len {
// if input is a multiple of the chunk size, ignore the last chunk as it may have padding,
// and the fast decode logic cannot handle padding
0 => INPUT_CHUNK_LEN,
// 1 and 5 trailing bytes are illegal: can't decode 6 bits of input into a byte
1 | 5 => return Err(DecodeError::InvalidLength),
// This will decode to one output byte, which isn't enough to overwrite the 2 extra bytes
// written by the fast decode loop. So, we have to ignore both these 2 bytes and the
// previous chunk.
2 => INPUT_CHUNK_LEN + 2,
// If this is 3 unpadded chars, then it would actually decode to 2 bytes. However, if this
// is an erroneous 2 chars + 1 pad char that would decode to 1 byte, then it should fail
// with an error, not panic from going past the bounds of the output slice, so we let it
// use stage 3 + 4.
3 => INPUT_CHUNK_LEN + 3,
// This can also decode to one output byte because it may be 2 input chars + 2 padding
// chars, which would decode to 1 byte.
4 => INPUT_CHUNK_LEN + 4,
// Everything else is a legal decode len (given that we don't require padding), and will
// decode to at least 2 bytes of output.
_ => remainder_len,
};
// rounded up to include partial chunks
let mut remaining_chunks = num_chunks;
let mut input_index = 0;
let mut output_index = 0;
{
let length_of_fast_decode_chunks = input.len().saturating_sub(trailing_bytes_to_skip);
// Fast loop, stage 1
// manual unroll to CHUNKS_PER_FAST_LOOP_BLOCK of u64s to amortize slice bounds checks
if let Some(max_start_index) = length_of_fast_decode_chunks.checked_sub(INPUT_BLOCK_LEN) {
while input_index <= max_start_index {
let input_slice = &input[input_index..(input_index + INPUT_BLOCK_LEN)];
let output_slice = &mut output[output_index..(output_index + DECODED_BLOCK_LEN)];
decode_chunk(
&input_slice[0..],
input_index,
decode_table,
&mut output_slice[0..],
)?;
decode_chunk(
&input_slice[8..],
input_index + 8,
decode_table,
&mut output_slice[6..],
)?;
decode_chunk(
&input_slice[16..],
input_index + 16,
decode_table,
&mut output_slice[12..],
)?;
decode_chunk(
&input_slice[24..],
input_index + 24,
decode_table,
&mut output_slice[18..],
)?;
input_index += INPUT_BLOCK_LEN;
output_index += DECODED_BLOCK_LEN - DECODED_CHUNK_SUFFIX;
remaining_chunks -= CHUNKS_PER_FAST_LOOP_BLOCK;
}
}
// Fast loop, stage 2 (aka still pretty fast loop)
// 8 bytes at a time for whatever we didn't do in stage 1.
if let Some(max_start_index) = length_of_fast_decode_chunks.checked_sub(INPUT_CHUNK_LEN) {
while input_index < max_start_index {
decode_chunk(
&input[input_index..(input_index + INPUT_CHUNK_LEN)],
input_index,
decode_table,
&mut output
[output_index..(output_index + DECODED_CHUNK_LEN + DECODED_CHUNK_SUFFIX)],
)?;
output_index += DECODED_CHUNK_LEN;
input_index += INPUT_CHUNK_LEN;
remaining_chunks -= 1;
}
}
}
// Stage 3
// If input length was such that a chunk had to be deferred until after the fast loop
// because decoding it would have produced 2 trailing bytes that wouldn't then be
// overwritten, we decode that chunk here. This way is slower but doesn't write the 2
// trailing bytes.
// However, we still need to avoid the last chunk (partial or complete) because it could
// have padding, so we always do 1 fewer to avoid the last chunk.
for _ in 1..remaining_chunks {
decode_chunk_precise(
&input[input_index..],
input_index,
decode_table,
&mut output[output_index..(output_index + DECODED_CHUNK_LEN)],
)?;
input_index += INPUT_CHUNK_LEN;
output_index += DECODED_CHUNK_LEN;
}
// always have one more (possibly partial) block of 8 input
debug_assert!(input.len() - input_index > 1 || input.is_empty());
debug_assert!(input.len() - input_index <= 8);
// Stage 4
// Finally, decode any leftovers that aren't a complete input block of 8 bytes.
// Use a u64 as a stack-resident 8 byte buffer.
let mut leftover_bits: u64 = 0;
let mut morsels_in_leftover = 0;
let mut padding_bytes = 0;
let mut first_padding_index: usize = 0;
let mut last_symbol = 0_u8;
let start_of_leftovers = input_index;
for (i, b) in input[start_of_leftovers..].iter().enumerate() {
// '=' padding
if *b == 0x3D {
// There can be bad padding in a few ways:
// 1 - Padding with non-padding characters after it
// 2 - Padding after zero or one non-padding characters before it
// in the current quad.
// 3 - More than two characters of padding. If 3 or 4 padding chars
// are in the same quad, that implies it will be caught by #2.
// If it spreads from one quad to another, it will be caught by
// #2 in the second quad.
if i % 4 < 2 {
// Check for case #2.
let bad_padding_index = start_of_leftovers
+ if padding_bytes > 0 {
// If we've already seen padding, report the first padding index.
// This is to be consistent with the faster logic above: it will report an
// error on the first padding character (since it doesn't expect to see
// anything but actual encoded data).
first_padding_index
} else {
// haven't seen padding before, just use where we are now
i
};
return Err(DecodeError::InvalidByte(bad_padding_index, *b));
}
if padding_bytes == 0 {
first_padding_index = i;
}
padding_bytes += 1;
continue;
}
// Check for case #1.
// To make '=' handling consistent with the main loop, don't allow
// non-suffix '=' in trailing chunk either. Report error as first
// erroneous padding.
if padding_bytes > 0 {
return Err(DecodeError::InvalidByte(
start_of_leftovers + first_padding_index,
0x3D,
));
}
last_symbol = *b;
// can use up to 8 * 6 = 48 bits of the u64, if last chunk has no padding.
// To minimize shifts, pack the leftovers from left to right.
let shift = 64 - (morsels_in_leftover + 1) * 6;
// tables are all 256 elements, lookup with a u8 index always succeeds
let morsel = decode_table[*b as usize];
if morsel == tables::INVALID_VALUE {
return Err(DecodeError::InvalidByte(start_of_leftovers + i, *b));
}
leftover_bits |= (morsel as u64) << shift;
morsels_in_leftover += 1;
}
let leftover_bits_ready_to_append = match morsels_in_leftover {
0 => 0,
2 => 8,
3 => 16,
4 => 24,
6 => 32,
7 => 40,
8 => 48,
_ => unreachable!(
"Impossible: must only have 0 to 8 input bytes in last chunk, with no invalid lengths"
),
};
// if there are bits set outside the bits we care about, last symbol encodes trailing bits that
// will not be included in the output
let mask = !0 >> leftover_bits_ready_to_append;
if !config.decode_allow_trailing_bits && (leftover_bits & mask) != 0 {
// last morsel is at `morsels_in_leftover` - 1
return Err(DecodeError::InvalidLastSymbol(
start_of_leftovers + morsels_in_leftover - 1,
last_symbol,
));
}
let mut leftover_bits_appended_to_buf = 0;
while leftover_bits_appended_to_buf < leftover_bits_ready_to_append {
// `as` simply truncates the higher bits, which is what we want here
let selected_bits = (leftover_bits >> (56 - leftover_bits_appended_to_buf)) as u8;
output[output_index] = selected_bits;
output_index += 1;
leftover_bits_appended_to_buf += 8;
}
Ok(output_index)
}
/// Decode 8 bytes of input into 6 bytes of output. 8 bytes of output will be written, but only the
/// first 6 of those contain meaningful data.
///
/// `input` is the bytes to decode, of which the first 8 bytes will be processed.
/// `index_at_start_of_input` is the offset in the overall input (used for reporting errors
/// accurately)
/// `decode_table` is the lookup table for the particular base64 alphabet.
/// `output` will have its first 8 bytes overwritten, of which only the first 6 are valid decoded
/// data.
// yes, really inline (worth 30-50% speedup)
#[inline(always)]
fn decode_chunk(
input: &[u8],
index_at_start_of_input: usize,
decode_table: &[u8; 256],
output: &mut [u8],
) -> Result<(), DecodeError> {
let mut accum: u64;
let morsel = decode_table[input[0] as usize];
if morsel == tables::INVALID_VALUE {
return Err(DecodeError::InvalidByte(index_at_start_of_input, input[0]));
}
accum = (morsel as u64) << 58;
let morsel = decode_table[input[1] as usize];
if morsel == tables::INVALID_VALUE {
return Err(DecodeError::InvalidByte(
index_at_start_of_input + 1,
input[1],
));
}
accum |= (morsel as u64) << 52;
let morsel = decode_table[input[2] as usize];
if morsel == tables::INVALID_VALUE {
return Err(DecodeError::InvalidByte(
index_at_start_of_input + 2,
input[2],
));
}
accum |= (morsel as u64) << 46;
let morsel = decode_table[input[3] as usize];
if morsel == tables::INVALID_VALUE {
return Err(DecodeError::InvalidByte(
index_at_start_of_input + 3,
input[3],
));
}
accum |= (morsel as u64) << 40;
let morsel = decode_table[input[4] as usize];
if morsel == tables::INVALID_VALUE {
return Err(DecodeError::InvalidByte(
index_at_start_of_input + 4,
input[4],
));
}
accum |= (morsel as u64) << 34;
let morsel = decode_table[input[5] as usize];
if morsel == tables::INVALID_VALUE {
return Err(DecodeError::InvalidByte(
index_at_start_of_input + 5,
input[5],
));
}
accum |= (morsel as u64) << 28;
let morsel = decode_table[input[6] as usize];
if morsel == tables::INVALID_VALUE {
return Err(DecodeError::InvalidByte(
index_at_start_of_input + 6,
input[6],
));
}
accum |= (morsel as u64) << 22;
let morsel = decode_table[input[7] as usize];
if morsel == tables::INVALID_VALUE {
return Err(DecodeError::InvalidByte(
index_at_start_of_input + 7,
input[7],
));
}
accum |= (morsel as u64) << 16;
BigEndian::write_u64(output, accum);
Ok(())
}
/// Decode an 8-byte chunk, but only write the 6 bytes actually decoded instead of including 2
/// trailing garbage bytes.
#[inline]
fn decode_chunk_precise(
input: &[u8],
index_at_start_of_input: usize,
decode_table: &[u8; 256],
output: &mut [u8],
) -> Result<(), DecodeError> {
let mut tmp_buf = [0_u8; 8];
decode_chunk(
input,
index_at_start_of_input,
decode_table,
&mut tmp_buf[..],
)?;
output[0..6].copy_from_slice(&tmp_buf[0..6]);
Ok(())
}
#[cfg(test)]
mod tests {
use super::*;
use rand::{FromEntropy, Rng};
use rand::distributions::{Distribution, Uniform};
use encode::encode_config_buf;
use encode::encode_config_slice;
use tests::{assert_encode_sanity, random_config};
#[test]
fn decode_chunk_precise_writes_only_6_bytes() {
let input = b"Zm9vYmFy"; // "foobar"
let mut output = [0_u8, 1, 2, 3, 4, 5, 6, 7];
decode_chunk_precise(&input[..], 0, tables::STANDARD_DECODE, &mut output).unwrap();
assert_eq!(&vec![b'f', b'o', b'o', b'b', b'a', b'r', 6, 7], &output);
}
#[test]
fn decode_chunk_writes_8_bytes() {
let input = b"Zm9vYmFy"; // "foobar"
let mut output = [0_u8, 1, 2, 3, 4, 5, 6, 7];
decode_chunk(&input[..], 0, tables::STANDARD_DECODE, &mut output).unwrap();
assert_eq!(&vec![b'f', b'o', b'o', b'b', b'a', b'r', 0, 0], &output);
}
#[test]
fn decode_into_nonempty_vec_doesnt_clobber_existing_prefix() {
let mut orig_data = Vec::new();
let mut encoded_data = String::new();
let mut decoded_with_prefix = Vec::new();
let mut decoded_without_prefix = Vec::new();
let mut prefix = Vec::new();
let prefix_len_range = Uniform::new(0, 1000);
let input_len_range = Uniform::new(0, 1000);
let mut rng = rand::rngs::SmallRng::from_entropy();
for _ in 0..10_000 {
orig_data.clear();
encoded_data.clear();
decoded_with_prefix.clear();
decoded_without_prefix.clear();
prefix.clear();
let input_len = input_len_range.sample(&mut rng);
for _ in 0..input_len {
orig_data.push(rng.gen());
}
let config = random_config(&mut rng);
encode_config_buf(&orig_data, config, &mut encoded_data);
assert_encode_sanity(&encoded_data, config, input_len);
let prefix_len = prefix_len_range.sample(&mut rng);
// fill the buf with a prefix
for _ in 0..prefix_len {
prefix.push(rng.gen());
}
decoded_with_prefix.resize(prefix_len, 0);
decoded_with_prefix.copy_from_slice(&prefix);
// decode into the non-empty buf
decode_config_buf(&encoded_data, config, &mut decoded_with_prefix).unwrap();
// also decode into the empty buf
decode_config_buf(&encoded_data, config, &mut decoded_without_prefix).unwrap();
assert_eq!(
prefix_len + decoded_without_prefix.len(),
decoded_with_prefix.len()
);
assert_eq!(orig_data, decoded_without_prefix);
// append plain decode onto prefix
prefix.append(&mut decoded_without_prefix);
assert_eq!(prefix, decoded_with_prefix);
}
}
#[test]
fn decode_into_slice_doesnt_clobber_existing_prefix_or_suffix() {
let mut orig_data = Vec::new();
let mut encoded_data = String::new();
let mut decode_buf = Vec::new();
let mut decode_buf_copy: Vec<u8> = Vec::new();
let input_len_range = Uniform::new(0, 1000);
let mut rng = rand::rngs::SmallRng::from_entropy();
for _ in 0..10_000 {
orig_data.clear();
encoded_data.clear();
decode_buf.clear();
decode_buf_copy.clear();
let input_len = input_len_range.sample(&mut rng);
for _ in 0..input_len {
orig_data.push(rng.gen());
}
let config = random_config(&mut rng);
encode_config_buf(&orig_data, config, &mut encoded_data);
assert_encode_sanity(&encoded_data, config, input_len);
// fill the buffer with random garbage, long enough to have some room before and after
for _ in 0..5000 {
decode_buf.push(rng.gen());
}
// keep a copy for later comparison
decode_buf_copy.extend(decode_buf.iter());
let offset = 1000;
// decode into the non-empty buf
let decode_bytes_written =
decode_config_slice(&encoded_data, config, &mut decode_buf[offset..]).unwrap();
assert_eq!(orig_data.len(), decode_bytes_written);
assert_eq!(
orig_data,
&decode_buf[offset..(offset + decode_bytes_written)]
);
assert_eq!(&decode_buf_copy[0..offset], &decode_buf[0..offset]);
assert_eq!(
&decode_buf_copy[offset + decode_bytes_written..],
&decode_buf[offset + decode_bytes_written..]
);
}
}
#[test]
fn decode_into_slice_fits_in_precisely_sized_slice() {
let mut orig_data = Vec::new();
let mut encoded_data = String::new();
let mut decode_buf = Vec::new();
let input_len_range = Uniform::new(0, 1000);
let mut rng = rand::rngs::SmallRng::from_entropy();
for _ in 0..10_000 {
orig_data.clear();
encoded_data.clear();
decode_buf.clear();
let input_len = input_len_range.sample(&mut rng);
for _ in 0..input_len {
orig_data.push(rng.gen());
}
let config = random_config(&mut rng);
encode_config_buf(&orig_data, config, &mut encoded_data);
assert_encode_sanity(&encoded_data, config, input_len);
decode_buf.resize(input_len, 0);
// decode into the non-empty buf
let decode_bytes_written =
decode_config_slice(&encoded_data, config, &mut decode_buf[..]).unwrap();
assert_eq!(orig_data.len(), decode_bytes_written);
assert_eq!(orig_data, decode_buf);
}
}
#[test]
fn detect_invalid_last_symbol_two_bytes() {
let decode =
|input, forgiving| decode_config(input, STANDARD.decode_allow_trailing_bits(forgiving));
// example from https://github.com/alicemaz/rust-base64/issues/75
assert!(decode("iYU=", false).is_ok());
// trailing 01
assert_eq!(
Err(DecodeError::InvalidLastSymbol(2, b'V')),
decode("iYV=", false)
);
assert_eq!(Ok(vec![137, 133]), decode("iYV=", true));
// trailing 10
assert_eq!(
Err(DecodeError::InvalidLastSymbol(2, b'W')),
decode("iYW=", false)
);
assert_eq!(Ok(vec![137, 133]), decode("iYV=", true));
// trailing 11
assert_eq!(
Err(DecodeError::InvalidLastSymbol(2, b'X')),
decode("iYX=", false)
);
assert_eq!(Ok(vec![137, 133]), decode("iYV=", true));
// also works when there are 2 quads in the last block
assert_eq!(
Err(DecodeError::InvalidLastSymbol(6, b'X')),
decode("AAAAiYX=", false)
);
assert_eq!(Ok(vec![0, 0, 0, 137, 133]), decode("AAAAiYX=", true));
}
#[test]
fn detect_invalid_last_symbol_one_byte() {
// 0xFF -> "/w==", so all letters > w, 0-9, and '+', '/' should get InvalidLastSymbol
assert!(decode("/w==").is_ok());
// trailing 01
assert_eq!(Err(DecodeError::InvalidLastSymbol(1, b'x')), decode("/x=="));
assert_eq!(Err(DecodeError::InvalidLastSymbol(1, b'z')), decode("/z=="));
assert_eq!(Err(DecodeError::InvalidLastSymbol(1, b'0')), decode("/0=="));
assert_eq!(Err(DecodeError::InvalidLastSymbol(1, b'9')), decode("/9=="));
assert_eq!(Err(DecodeError::InvalidLastSymbol(1, b'+')), decode("/+=="));
assert_eq!(Err(DecodeError::InvalidLastSymbol(1, b'/')), decode("//=="));
// also works when there are 2 quads in the last block
assert_eq!(
Err(DecodeError::InvalidLastSymbol(5, b'x')),
decode("AAAA/x==")
);
}
#[test]
fn detect_invalid_last_symbol_every_possible_three_symbols() {
let mut base64_to_bytes = ::std::collections::HashMap::new();
let mut bytes = [0_u8; 2];
for b1 in 0_u16..256 {
bytes[0] = b1 as u8;
for b2 in 0_u16..256 {
bytes[1] = b2 as u8;
let mut b64 = vec![0_u8; 4];
assert_eq!(4, encode_config_slice(&bytes, STANDARD, &mut b64[..]));
let mut v = ::std::vec::Vec::with_capacity(2);
v.extend_from_slice(&bytes[..]);
assert!(base64_to_bytes.insert(b64, v).is_none());
}
}
// every possible combination of symbols must either decode to 2 bytes or get InvalidLastSymbol
let mut symbols = [0_u8; 4];
for &s1 in STANDARD.char_set.encode_table().iter() {
symbols[0] = s1;
for &s2 in STANDARD.char_set.encode_table().iter() {
symbols[1] = s2;
for &s3 in STANDARD.char_set.encode_table().iter() {
symbols[2] = s3;
symbols[3] = b'=';
match base64_to_bytes.get(&symbols[..]) {
Some(bytes) => {
assert_eq!(Ok(bytes.to_vec()), decode_config(&symbols, STANDARD))
}
None => assert_eq!(
Err(DecodeError::InvalidLastSymbol(2, s3)),
decode_config(&symbols[..], STANDARD)
),
}
}
}
}
}
#[test]
fn detect_invalid_last_symbol_every_possible_two_symbols() {
let mut base64_to_bytes = ::std::collections::HashMap::new();
for b in 0_u16..256 {
let mut b64 = vec![0_u8; 4];
assert_eq!(4, encode_config_slice(&[b as u8], STANDARD, &mut b64[..]));
let mut v = ::std::vec::Vec::with_capacity(1);
v.push(b as u8);
assert!(base64_to_bytes.insert(b64, v).is_none());
}
// every possible combination of symbols must either decode to 1 byte or get InvalidLastSymbol
let mut symbols = [0_u8; 4];
for &s1 in STANDARD.char_set.encode_table().iter() {
symbols[0] = s1;
for &s2 in STANDARD.char_set.encode_table().iter() {
symbols[1] = s2;
symbols[2] = b'=';
symbols[3] = b'=';
match base64_to_bytes.get(&symbols[..]) {
Some(bytes) => {
assert_eq!(Ok(bytes.to_vec()), decode_config(&symbols, STANDARD))
}
None => assert_eq!(
Err(DecodeError::InvalidLastSymbol(1, s2)),
decode_config(&symbols[..], STANDARD)
),
}
}
}
}
}