bincode_sled/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
//! typed-sled - a database build on top of sled.
//!
//! sled is a high-performance embedded database with an API that is similar to a `BTreeMap<[u8], [u8]>`.
//! typed-sled builds on top of sled and offers an API that is similar to a `BTreeMap<K, V>`, where
//! K and V are user defined types which implement [Deserialize][serde::Deserialize] and [Serialize][serde::Serialize].
//!
//! # features
//! Multiple features for common use cases are also available:
//! * [search]: `SearchEngine` on top of a `Tree`.
//! * [key_generating]: Create `Tree`s with automatically generated keys.
//! * [convert]: Convert any `Tree` into another `Tree` with different key and value types.
//!
//! [sled]: https://docs.rs/sled/latest/sled/
use bincode::config::{Fixint, LittleEndian, NoLimit};
use bincode::{Decode, Encode};
pub use sled::{open, Config};
use transaction::TransactionalTree;
#[cfg(feature = "convert")]
pub mod convert;
#[cfg(feature = "key-generating")]
pub mod key_generating;
#[cfg(feature = "search")]
pub mod search;
pub mod transaction;
use core::fmt;
use core::iter::{DoubleEndedIterator, Iterator};
use core::ops::{Bound, RangeBounds};
use sled::{
transaction::{ConflictableTransactionResult, TransactionResult},
IVec, Result,
};
use std::marker::PhantomData;
pub const DEFAULT_CONF: bincode::config::Configuration<LittleEndian, Fixint, NoLimit> =
bincode::config::standard()
.with_little_endian()
.with_fixed_int_encoding()
.with_no_limit();
type BinConfT = bincode::config::Configuration<LittleEndian, Fixint, NoLimit>;
// pub trait Bin = DeserializeOwned + Serialize + Clone + Send + Sync;
/// A flash-sympathetic persistent lock-free B+ tree.
///
/// A `Tree` represents a single logical keyspace / namespace / bucket.
///
/// # Example
/// ```
/// use bincode::{Encode, Decode};
///
/// #[derive(Debug, Clone, Encode, Decode, PartialEq)]
/// struct SomeValue(u32);
///
/// fn main() -> Result<(), Box<dyn std::error::Error>> {
/// // Creating a temporary sled database.
/// // If you want to persist the data use sled::open instead.
/// let db = sled::Config::new().temporary(true).open().unwrap();
///
/// // The id is used by sled to identify which Tree in the database (db) to open.
/// let tree = bincode_sled::Tree::<String, SomeValue>::open(&db, "unique_id");
///
/// tree.insert(&"some_key".to_owned(), &SomeValue(10))?;
///
/// assert_eq!(tree.get(&"some_key".to_owned())?, Some(SomeValue(10)));
/// Ok(())
/// }
/// ```
#[derive(Debug)]
pub struct Tree<K, V>
where
K: Key,
V: Value,
{
inner: sled::Tree,
_key: PhantomData<fn() -> K>,
_value: PhantomData<fn() -> V>,
}
// Manual implementation to make ToOwned behave better.
// With derive(Clone) to_owned() on a reference returns a reference.
impl<K, V> Clone for Tree<K, V>
where
K: Key,
V: Value,
{
fn clone(&self) -> Self {
Self {
inner: self.inner.clone(),
_key: PhantomData,
_value: PhantomData,
}
}
}
/// Trait alias for bounds required on keys and values.
/// For now only types that implement DeserializeOwned
/// are supported.
// [specilization] might make
// supporting any type that implements Deserialize<'a>
// possible without much overhead. Otherwise the branch
// custom_de_serialization introduces custom (de)serialization
// for each `Tree` which might also make it possible.
//
// [specialization]: https://github.com/rust-lang/rust/issues/31844
pub trait Key: Encode + Decode + Send {}
impl<T: Encode + Decode + Send + Sync> Key for T {}
pub trait Value: Encode + Decode + Send {}
impl<T: Encode + Decode + Send + Sync> Value for T {}
/// Compare and swap error.
#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct CompareAndSwapError<V> {
/// The current value which caused your CAS to fail.
pub current: Option<V>,
/// Returned value that was proposed unsuccessfully.
pub proposed: Option<V>,
}
impl<V> fmt::Display for CompareAndSwapError<V> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "Compare and swap conflict")
}
}
// implemented like this in the sled source
impl<V: std::fmt::Debug> std::error::Error for CompareAndSwapError<V> {}
// These Trait bounds should probably be specified on the functions themselves, but too lazy.
impl<K, V> Tree<K, V>
where
K: Key,
V: Value,
{
/// Initialize a typed tree. The id identifies the tree to be opened from the db.
/// # Example
///
/// ```
/// use bincode::{Encode, Decode};
///
/// #[derive(Debug, Clone, Encode, Decode, PartialEq)]
/// struct SomeValue(u32);
///
/// fn main() -> Result<(), Box<dyn std::error::Error>> {
/// // Creating a temporary sled database.
/// // If you want to persist the data use sled::open instead.
/// let db = sled::Config::new().temporary(true).open().unwrap();
///
/// // The id is used by sled to identify which Tree in the database (db) to open.
/// let tree = bincode_sled::Tree::<String, SomeValue>::open(&db, "unique_id");
///
/// tree.insert(&"some_key".to_owned(), &SomeValue(10))?;
///
/// assert_eq!(tree.get(&"some_key".to_owned())?, Some(SomeValue(10)));
/// Ok(())
/// }
/// ```
pub fn open<T: AsRef<str>>(db: &sled::Db, id: T) -> Self {
Self {
inner: db.open_tree(id.as_ref()).unwrap(),
_key: PhantomData,
_value: PhantomData,
}
}
/// Insert a key to a new value, returning the last value if it was set.
pub fn insert(&self, key: &K, value: &V) -> Result<Option<V>> {
self.inner
.insert(serialize(key), serialize(value))
.map(|opt| opt.map(|old_value| deserialize(&old_value)))
}
/// Perform a multi-key serializable transaction.
pub fn transaction<F, A, E>(&self, f: F) -> TransactionResult<A, E>
where
F: Fn(&TransactionalTree<K, V>) -> ConflictableTransactionResult<A, E>,
{
self.inner.transaction(|sled_transactional_tree| {
f(&TransactionalTree::new(sled_transactional_tree))
})
}
/// Create a new batched update that can be atomically applied.
///
/// It is possible to apply a Batch in a transaction as well, which is the way you can apply a Batch to multiple Trees atomically.
pub fn apply_batch(&self, batch: Batch<K, V>) -> Result<()> {
self.inner.apply_batch(batch.inner)
}
/// Retrieve a value from the Tree if it exists.
pub fn get(&self, key: &K) -> Result<Option<V>> {
self.inner
.get(serialize(key))
.map(|opt| opt.map(|v| deserialize(&v)))
}
/// Retrieve a value from the Tree if it exists. The key must be in serialized form.
pub fn get_from_raw<B: AsRef<[u8]>>(&self, key_bytes: B) -> Result<Option<V>> {
self.inner
.get(key_bytes.as_ref())
.map(|opt| opt.map(|v| deserialize(&v)))
}
/// Deserialize a key and retrieve it's value from the Tree if it exists.
/// The deserialization is only done if a value was retrieved successfully.
pub fn get_kv_from_raw<B: AsRef<[u8]>>(&self, key_bytes: B) -> Result<Option<(K, V)>> {
self.inner
.get(key_bytes.as_ref())
.map(|opt| opt.map(|v| (deserialize(key_bytes.as_ref()), deserialize(&v))))
}
/// Delete a value, returning the old value if it existed.
pub fn remove(&self, key: &K) -> Result<Option<V>> {
self.inner
.remove(serialize(key))
.map(|opt| opt.map(|v| deserialize(&v)))
}
/// Compare and swap. Capable of unique creation, conditional modification, or deletion. If old is None, this will only set the value if it doesn't exist yet. If new is None, will delete the value if old is correct. If both old and new are Some, will modify the value if old is correct.
///
/// It returns Ok(Ok(())) if operation finishes successfully.
///
/// If it fails it returns: - Ok(Err(CompareAndSwapError(current, proposed))) if operation failed to setup a new value. CompareAndSwapError contains current and proposed values. - Err(Error::Unsupported) if the database is opened in read-only mode.
pub fn compare_and_swap(
&self,
key: &K,
old: Option<&V>,
new: Option<&V>,
) -> Result<core::result::Result<(), CompareAndSwapError<V>>> {
self.inner
.compare_and_swap(
serialize(key),
old.map(|old| serialize(old)),
new.map(|new| serialize(new)),
)
.map(|cas_res| {
cas_res.map_err(|cas_err| CompareAndSwapError {
current: cas_err.current.as_ref().map(|b| deserialize(b)),
proposed: cas_err.proposed.as_ref().map(|b| deserialize(b)),
})
})
}
/// Fetch the value, apply a function to it and return the result.
// not sure if implemented correctly (different trait bound for F)
pub fn update_and_fetch<F>(&self, key: &K, mut f: F) -> Result<Option<V>>
where
F: FnMut(Option<V>) -> Option<V>,
{
self.inner
.update_and_fetch(serialize(&key), |opt_value| {
f(opt_value.map(|v| deserialize(v))).map(|v| serialize(&v))
})
.map(|res| res.map(|v| deserialize(&v)))
}
/// Fetch the value, apply a function to it and return the previous value.
// not sure if implemented correctly (different trait bound for F)
pub fn fetch_and_update<F>(&self, key: &K, mut f: F) -> Result<Option<V>>
where
F: FnMut(Option<V>) -> Option<V>,
{
self.inner
.fetch_and_update(serialize(key), |opt_value| {
f(opt_value.map(|v| deserialize(v))).map(|v| serialize(&v))
})
.map(|res| res.map(|v| deserialize(&v)))
}
/// Subscribe to `Event`s that happen to keys that have
/// the specified prefix. Events for particular keys are
/// guaranteed to be witnessed in the same order by all
/// threads, but threads may witness different interleavings
/// of `Event`s across different keys. If subscribers don't
/// keep up with new writes, they will cause new writes
/// to block. There is a buffer of 1024 items per
/// `Subscriber`. This can be used to build reactive
/// and replicated systems.
pub fn watch_prefix(&self, prefix: &K) -> Subscriber<K, V> {
Subscriber::from_sled(self.inner.watch_prefix(serialize(prefix)))
}
/// Subscribe to all`Event`s. Events for particular keys are
/// guaranteed to be witnessed in the same order by all
/// threads, but threads may witness different interleavings
/// of `Event`s across different keys. If subscribers don't
/// keep up with new writes, they will cause new writes
/// to block. There is a buffer of 1024 items per
/// `Subscriber`. This can be used to build reactive
/// and replicated systems.
pub fn watch_all(&self) -> Subscriber<K, V> {
Subscriber::from_sled(self.inner.watch_prefix(vec![]))
}
/// Synchronously flushes all dirty IO buffers and calls
/// fsync. If this succeeds, it is guaranteed that all
/// previous writes will be recovered if the system
/// crashes. Returns the number of bytes flushed during
/// this call.
///
/// Flushing can take quite a lot of time, and you should
/// measure the performance impact of using it on
/// realistic sustained workloads running on realistic
/// hardware.
pub fn flush(&self) -> Result<usize> {
self.inner.flush()
}
/// Asynchronously flushes all dirty IO buffers
/// and calls fsync. If this succeeds, it is
/// guaranteed that all previous writes will
/// be recovered if the system crashes. Returns
/// the number of bytes flushed during this call.
///
/// Flushing can take quite a lot of time, and you
/// should measure the performance impact of
/// using it on realistic sustained workloads
/// running on realistic hardware.
pub async fn flush_async(&self) -> Result<usize> {
self.inner.flush_async().await
}
/// Returns `true` if the `Tree` contains a value for
/// the specified key.
pub fn contains_key(&self, key: &K) -> Result<bool> {
self.inner.contains_key(serialize(key))
}
/// Retrieve the key and value before the provided key,
/// if one exists.
pub fn get_lt(&self, key: &K) -> Result<Option<(K, V)>> {
self.inner
.get_lt(serialize(key))
.map(|res| res.map(|(k, v)| (deserialize(&k), deserialize(&v))))
}
/// Retrieve the next key and value from the `Tree` after the
/// provided key.
pub fn get_gt(&self, key: &K) -> Result<Option<(K, V)>> {
self.inner
.get_gt(serialize(key))
.map(|res| res.map(|(k, v)| (deserialize(&k), deserialize(&v))))
}
/// Merge state directly into a given key's value using the
/// configured merge operator. This allows state to be written
/// into a value directly, without any read-modify-write steps.
/// Merge operators can be used to implement arbitrary data
/// structures.
///
/// Calling `merge` will return an `Unsupported` error if it
/// is called without first setting a merge operator function.
///
/// Merge operators are shared by all instances of a particular
/// `Tree`. Different merge operators may be set on different
/// `Tree`s.
pub fn merge(&self, key: &K, value: &V) -> Result<Option<V>> {
self.inner
.merge(serialize(key), serialize(value))
.map(|res| res.map(|old_v| deserialize(&old_v)))
}
// TODO: implement using own MergeOperator trait
/// Sets a merge operator for use with the `merge` function.
///
/// Merge state directly into a given key's value using the
/// configured merge operator. This allows state to be written
/// into a value directly, without any read-modify-write steps.
/// Merge operators can be used to implement arbitrary data
/// structures.
///
/// # Panics
///
/// Calling `merge` will panic if no merge operator has been
/// configured.
pub fn set_merge_operator(&self, merge_operator: impl MergeOperator<K, V> + 'static) {
self.inner
.set_merge_operator(move |key: &[u8], old_v: Option<&[u8]>, value: &[u8]| {
let opt_v = merge_operator(
deserialize(key),
old_v.map(|v| deserialize(v)),
deserialize(value),
);
opt_v.map(|v| serialize(&v))
});
}
/// Create a double-ended iterator over the tuples of keys and
/// values in this tree.
pub fn iter(&self) -> Iter<K, V> {
Iter::from_sled(self.inner.iter())
}
/// Create a double-ended iterator over tuples of keys and values,
/// where the keys fall within the specified range.
pub fn range<R: RangeBounds<K>>(&self, range: R) -> Iter<K, V> {
match (range.start_bound(), range.end_bound()) {
(Bound::Unbounded, Bound::Unbounded) => {
Iter::from_sled(self.inner.range::<&[u8], _>(..))
}
(Bound::Unbounded, Bound::Excluded(b)) => {
Iter::from_sled(self.inner.range(..serialize(b)))
}
(Bound::Unbounded, Bound::Included(b)) => {
Iter::from_sled(self.inner.range(..=serialize(b)))
}
// FIX: This is not excluding lower bound.
(Bound::Excluded(b), Bound::Unbounded) => {
Iter::from_sled(self.inner.range(serialize(b)..))
}
(Bound::Excluded(b), Bound::Excluded(bb)) => {
Iter::from_sled(self.inner.range(serialize(b)..serialize(bb)))
}
(Bound::Excluded(b), Bound::Included(bb)) => {
Iter::from_sled(self.inner.range(serialize(b)..=serialize(bb)))
}
(Bound::Included(b), Bound::Unbounded) => {
Iter::from_sled(self.inner.range(serialize(b)..))
}
(Bound::Included(b), Bound::Excluded(bb)) => {
Iter::from_sled(self.inner.range(serialize(b)..serialize(bb)))
}
(Bound::Included(b), Bound::Included(bb)) => {
Iter::from_sled(self.inner.range(serialize(b)..=serialize(bb)))
}
}
}
/// Create an iterator over tuples of keys and values,
/// where the all the keys starts with the given prefix.
pub fn scan_prefix(&self, prefix: &K) -> Iter<K, V> {
Iter::from_sled(self.inner.scan_prefix(serialize(prefix)))
}
/// Returns the first key and value in the `Tree`, or
/// `None` if the `Tree` is empty.
pub fn first(&self) -> Result<Option<(K, V)>> {
self.inner
.first()
.map(|res| res.map(|(k, v)| (deserialize(&k), deserialize(&v))))
}
/// Returns the last key and value in the `Tree`, or
/// `None` if the `Tree` is empty.
pub fn last(&self) -> Result<Option<(K, V)>> {
self.inner
.last()
.map(|res| res.map(|(k, v)| (deserialize(&k), deserialize(&v))))
}
/// Atomically removes the maximum item in the `Tree` instance.
pub fn pop_max(&self) -> Result<Option<(K, V)>> {
self.inner
.pop_max()
.map(|res| res.map(|(k, v)| (deserialize(&k), deserialize(&v))))
}
/// Atomically removes the minimum item in the `Tree` instance.
pub fn pop_min(&self) -> Result<Option<(K, V)>> {
self.inner
.pop_min()
.map(|res| res.map(|(k, v)| (deserialize(&k), deserialize(&v))))
}
/// Returns the number of elements in this tree.
pub fn len(&self) -> usize {
self.inner.len()
}
/// Returns `true` if the `Tree` contains no elements.
pub fn is_empty(&self) -> bool {
self.inner.is_empty()
}
/// Clears the `Tree`, removing all values.
///
/// Note that this is not atomic.
pub fn clear(&self) -> Result<()> {
self.inner.clear()
}
/// Returns the name of the tree.
pub fn name(&self) -> IVec {
self.inner.name()
}
/// Returns the CRC32 of all keys and values
/// in this Tree.
///
/// This is O(N) and locks the underlying tree
/// for the duration of the entire scan.
pub fn checksum(&self) -> Result<u32> {
self.inner.checksum()
}
}
/// # Examples
///
/// ```
/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
/// use sled::{Config, IVec};
///
/// fn concatenate_merge(
/// _key: String, // the key being merged
/// old_value: Option<Vec<f32>>, // the previous value, if one existed
/// merged_bytes: Vec<f32> // the new bytes being merged in
/// ) -> Option<Vec<f32>> { // set the new value, return None to delete
/// let mut ret = old_value
/// .map(|ov| ov.to_vec())
/// .unwrap_or_else(|| vec![]);
///
/// ret.extend_from_slice(&merged_bytes);
///
/// Some(ret)
/// }
///
/// let db = sled::Config::new()
/// .temporary(true).open()?;
///
/// let tree = bincode_sled::Tree::<String, Vec<f32>>::open(&db, "unique_id");
/// tree.set_merge_operator(concatenate_merge);
///
/// let k = String::from("some_key");
///
/// tree.insert(&k, &vec![0.0]);
/// tree.merge(&k, &vec![1.0]);
/// tree.merge(&k, &vec![2.0]);
/// assert_eq!(tree.get(&k)?, Some(vec![0.0, 1.0, 2.0]));
///
/// // Replace previously merged data. The merge function will not be called.
/// tree.insert(&k, &vec![3.0]);
/// assert_eq!(tree.get(&k)?, Some(vec![3.0]));
///
/// // Merges on non-present values will cause the merge function to be called
/// // with `old_value == None`. If the merge function returns something (which it
/// // does, in this case) a new value will be inserted.
/// tree.remove(&k);
/// tree.merge(&k, &vec![4.0]);
/// assert_eq!(tree.get(&k)?, Some(vec![4.0]));
/// # Ok(()) }
/// ```
pub trait MergeOperator<K, V>: Fn(K, Option<V>, V) -> Option<V>
where
K: Key,
V: Value,
{
}
impl<K: Key, V: Value, F> MergeOperator<K, V> for F where F: Fn(K, Option<V>, V) -> Option<V> {}
pub struct Iter<K, V> {
inner: sled::Iter,
_key: PhantomData<fn() -> K>,
_value: PhantomData<fn() -> V>,
}
impl<K: Key, V: Value> Iterator for Iter<K, V> {
type Item = Result<(K, V)>;
fn next(&mut self) -> Option<Self::Item> {
self.inner
.next()
.map(|res| res.map(|(k, v)| (deserialize(&k), deserialize(&v))))
}
fn last(mut self) -> Option<Self::Item> {
self.inner
.next_back()
.map(|res| res.map(|(k, v)| (deserialize(&k), deserialize(&v))))
}
}
impl<K: Key, V: Value> DoubleEndedIterator for Iter<K, V> {
fn next_back(&mut self) -> Option<Self::Item> {
self.inner
.next_back()
.map(|res| res.map(|(k, v)| (deserialize(&k), deserialize(&v))))
}
}
impl<K: Key, V: Value> Iter<K, V> {
pub fn from_sled(iter: sled::Iter) -> Self {
Iter {
inner: iter,
_key: PhantomData,
_value: PhantomData,
}
}
pub fn keys(self) -> impl DoubleEndedIterator<Item = Result<K>> + Send + Sync {
self.map(|r| r.map(|(k, _v)| k))
}
/// Iterate over the values of this Tree
pub fn values(self) -> impl DoubleEndedIterator<Item = Result<V>> + Send + Sync {
self.map(|r| r.map(|(_k, v)| v))
}
}
#[derive(Clone, Debug)]
pub struct Batch<K, V>
where
K: Key,
V: Value,
{
inner: sled::Batch,
_key: PhantomData<fn() -> K>,
_value: PhantomData<fn() -> V>,
}
impl<K, V> Batch<K, V>
where
K: Key,
V: Value,
{
pub fn insert(&mut self, key: &K, value: &V) {
self.inner.insert(serialize(key), serialize(value));
}
pub fn remove(&mut self, key: &K) {
self.inner.remove(serialize(key))
}
}
// Implementing Default manually to not require K and V to implement Default.
impl<K, V> Default for Batch<K, V>
where
K: Key,
V: Value,
{
fn default() -> Self {
Self {
inner: Default::default(),
_key: PhantomData,
_value: PhantomData,
}
}
}
use pin_project::pin_project;
#[pin_project]
pub struct Subscriber<K, V>
where
K: Key,
V: Value,
{
#[pin]
inner: sled::Subscriber,
_key: PhantomData<fn() -> K>,
_value: PhantomData<fn() -> V>,
}
impl<K, V> Subscriber<K, V>
where
K: Key,
V: Value,
{
pub fn next_timeout(
&mut self,
timeout: core::time::Duration,
) -> core::result::Result<Event<K, V>, std::sync::mpsc::RecvTimeoutError> {
self.inner
.next_timeout(timeout)
.map(|e| Event::from_sled(&e))
}
pub fn from_sled(subscriber: sled::Subscriber) -> Self {
Self {
inner: subscriber,
_key: PhantomData,
_value: PhantomData,
}
}
}
use core::future::Future;
use core::pin::Pin;
use core::task::{Context, Poll};
impl<K: Key + Unpin, V: Value + Unpin> Future for Subscriber<K, V> {
type Output = Option<Event<K, V>>;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
self.project()
.inner
.poll(cx)
.map(|opt| opt.map(|e| Event::from_sled(&e)))
}
}
impl<K, V> Iterator for Subscriber<K, V>
where
K: Key,
V: Value,
{
type Item = Event<K, V>;
fn next(&mut self) -> Option<Event<K, V>> {
self.inner.next().map(|e| Event::from_sled(&e))
}
}
pub enum Event<K, V>
where
K: Key,
V: Value,
{
Insert { key: K, value: V },
Remove { key: K },
}
impl<K, V> Event<K, V>
where
K: Key,
V: Value,
{
pub fn key(&self) -> &K {
match self {
Self::Insert { key, .. } | Self::Remove { key } => key,
}
}
pub fn from_sled(event: &sled::Event) -> Self {
match event {
sled::Event::Insert { key, value } => Self::Insert {
key: deserialize(key),
value: deserialize(value),
},
sled::Event::Remove { key } => Self::Remove {
key: deserialize(key),
},
}
}
}
/// The function which is used to deserialize all keys and values.
pub fn deserialize<T>(bytes: &[u8]) -> T
where
T: Decode,
{
bincode::decode_from_slice::<T, BinConfT>(bytes, DEFAULT_CONF)
.expect("Decode failed, did the type encoded change?")
.0
}
/// The function which is used to serialize all keys and values.
pub fn serialize<T>(value: &T) -> Vec<u8>
where
T: Encode,
{
bincode::encode_to_vec(value, DEFAULT_CONF).expect("Encode failed.")
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_range() {
let config = sled::Config::new().temporary(true);
let db = config.open().unwrap();
let tree: Tree<u32, u32> = Tree::open(&db, "test_tree");
tree.insert(&1, &2).unwrap();
tree.insert(&3, &4).unwrap();
tree.insert(&6, &2).unwrap();
tree.insert(&10, &2).unwrap();
tree.insert(&15, &2).unwrap();
tree.flush().unwrap();
let expect_results = [(6, 2), (10, 2)];
for (i, result) in tree.range(6..11).enumerate() {
assert_eq!(result.unwrap(), expect_results[i]);
}
}
#[test]
fn test_cas() {
let config = sled::Config::new().temporary(true);
let db = config.open().unwrap();
let tree: Tree<u32, u32> = Tree::open(&db, "test_tree");
let current = 2;
tree.insert(&1, ¤t).unwrap();
let expected = 3;
let proposed = 4;
let res = tree
.compare_and_swap(&1, Some(&expected), Some(&proposed))
.expect("db failure");
assert_eq!(
res,
Err(CompareAndSwapError {
current: Some(current),
proposed: Some(proposed),
}),
);
}
}