bignumbe_rs/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
//! This crate defines a custom medium-precision number type. It can support any base `b`
//! in the range `[0, 65535]`, and can approximately represent numbers up to
//! `b ^ u64::MAX` (actually a bit higher than that but the math is complicated). A core
//! goal for this type was that it can implement `Copy` and as a result it can be used in
//! almost any context a normal unsigned integer would be valid.
use std::{
cmp::Ordering,
fmt::{Debug, Display, Write},
ops::{Add, AddAssign, Div, Mul, MulAssign, Shl, Shr, Sub, SubAssign},
};
use consts::{
BIN_EXP_RANGE, BIN_POWERS, BIN_POWERS_U128, BIN_SIG_RANGE, DEC_EXP_RANGE, DEC_POWERS, DEC_POWERS_U128, DEC_SIG_RANGE, HEX_EXP_RANGE, HEX_POWERS, HEX_POWERS_U128, HEX_SIG_RANGE, OCT_EXP_RANGE, OCT_POWERS, OCT_POWERS_U128, OCT_SIG_RANGE
};
#[cfg(feature = "random")]
pub mod random;
pub(crate) mod consts;
pub(crate) mod error;
pub(crate) mod macros;
pub mod traits;
#[derive(Clone, Copy, Debug)]
/// This represents the non-inclusive range of exponents that constitute a valid
/// non-compact significand in the given base. You only need to use this if manually
/// defining a custom base (if performance is non-critical I would recommend using the
/// `create_default_base` macro).
///
/// # Examples
/// ```
/// use bignumbe_rs::{ExpRange, Binary, Base};
///
/// let ExpRange(min_exp, max_exp) = Binary::calculate_ranges().0;
///
/// // Since the range of valid significands for non-compact Binary BigNum instances is
/// // [2^63, 2^64), we expect an ExpRange of (63, 64)
/// assert_eq!(min_exp, 63);
/// assert_eq!(max_exp, 64);
/// ```
pub struct ExpRange(pub u32, pub u32);
impl ExpRange {
pub const fn new(min: u32, max: u32) -> Self {
Self(min, max)
}
pub const fn from(range: (u32, u32)) -> Self {
Self(range.0, range.1)
}
pub fn min(&self) -> u32 {
self.0
}
pub fn max(&self) -> u32 {
self.1
}
}
#[derive(Clone, Copy, Debug)]
/// This represents the inclusive range of values that constitute a valid non-compact
/// significand in the given base. You only need to use this if manually defining a custom
/// base (if performance is non-critical I would recommend using the `create_default_base`
/// macro).
///
/// # Examples
/// ```
/// use bignumbe_rs::{SigRange, Binary, Base};
///
/// let SigRange(min_sig, max_sig) = Binary::calculate_ranges().1;
///
/// // Since the range of valid significands for non-compact Binary BigNum instances is
/// // [2^63, 2^64), we expect a SigRange of (2^63, 2^64 - 1)
/// assert_eq!(min_sig, 1 << 63);
/// assert_eq!(max_sig, u64::MAX);
/// ```
pub struct SigRange(pub u64, pub u64);
impl SigRange {
pub const fn new(min: u64, max: u64) -> Self {
Self(min, max)
}
pub const fn from(range: (u64, u64)) -> Self {
Self(range.0, range.1)
}
pub fn min(&self) -> u64 {
self.0
}
pub fn max(&self) -> u64 {
self.1
}
}
/// If performance isn't critical I'd highly recommend the `create_default_base` macro
/// which creates a base with sensible defaults. The only reason to create a custom
/// implementation is if you find the default implementations' operations to be a
/// bottleneck. In this case I'd recommend looking at my implementation of the `Decimal`
/// base as a guide.
///
/// This trait is used to indicate that a type is a valid base for a BigNumBase. It
/// contains metadata and functions that can be used to efficiently handle arbitrary
/// bases. Importantly you must ensure all of the following:
/// - `base.exp_range().max() = base.exp_range().min() + 1`
/// - `base.exp_range().min() > 0`
/// - `base.sig_range().min() = base.pow(exp_range().min())`
/// - `base.sig_range().max() = base.pow(exp_range().max()) - 1`
/// - `B::pow(n) = NUMBER.pow(n)` for all `n < base.exp_range().max()`
/// - `B::rshift(lhs, exp) = lhs / B::NUMBER.pow(n)` for all `n <= base.exp_range().max()`
/// - `B::lshift(lhs, exp) = lhs * B::NUMBER.exp(n)` for all
/// `n <= base.exp_range().max()`
/// - `B::get_mag(n)` should return the highest exponent `x` such that `n >= B::pow(x)`,
/// for all `n <= exp_range().max()`
/// - `base.sig_range().min() * B::NUMBER > u64::MAX`
/// - This restriction allows us to conveniently handle some construction cases
///
/// The above requirements also hold for the `u128` versions of
/// `lshift, rshift, get_mag, pow` which are used for multiplication and division (since
/// those calculations involve projecting values to `u128` to preserve information)
///
/// Some of these calculations have the potential to overflow a `u64` so you may need to
/// think of other ways to compute them if you plan to verify them manually.
///
/// Additionally, the implementers will be copied on every math operation and in some
/// other contexts, so ensure that they are lightweight. E.g. even though
/// ```
/// #[derive(Clone, Copy, Debug)]
/// pub struct CustomBase {
/// metadata: [u8; 10000000000],
/// }
/// ```
/// is valid, it's ill-advised here. If you need a table of powers I would recommend a
/// global const array that you reference in the `pow` method.
///
/// The recommended format for
/// a non-performance critical simple Base definition and implementation is:
/// ```
/// use bignumbe_rs::{ExpRange, SigRange, Base};
///
/// #[derive(Clone, Copy, Debug)]
/// pub struct Base13 {
/// exp_range: ExpRange,
/// sig_range: SigRange
/// }
///
/// impl Base for Base13{
/// const NUMBER: u16 = 13;
///
/// fn new() -> Self {
/// let (exp_range, sig_range) = Self::calculate_ranges();
/// Self {exp_range, sig_range}
/// }
///
/// fn exp_range(&self) -> ExpRange {
/// self.exp_range
/// }
///
/// fn sig_range(&self) -> SigRange {
/// self.sig_range
/// }
/// }
/// ```
pub trait Base: Copy + Debug {
/// This contains the numeric value of the type. E.g. for binary 2, for decimal 10,
/// etc.
const NUMBER: u16;
/// Function that can create an instance of this Base. Users should never have to
/// manually create instances of this type. This is called implicitly on every
/// call to `BigNumBase<Self>::new()` so it should be as lightweight as possible. Note
/// that it is not called when creating a BigNumBase<Self> from another, like when
/// performing an addition. In this case the base is simply copied over.
fn new() -> Self;
/// Function that fetches the non-inclusive range of the exponent for the significand
/// in the BigNum with this base. E.g. the range for binary is [63, 64), since the
/// range of the significand is [2^63, 2^64)
fn exp_range(&self) -> ExpRange;
/// Function that fetches the inclusive range for the significand in the BigNum with
/// this base. E.g. for binary the range of the significand is [2^63, 2^64 - 1]
fn sig_range(&self) -> SigRange;
/// This is a function that computes `Self::NUMBER ^ exp`. It has a default
/// implementation that computes the value directly. It is recommended to override
/// this behavior if there is a trick to the exponentiation (like how for binary
/// `2^n = (1 << n)`). You can also create a gloabl const lookup table and reference
/// that.
fn pow(exp: u32) -> u64 {
(Self::NUMBER as u64).pow(exp)
}
/// This is a function that computes the same value as `pow` but in a u128 value.
/// Mostly useful to help with multiplication/division, and as such it's probably
/// unnecessary to override it unless multiplication/division performance is critical
fn pow_u128(exp: u32) -> u128 {
(Self::NUMBER as u128).pow(exp)
}
/// This function calculates the ranges for the exponent and the significand. It is
/// not particularly efficient so if performance is a concern you should not use it.
/// It mainly exists to facilitate the `create_default_base!` macro. It is recommended
/// to store the ranges in a const and return them directly in the `exp_range` and
/// `sig_range` methods if convenient.
fn calculate_ranges() -> (ExpRange, SigRange) {
if Self::NUMBER.is_power_of_two() && Self::NUMBER.ilog2().is_power_of_two() {
// This is a special case where sig_max = u64::MAX. We have to handle it
// specially to avoid overflowing the u64
let pow = Self::NUMBER.ilog2();
let exp = 64 / pow;
let sig = Self::pow(exp - 1);
(ExpRange(exp - 1, exp), SigRange(sig, u64::MAX))
} else {
let exp = u64::MAX.ilog(Self::NUMBER as u64);
(
ExpRange(exp - 1, exp),
SigRange(Self::pow(exp - 1), Self::pow(exp) - 1),
)
}
}
/// This is a function that computes `lhs * (Self::NUMBER ^ exp)`. There is a default
/// implementation that obtains the value of `Self::NUMBER ^ exp` via the `pow` method
/// for this type, and does a division. It is recommended to override this method if
/// there is a trick for the division (like how in binary,
/// `lhs * (2 ^ exp) = lhs >> exp`, or in octal `lhs * (8 ^ exp) = lhs >> (3 * exp)`
fn lshift(lhs: u64, exp: u32) -> u64 {
lhs * Self::pow(exp)
}
/// This is a function that computes `lhs / (Self::NUMBER ^ exp)`. There is a default
/// implementation that obtains the value of `Self::NUMBER ^ exp` via the `pow` method
/// for this type, and does a multiplication. It is recommended to override this
/// method if there is a trick for the division (like how in binary,
/// `lhs / (2 ^ exp) = lhs << exp`, or in octal `lhs / (8 ^ exp) = lhs << (3 * exp)`
fn rshift(lhs: u64, exp: u32) -> u64 {
lhs / Self::pow(exp)
}
/// This is a function that computes the same thing as `lshift` but in a u128 value.
/// Mostly useful to help with multiplication/division, and as such it's probably
/// unnecessary to override it unless multiplication/division performance is critical
fn lshift_u128(lhs: u128, exp: u32) -> u128 {
lhs * Self::pow_u128(exp)
}
/// This is a function that computes the same thing as `rshift` but in a u128 value.
/// Mostly useful to help with multiplication/division, and as such it's probably
/// unnecessary to override it unless multiplication/division performance is critical
fn rshift_u128(lhs: u128, exp: u32) -> u128 {
lhs / Self::pow_u128(exp)
}
/// This is a function that computes the highest power `x` such that
/// `sig >= (Self::NUMBER ^ x)`. There is a default implementation that uses `ilog`,
/// and it is recommended to use this unless there is a special way to find the
/// magnitude (e.g. binary and decimal have specialized `ilog` implementations).
/// As a special case, bases that are powers of 2 or 10 can use log arithmetic to
/// convert. I tried this with octal and hexadecimal but it had no noticeable impact.
fn get_mag(sig: u64) -> u32 {
sig.ilog(Self::NUMBER as u64)
}
/// This is a function that computes the same thing as `get_mag` but in a u128 value.
/// Mostly useful to help with multiplication/division, and as such it's probably
/// unnecessary to override it unless multiplication/division performance is critical
fn get_mag_u128(sig: u128) -> u32 {
sig.ilog(Self::NUMBER as u128)
}
/// This method just fetches `Self::NUMBER` but is provided as an instance method for
/// convenience. Overriding it is undefined behavior
fn as_number(&self) -> u16 {
Self::NUMBER
}
}
/// This type represents a binary base. It contains more efficient overrides of the
/// `Base` functions to improve performance.
#[derive(Clone, Copy, Debug)]
pub struct Binary;
pub type BigNumBin = BigNumBase<Binary>;
/// This type represents an octal base. It contains more efficient overrides of the
/// `Base` functions to improve performance.
#[derive(Clone, Copy, Debug)]
pub struct Octal;
pub type BigNumOct = BigNumBase<Octal>;
/// This type represents a hexadecimal base. It contains more efficient overrides of the
/// `Base` functions to improve performance.
#[derive(Clone, Copy, Debug)]
pub struct Hexadecimal;
pub type BigNumHex = BigNumBase<Hexadecimal>;
/// This type represents a decimal base. It contains more efficient overrides of the
/// `Base` functions to improve performance.
#[derive(Clone, Copy, Debug)]
pub struct Decimal;
pub type BigNumDec = BigNumBase<Decimal>;
impl Base for Binary {
const NUMBER: u16 = 2;
fn new() -> Self {
Self
}
fn exp_range(&self) -> ExpRange {
//ExpRange(63, 64)
ExpRange::from(BIN_EXP_RANGE)
}
fn sig_range(&self) -> SigRange {
//SigRange(1 << 63, u64::MAX)
SigRange::from(BIN_SIG_RANGE)
}
fn pow(exp: u32) -> u64 {
BIN_POWERS[exp as usize]
}
fn pow_u128(exp: u32) -> u128 {
BIN_POWERS_U128[exp as usize]
}
fn rshift(lhs: u64, exp: u32) -> u64 {
lhs >> exp
}
fn rshift_u128(lhs: u128, exp: u32) -> u128 {
lhs >> exp
}
fn lshift(lhs: u64, exp: u32) -> u64 {
lhs << exp
}
fn lshift_u128(lhs: u128, exp: u32) -> u128 {
lhs << exp
}
fn get_mag(sig: u64) -> u32 {
sig.ilog2()
}
fn get_mag_u128(sig: u128) -> u32 {
sig.ilog2()
}
}
impl Base for Octal {
const NUMBER: u16 = 8;
fn new() -> Self {
Self
}
fn exp_range(&self) -> ExpRange {
ExpRange::from(OCT_EXP_RANGE)
}
fn sig_range(&self) -> SigRange {
SigRange::from(OCT_SIG_RANGE)
}
fn pow(exp: u32) -> u64 {
OCT_POWERS[exp as usize]
}
fn pow_u128(exp: u32) -> u128 {
OCT_POWERS_U128[exp as usize]
}
fn rshift(lhs: u64, exp: u32) -> u64 {
lhs >> (3 * exp)
}
fn rshift_u128(lhs: u128, exp: u32) -> u128 {
lhs >> (3 * exp)
}
fn lshift(lhs: u64, exp: u32) -> u64 {
lhs << (3 * exp)
}
fn lshift_u128(lhs: u128, exp: u32) -> u128 {
lhs << (3 * exp)
}
}
impl Base for Hexadecimal {
const NUMBER: u16 = 16;
fn new() -> Self {
Self
}
fn exp_range(&self) -> ExpRange {
ExpRange::from(HEX_EXP_RANGE)
}
fn sig_range(&self) -> SigRange {
SigRange::from(HEX_SIG_RANGE)
}
fn pow(exp: u32) -> u64 {
HEX_POWERS[exp as usize]
}
fn pow_u128(exp: u32) -> u128 {
HEX_POWERS_U128[exp as usize]
}
fn lshift(lhs: u64, exp: u32) -> u64 {
lhs << (4 * exp)
}
fn lshift_u128(lhs: u128, exp: u32) -> u128 {
lhs << (4 * exp)
}
fn rshift(lhs: u64, exp: u32) -> u64 {
lhs >> (4 * exp)
}
fn rshift_u128(lhs: u128, exp: u32) -> u128 {
lhs >> (4 * exp)
}
}
impl Base for Decimal {
const NUMBER: u16 = 10;
fn new() -> Self {
Self
}
fn exp_range(&self) -> ExpRange {
ExpRange(DEC_EXP_RANGE.0, DEC_EXP_RANGE.1)
}
fn sig_range(&self) -> SigRange {
SigRange(DEC_SIG_RANGE.0, DEC_SIG_RANGE.1)
}
fn pow(exp: u32) -> u64 {
DEC_POWERS[exp as usize]
}
fn pow_u128(exp: u32) -> u128 {
DEC_POWERS_U128[exp as usize]
}
fn get_mag(sig: u64) -> u32 {
sig.ilog10()
}
fn get_mag_u128(sig: u128) -> u32 {
sig.ilog10()
}
}
/// This is the main struct for `bignumbe-rs`.
///
/// It takes a generic argument for the base, e.g.
/// `BigNumBase<Binary>`. It is recommended to either create a custom type alias or
/// use one of the predefined ones (`BigNumBin, BigNumOct, BigNumDec, BigNumHex`). You
/// should be able to use them pretty much exactly like other numbers in most contexts.
/// For convenience I define `From` and all math operations for `u64`, but keep in mind
/// that the `From` implementation, like `new`, involves recalculating the base ranges.
///
/// ```
/// use bignumbe_rs::{BigNumBase, Binary};
///
/// type BigNum = BigNumBase<Binary>;
///
/// let bn1 = BigNum::from(1);
/// let bn2 = BigNum::from(u64::MAX);
///
/// // Since this operation's result doesn't fit in `u64` it wraps over to the minimum
/// // significand and increments the `exp`
/// assert_eq!(bn1 + bn2, BigNum::new(1 << 63, 1));
///
/// assert_eq!(bn1 / bn2, BigNum::from(0));
/// assert_eq!(bn1 * bn2, bn2);
/// assert_eq!(bn2 * bn2, BigNum::new(u64::MAX - 1, 64));
/// ```
#[derive(Clone, Copy, Debug)]
pub struct BigNumBase<T>
where
T: Base,
{
pub sig: u64,
pub exp: u64,
pub base: T,
}
impl<T> BigNumBase<T>
where
T: Base,
{
/// Creates a new `BigNumBase` instance that represents the value
/// `sig * T::NUMBER^exp`. E.g. `BigNumBin::new(12341234, 12341)` represents
/// `12341234 * 2^12341`. This method will perform normalization if necessary, to
/// ensure the significand is in the valid range (if the number is non-compact). As
/// such when creating a BigNum from scratch you should always use this unless you
/// absolutely need a raw constructor
pub fn new(sig: u64, exp: u64) -> Self {
let base = T::new();
let SigRange(min_sig, max_sig) = base.sig_range();
let ExpRange(min_exp, _) = base.exp_range();
if sig >= min_sig && sig <= max_sig {
Self { sig, exp, base }
} else if sig > max_sig {
// Since we know `max_sig * base.as_number() > u64::MAX`, we also know
// that `sig / base.as_number() <= max_sig`
Self {
sig: T::rshift(sig, 1),
exp: exp + 1,
base,
}
} else if exp == 0 {
Self { sig, exp, base }
} else if sig == 0 {
panic!(
"Unable to create BigNumBase with exp of {} and sig of 0",
exp
);
} else {
let mag = T::get_mag(sig);
if mag.saturating_add(exp as u32) <= min_exp {
Self {
sig: T::lshift(sig, exp as u32),
exp: 0,
base,
}
} else {
let adj = min_exp - mag;
Self {
sig: T::lshift(sig, adj),
exp: exp - adj as u64,
base,
}
}
}
}
/// Creates a BigNumBase directly from values, panicking if not possible. This is
/// mostly for testing but may be more performant on inputs that are guaranteed valid
pub fn new_raw(sig: u64, exp: u64) -> Self {
let base = T::new();
if Self::is_valid(sig, exp, base.sig_range()) {
Self { sig, exp, base }
} else {
panic!(
"Unable to create BigNumBase with sig
0x{:x} and exp
{}
min_sig:
0x{:x},
max_sig:
0x{:x}",
sig,
exp,
base.sig_range().0,
base.sig_range().1
);
}
}
/// Returns true if the values are valid for the current base
fn is_valid(sig: u64, exp: u64, range: SigRange) -> bool {
sig <= range.max() && (exp == 0 || sig >= range.min())
}
}
impl<T> PartialEq for BigNumBase<T>
where
T: Base,
{
fn eq(&self, other: &Self) -> bool {
self.sig == other.sig && self.exp == other.exp
}
}
impl<T> Eq for BigNumBase<T> where T: Base {}
impl<T> Ord for BigNumBase<T>
where
T: Base,
{
fn cmp(&self, other: &Self) -> Ordering {
match self.exp.cmp(&other.exp) {
Ordering::Less => Ordering::Less,
Ordering::Greater => Ordering::Greater,
Ordering::Equal => match self.sig.cmp(&other.sig) {
Ordering::Less => Ordering::Less,
Ordering::Greater => Ordering::Greater,
Ordering::Equal => Ordering::Equal,
},
}
}
}
impl<T> PartialOrd for BigNumBase<T>
where
T: Base,
{
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl<T> Add for BigNumBase<T>
where
T: Base,
{
type Output = Self;
fn add(self, rhs: Self) -> Self::Output {
let base = self.base;
let SigRange(min_sig, max_sig) = base.sig_range();
let ExpRange(_, max_exp) = base.exp_range();
let (max, min) = if self > rhs { (self, rhs) } else { (rhs, self) };
let shift = max.exp - min.exp;
if shift >= max_exp as u64 {
// This shift is guaranteed to result in 0 on lhs, no need to compute
return max;
}
let result = max.sig.wrapping_add(T::rshift(min.sig, shift as u32));
let (sig, exp) = if result < max.sig {
// Wrapping occurred, handle it
(min_sig + T::rshift(result, 1), max.exp + 1)
} else if T::NUMBER != 2 && result > max_sig {
(T::rshift(result, 1), max.exp + 1)
} else {
(result, max.exp)
};
Self {
sig,
exp,
base: self.base,
}
}
}
impl<T> AddAssign for BigNumBase<T>
where
T: Base,
{
fn add_assign(&mut self, rhs: Self) {
*self = *self + rhs;
}
}
impl<T> Sub for BigNumBase<T>
where
T: Base,
{
type Output = Self;
fn sub(self, rhs: Self) -> Self::Output {
let base = self.base;
let SigRange(min_sig, _) = base.sig_range();
let ExpRange(min_exp, max_exp) = base.exp_range();
let (max, min) = if self >= rhs {
(self, rhs)
} else {
panic!(
"Attempt to subtract
{:?} from
{:?}",
rhs, self
)
};
let shift = max.exp - min.exp;
if shift >= max_exp as u64 {
// This shift is guaranteed to result in 0 on rhs, no need to compute
return max;
}
let result = max.sig.wrapping_sub(T::rshift(min.sig, shift as u32));
let (res_sig, res_exp) = if result > max.sig {
// Wrapping occurred, handle it by decrementing the exponent
(result, max.exp - 1)
} else {
(result, max.exp)
};
if res_sig == 0 {
Self {
sig: 0,
exp: 0,
base,
}
} else if res_exp == 0 || res_sig >= min_sig {
Self {
sig: res_sig,
exp: res_exp,
base,
}
} else {
// This operation can result in arbitrary loss in magnitude so we have to
// calculate the differential directly
let mag = T::get_mag(res_sig);
let adj = min_exp - mag;
if adj as u64 == res_exp {
Self {
sig: T::lshift(res_sig, adj),
exp: 0,
base,
}
} else if adj as u64 >= res_exp {
// Have to adjust by more than exp so we will have a compact result
// TODO Verify this again, pretty sure it's right but I can't figure out
// why the -1 is there
let diff = adj as u64 - res_exp - 1;
Self {
sig: T::lshift(res_sig, diff as u32),
exp: 0,
base,
}
} else {
Self {
sig: T::lshift(res_sig, adj),
exp: res_exp - adj as u64,
base,
}
}
}
}
}
impl<T> SubAssign for BigNumBase<T>
where
T: Base,
{
fn sub_assign(&mut self, rhs: Self) {
*self = *self - rhs;
}
}
impl<T> Mul for BigNumBase<T>
where
T: Base,
{
type Output = BigNumBase<T>;
fn mul(self, rhs: Self) -> Self::Output {
let base = self.base;
if self.exp == 0 && self.sig == 1 {
return rhs;
} else if self.exp == 0 && self.sig == 0 {
return Self {
sig: 0,
exp: 0,
base,
};
} else if rhs.exp == 0 && rhs.sig == 1 {
return self;
} else if rhs.exp == 0 && rhs.sig == 0 {
return Self {
sig: 0,
exp: 0,
base,
};
}
let (lsig, rsig) = (self.sig as u128, rhs.sig as u128);
let (lexp, rexp) = (self.exp, rhs.exp);
let SigRange(min_sig, max_sig) = base.sig_range();
let ExpRange(min_exp, _) = base.exp_range();
let res_sig = lsig * rsig;
let res_exp = lexp + rexp;
if res_sig > max_sig as u128 {
let mag = T::get_mag_u128(res_sig);
let adj = mag - min_exp;
let sig = T::rshift_u128(res_sig, adj);
if sig > u64::MAX as u128 {
panic!(
"Unable to normalize result for multiplication between {:?} and {:?}",
self, rhs
);
} else {
Self {
sig: sig as u64,
exp: res_exp + adj as u64,
base,
}
}
} else if res_exp != 0 && res_sig < min_sig as u128 {
panic!(
"Found invalid significand while multiplying {:?} and {:?}",
self, rhs
);
} else {
Self {
sig: res_sig as u64,
exp: res_exp,
base,
}
}
}
}
impl<T> MulAssign for BigNumBase<T>
where
T: Base,
{
fn mul_assign(&mut self, rhs: Self) {
*self = *self * rhs;
}
}
impl<T> Div for BigNumBase<T>
where
T: Base,
{
type Output = Self;
// The basic idea here is to project both numbers to a u128 like in multiplication,
// but this time the lhs goes in the upper 64 bits and the rhs goes in the lower. This
// way we preserve as much info as possible
fn div(self, rhs: Self) -> Self::Output {
match self.cmp(&rhs) {
Ordering::Less => return Self::new(0, 0),
Ordering::Equal => return Self::new(1, 0),
_ => (),
}
if self.exp == 0 {
return Self {
sig: self.sig / rhs.sig,
..self
};
}
let base = self.base;
let ExpRange(min_exp, max_exp) = base.exp_range();
let (lsig, rsig) = (T::lshift_u128(self.sig as u128, max_exp), rhs.sig as u128);
let (lexp, rexp) = (self.exp, rhs.exp);
let res_sig = lsig / rsig;
let res_exp = lexp - rexp;
let mag = T::get_mag_u128(res_sig);
// lsig had a magnitude of min_exp + max_exp, this tracks how many orders of
// magnitude were "lost" with this division
let adj = (min_exp + max_exp) - mag;
if adj as u64 <= res_exp {
// We would shift by max_exp normally, but since we lost adj orders of
// magnitude we have to shift by max_exp - adj
Self {
sig: T::rshift_u128(res_sig, max_exp - adj) as u64,
exp: res_exp - adj as u64,
..self
}
} else {
let diff = adj as u64 - res_exp;
// We would normally shift by max_exp, but we lost adj order of magnitude
// and took diff orders of magnitude from the exponent, so we shift by
// max_exp - adj + diff
Self {
sig: T::rshift_u128(res_sig, max_exp - adj + diff as u32) as u64,
exp: 0,
..self
}
}
}
}
impl<T> Shl<u64> for BigNumBase<T>
where
T: Base,
{
type Output = Self;
fn shl(self, rhs: u64) -> Self::Output {
let ExpRange(min_exp, _) = self.base.exp_range();
if self.exp != 0 {
// Already in expanded form
Self {
exp: self.exp.checked_add(rhs).unwrap(),
..self
}
} else {
let mag = T::get_mag(self.sig);
// The number of orders of magnitude the significand can be increased
let adj = min_exp - mag;
if adj as u64 > rhs {
// The result can be made compact
Self {
sig: T::lshift(self.sig, rhs as u32),
exp: 0,
..self
}
} else {
Self {
sig: T::lshift(self.sig, adj),
exp: rhs - adj as u64,
..self
}
}
}
}
}
impl<T> Shr<u64> for BigNumBase<T>
where
T: Base,
{
type Output = Self;
fn shr(self, rhs: u64) -> Self::Output {
if self.exp >= rhs {
return Self {
exp: self.exp - rhs,
..self
};
}
let mag = T::get_mag(self.sig);
let diff = rhs - self.exp;
if diff > mag as u64 {
panic!("Unable to shift {:?} by {}", self, rhs);
}
Self {
sig: T::rshift(self.sig, diff as u32),
exp: 0,
..self
}
}
}
impl Display for BigNumBase<Decimal> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
if self.exp == 0 {
// Precision specifier has special behavior on floats which is undesired
// here. Want to force it to string and use the default behavior, e.g.
// a max-width setting.
let mag = Decimal::get_mag(self.sig);
if mag < 3 {
f.write_fmt(format_args!("{}", self.sig))
} else if mag < 6 {
f.write_fmt(format_args!("{0:.5}k", (self.sig as f64 / 1e3).to_string()))
} else if mag < 9 {
f.write_fmt(format_args!("{0:.5}m", (self.sig as f64 / 1e6).to_string()))
} else if mag < 12 {
f.write_fmt(format_args!("{0:.5}b", (self.sig as f64 / 1e9).to_string()))
} else if mag < 15 {
f.write_fmt(format_args!(
"{0:.5}t",
(self.sig as f64 / 1e12).to_string()
))
} else {
let res = (self.sig as f64) / 10f64.powi(mag as i32);
if res == 10.0 {
f.write_fmt(format_args!("9.999e{}", mag))
} else {
f.write_fmt(format_args!("{0:.5}e{1}", res.to_string(), mag))
}
}
} else {
let min_exp = self.base.exp_range().min();
let res = (self.sig as f64) / 10f64.powi(min_exp as i32);
if res == 10.0 {
f.write_fmt(format_args!("9.999e{}", min_exp as u64 + self.exp))
} else {
f.write_fmt(format_args!(
"{0:.5}e{1}",
res.to_string(),
min_exp as u64 + self.exp
))
}
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::Binary;
#[test]
fn new_binary_test() {
type BigNum = BigNumBase<Binary>;
// Check that adjustment is correct, especially around edge cases
assert_eq_bignum!(BigNum::new(1, 0), BigNum::new_raw(1, 0));
assert_eq_bignum!(BigNum::new(0b100, 2), BigNum::new_raw(0b10000, 0));
assert_eq_bignum!(BigNum::new(1 << 62, 20), BigNum::new_raw(1 << 63, 19));
assert_eq_bignum!(BigNum::new(1 << 62, 20), BigNum::new_raw(1 << 63, 19));
}
#[test]
fn add_binary_test() {
type BigNum = BigNumBase<Binary>;
assert_eq_bignum!(
BigNum::new(0x100, 0) + BigNum::new(0x0100_0000, 4),
BigNum::new_raw(0x1000_0100, 0)
);
assert_eq_bignum!(
BigNum::new(0x1000_0000, 32) + BigNum::new(0x0100_0000, 4),
BigNum::new_raw(0x1000_0000_1000_0000, 0)
);
assert_eq_bignum!(
BigNum::new(0xFFFF_FFFF, 32) + BigNum::new(0x8000_0000, 1),
BigNum::new_raw(0x8000_0000_0000_0000, 1)
);
assert_eq_bignum!(
BigNum::new(0xFFFF_FFFF_FFFF_FFFF, 1) + 0x1u64,
BigNum::new_raw(0xFFFF_FFFF_FFFF_FFFF, 1)
);
assert_eq_bignum!(
BigNum::new(0xFFFF_FFFF_FFFF_FFFF, 1) + 0x2u64,
BigNum::new_raw(0x8000_0000_0000_0000, 2)
);
}
#[test]
fn add_hex_test() {
type BigNum = BigNumBase<Hexadecimal>;
assert_eq_bignum!(
BigNum::from(0xFFFF_FFFF_FFFF_FFFFu64) + 1u64,
BigNum::new_raw(0x1000_0000_0000_0000, 1)
);
assert_eq_bignum!(
BigNum::from(0xFFFF_FFFF_FFFF_FFFEu64) + 1u64,
BigNum::new_raw(0xFFFF_FFFF_FFFF_FFFF, 0)
);
assert_eq_bignum!(
BigNum::new(0xFFFF_FFFF_FFFF_FFFEu64, 10) + 0x0100_0000_0000u64,
BigNum::new_raw(0xFFFF_FFFF_FFFF_FFFF, 10)
);
assert_eq_bignum!(
BigNum::new(0xFFFF_FFFF_FFFF_FFFFu64, 0xFFFF_FFFF_FFFF_0000) + 0x0100_0000_0000u64,
BigNum::new_raw(0xFFFF_FFFF_FFFF_FFFF, 0xFFFF_FFFF_FFFF_0000)
);
assert_eq_bignum!(
BigNum::new(0xFFFF_FFFF_FFFF_FFFF, 0xFFFF_FFFF)
+ BigNum::new(0x1FFF_FFFF_FFFF_FFFF, 0xFFFF_FFF0),
BigNum::new_raw(0x1000_0000_0000_0000, 0x1_0000_0000)
);
assert_eq_bignum!(
BigNum::new(0xFFFF_FFFF_FFFF_FFFF, 0xFFFF_FFFF)
+ BigNum::new(0x1FFF_FFFF_FFFF_FFFF, 0xFFFF_FFEF),
BigNum::new_raw(0xFFFF_FFFF_FFFF_FFFF, 0xFFFF_FFFF)
);
}
#[test]
fn add_decimal_test() {
type BigNum = BigNumBase<Decimal>;
assert_eq_bignum!(
BigNum::from(1) + BigNum::new(1243123123, 3),
BigNum::new_raw(1243123123001, 0)
);
assert_eq_bignum!(
BigNum::from(1000) + BigNum::new(10u64.pow(19) - 1, 3),
BigNum::new_raw(10u64.pow(18), 4)
);
assert_eq_bignum!(
BigNum::new(10u64.pow(19) - 1, 13) + BigNum::new(10u64.pow(18), 3),
BigNum::new_raw(10u64.pow(18) + 10u64.pow(7) - 1, 14)
);
}
#[test]
fn add_arbitrary_test() {
create_default_base!(Base61, 61);
type BigNum = BigNumBase<Base61>;
let SigRange(min_sig, max_sig) = Base61::calculate_ranges().1;
assert_eq_bignum!(
BigNum::from(0xFFFF_FFFF_FFFF_FFFEu64) + 1u64,
BigNum::new_raw(((u64::MAX as u128 + 1) / 61u128) as u64, 1)
);
assert_eq_bignum!(BigNum::from(1u64) + 1u64, BigNum::new_raw(2, 0));
assert_eq_bignum!(
//BigNum::new(max_sig, 10, BASE) + BigNum::new(1, 10, BASE),
BigNum::new(max_sig, 10) + BigNum::new(1, 10),
BigNum::new_raw(min_sig, 11)
);
assert_eq_bignum!(
BigNum::new(max_sig, 10) + BigNum::new(61u64, 9),
BigNum::new_raw(min_sig, 11)
);
}
#[test]
fn sub_binary_test() {
type BigNum = BigNumBase<Binary>;
assert_eq_bignum!(
BigNum::new(0x100, 32) - BigNum::new(0x0080_0000_0000, 0),
BigNum::new_raw(0x0080_0000_0000, 0)
);
assert_eq_bignum!(
BigNum::new(0x1000_0000_0000_0000, 0) - BigNum::new(0x0010_0000_0000_0000, 8),
BigNum::from(0)
);
assert_eq_bignum!(
BigNum::new(0xFFFF_FFFF_FFFF_FFFF, 48) - BigNum::new(0x8000_0000_0000_0000, 16),
BigNum::new(0xFFFF_FFFF_7FFF_FFFF, 48)
);
assert_eq_bignum!(
BigNum::new(0xFFFF_FFFF_FFFF_FFFF, 48) - BigNum::new(0xFFFF_FFFF_0000_0000, 48),
BigNum::new(0xFFFF_FFFF_0000_0000, 16)
);
assert_eq_bignum!(
BigNum::new(0x8000_0000_0000_0000, 48) - BigNum::new(0xFFFF_FFFF_0000_0000, 16),
BigNum::new(0xFFFF_FFFE_0000_0002, 47)
);
}
// I won't test each individual base since the logic is the same, but I will test
// binary and arbitrary
#[test]
fn sub_arbitrary_test() {
create_default_base!(Base61, 61);
type BigNum = BigNumBase<Base61>;
let SigRange(min_sig, max_sig) = Base61::calculate_ranges().1;
// This is an example of how subtraction results in a loss of precision. I may
// do a lossless_sub trait at some point that casts both sigs to u128 before
// calculating
assert_eq_bignum!(
BigNum::new(min_sig, 1) - 61u64,
BigNum::new_raw(max_sig - 60, 0)
);
assert_eq_bignum!(
BigNum::new(max_sig, 1) - max_sig,
BigNum::new_raw(max_sig - max_sig / 61, 1)
);
assert_eq_bignum!(
BigNum::new(12341098709128730491, 11234) - BigNum::new(12341098709128730491, 11234),
BigNum::from(0)
)
}
#[test]
fn mul_binary_test() {
type BigNum = BigNumBase<Binary>;
let SigRange(min_sig, max_sig) = Binary::calculate_ranges().1;
assert_eq_bignum!(
BigNum::from(14215125) * BigNum::from(120487091724u64),
BigNum::from(120487091724u64 * 14215125)
);
// 2^63 * 2^63 = 2^126
assert_eq_bignum!(
BigNum::from(min_sig) * BigNum::from(min_sig),
BigNum::new(min_sig, 63)
);
assert_eq_bignum!(
BigNum::from(min_sig) * BigNum::from(min_sig),
BigNum::new(min_sig, 63)
);
assert_eq_bignum!(
BigNum::new(max_sig, 1) * BigNum::new(max_sig, 1),
BigNum::new(max_sig - 1, 64 + 2)
);
assert_eq_bignum!(
BigNum::new(max_sig, 1123) * BigNum::new(max_sig, 11325),
BigNum::new(max_sig - 1, 64 + 1123 + 11325)
);
assert_eq_bignum!(
BigNum::new(max_sig - min_sig, 123410923) * BigNum::from(0),
BigNum::from(0)
);
assert_eq_bignum!(
BigNum::new(max_sig - min_sig, 123410923) * BigNum::from(1),
BigNum::new(max_sig - min_sig, 123410923)
);
}
#[test]
fn binary_div_test() {
type BigNum = BigNumBase<Binary>;
let SigRange(min_sig, max_sig) = Binary::calculate_ranges().1;
assert_eq_bignum!(
BigNum::from(123412341234432u64) / BigNum::from(1221314),
BigNum::from(123412341234432u64 / 1221314)
);
assert_eq_bignum!(
BigNum::from(123412341234432u64) / BigNum::from(123412341234432u64),
BigNum::from(1)
);
assert_eq_bignum!(
BigNum::from(123412341234432u64) / BigNum::from(12341234123412341234u64),
BigNum::from(0)
);
assert_eq_bignum!(
BigNum::new(123412341234432u64, 12341234) / BigNum::new(123412341234432u64, 12341234),
BigNum::from(1)
);
assert_eq_bignum!(
BigNum::new(123412341234432u64, 12341234) / BigNum::new(123412341234432u64, 12341235),
BigNum::from(0)
);
assert_eq_bignum!(
BigNum::new(123412341234432u64, 12341234) / BigNum::new(123412341234433u64, 12341234),
BigNum::from(0)
);
assert_eq_bignum!(
BigNum::new(min_sig, 12341234) / BigNum::new(min_sig, 12341233),
BigNum::from(2)
);
assert_eq_bignum!(
BigNum::new(min_sig, 12341234) / BigNum::new(min_sig, 1),
BigNum::new(min_sig, 12341234 - 64)
);
assert_eq_bignum!(
BigNum::new(max_sig, 12341234) / BigNum::new(max_sig, 1),
BigNum::new(min_sig, 12341234 - 64)
);
assert_eq_bignum!(
BigNum::new(max_sig, 12341234) / BigNum::new(min_sig, 1),
BigNum::new(max_sig, 12341234 - 64)
);
assert_eq_bignum!(
BigNum::new(max_sig, 63 + 12341234) / BigNum::new(min_sig, 1),
BigNum::new(max_sig, 12341234 - 1)
);
}
#[test]
fn binary_shifts() {
type BigNum = BigNumBase<Binary>;
assert_eq_bignum!(BigNum::new(0b100, 0) << 1, BigNum::new(0b1000, 0));
assert_eq_bignum!(BigNum::new(0b100, 0) << 2, BigNum::new(0b10000, 0));
assert_eq_bignum!(BigNum::new(u64::MAX, 1) << 3, BigNum::new(u64::MAX, 4));
assert_eq_bignum!(BigNum::new(u64::MAX, 0) << 64, BigNum::new(u64::MAX, 64));
assert_eq_bignum!(BigNum::new(0b100, 0) >> 1, BigNum::new(0b10, 0));
assert_eq_bignum!(BigNum::new(0b100, 0) >> 2, BigNum::new(0b1, 0));
assert_eq_bignum!(BigNum::new(u64::MAX, 1) >> 3, BigNum::new(u64::MAX / 4, 0));
assert_eq_bignum!(BigNum::new(u64::MAX, 0) >> 63, BigNum::from(1));
assert_eq_bignum!(
BigNum::new(u64::MAX, 100) >> 105,
BigNum::new(u64::MAX / 32, 0)
);
}
#[test]
fn display_test() {
type BigNum = BigNumBase<Decimal>;
assert_eq!(format!("{}", BigNum::from(1)), "1");
assert_eq!(format!("{}", BigNum::from(999)), "999");
assert_eq!(format!("{}", BigNum::from(1000)), "1k");
assert_eq!(format!("{}", BigNum::from(1001)), "1.001k");
assert_eq!(format!("{}", BigNum::from(999999)), "999.9k");
assert_eq!(format!("{}", BigNum::from(1000000)), "1m");
assert_eq!(format!("{}", BigNum::from(1001000)), "1.001m");
assert_eq!(format!("{}", BigNum::from(999999999)), "999.9m");
assert_eq!(format!("{}", BigNum::from(1000000000)), "1b");
assert_eq!(format!("{}", BigNum::from(1001000000)), "1.001b");
assert_eq!(format!("{}", BigNum::from(999999999999)), "999.9b");
assert_eq!(format!("{}", BigNum::from(1000000000000)), "1t");
assert_eq!(format!("{}", BigNum::from(1001000000000)), "1.001t");
assert_eq!(format!("{}", BigNum::from(999999999999999)), "999.9t");
assert_eq!(format!("{}", BigNum::from(1000000000000000)), "1e15");
assert_eq!(format!("{}", BigNum::from(1001000000000000)), "1.001e15");
assert_eq!(format!("{}", BigNum::from(999999999999999999)), "9.999e17");
assert_eq!(format!("{}", BigNum::new(9999, 123523)), "9.999e123526");
assert_eq!(format!("{}", BigNum::new(9099, 123523)), "9.099e123526");
assert_eq!(format!("{}", BigNum::new(999, 123523)), "9.99e123525");
}
}