1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
// SPDX-License-Identifier: CC0-1.0
//! Rust hashes library.
//!
//! This is a simple, no-dependency library which implements the hash functions
//! needed by Bitcoin. These are SHA256, SHA256d, and RIPEMD160. As an ancillary
//! thing, it exposes hexadecimal serialization and deserialization, since these
//! are needed to display hashes anway.
//!
//! ## Commonly used operations
//!
//! Hashing a single byte slice or a string:
//!
//! ```rust
//! use bitcoin_hashes::sha256;
//! use bitcoin_hashes::Hash;
//!
//! let bytes = [0u8; 5];
//! let hash_of_bytes = sha256::Hash::hash(&bytes);
//! let hash_of_string = sha256::Hash::hash("some string".as_bytes());
//! ```
//!
//!
//! Hashing content from a reader:
//!
//! ```rust
//! use bitcoin_hashes::sha256;
//! use bitcoin_hashes::Hash;
//!
//! #[cfg(std)]
//! # fn main() -> std::io::Result<()> {
//! let mut reader: &[u8] = b"hello"; // in real code, this could be a `File` or `TcpStream`
//! let mut engine = sha256::HashEngine::default();
//! std::io::copy(&mut reader, &mut engine)?;
//! let hash = sha256::Hash::from_engine(engine);
//! # Ok(())
//! # }
//!
//! #[cfg(not(std))]
//! # fn main() {}
//! ```
//!
//!
//! Hashing content by [`std::io::Write`] on HashEngine:
//!
//! ```rust
//! use bitcoin_hashes::sha256;
//! use bitcoin_hashes::Hash;
//! use std::io::Write;
//!
//! #[cfg(std)]
//! # fn main() -> std::io::Result<()> {
//! let mut part1: &[u8] = b"hello";
//! let mut part2: &[u8] = b" ";
//! let mut part3: &[u8] = b"world";
//! let mut engine = sha256::HashEngine::default();
//! engine.write_all(part1)?;
//! engine.write_all(part2)?;
//! engine.write_all(part3)?;
//! let hash = sha256::Hash::from_engine(engine);
//! # Ok(())
//! # }
//!
//! #[cfg(not(std))]
//! # fn main() {}
//! ```
#![cfg_attr(all(not(test), not(feature = "std")), no_std)]
// Experimental features we need.
#![cfg_attr(docsrs, feature(doc_auto_cfg))]
#![cfg_attr(bench, feature(test))]
// Coding conventions.
#![warn(missing_docs)]
// Instead of littering the codebase for non-fuzzing code just globally allow.
#![cfg_attr(hashes_fuzz, allow(dead_code, unused_imports))]
// Exclude lints we don't think are valuable.
#![allow(clippy::needless_question_mark)] // https://github.com/rust-bitcoin/rust-bitcoin/pull/2134
#![allow(clippy::manual_range_contains)] // More readable than clippy's format.
#[cfg(all(feature = "alloc", not(feature = "std")))]
extern crate alloc;
#[cfg(any(test, feature = "std"))]
extern crate core;
#[cfg(feature = "serde")]
/// A generic serialization/deserialization framework.
pub extern crate serde;
#[cfg(all(test, feature = "serde"))]
extern crate serde_test;
#[cfg(bench)]
extern crate test;
/// Re-export the `hex-conservative` crate.
pub extern crate hex;
#[doc(hidden)]
pub mod _export {
/// A re-export of core::*
pub mod _core {
pub use core::*;
}
}
#[cfg(feature = "schemars")]
extern crate schemars;
mod internal_macros;
#[macro_use]
mod util;
#[macro_use]
pub mod serde_macros;
pub mod cmp;
pub mod hash160;
pub mod hmac;
#[cfg(feature = "bitcoin-io")]
mod impls;
pub mod ripemd160;
pub mod sha1;
pub mod sha256;
pub mod sha256d;
pub mod sha256t;
pub mod sha384;
pub mod sha512;
pub mod sha512_256;
pub mod siphash24;
use core::{borrow, fmt, hash, ops};
pub use hmac::{Hmac, HmacEngine};
/// A hashing engine which bytes can be serialized into.
pub trait HashEngine: Clone + Default {
/// Byte array representing the internal state of the hash engine.
type MidState;
/// Outputs the midstate of the hash engine. This function should not be
/// used directly unless you really know what you're doing.
fn midstate(&self) -> Self::MidState;
/// Length of the hash's internal block size, in bytes.
const BLOCK_SIZE: usize;
/// Add data to the hash engine.
fn input(&mut self, data: &[u8]);
/// Return the number of bytes already n_bytes_hashed(inputted).
fn n_bytes_hashed(&self) -> usize;
}
/// Trait which applies to hashes of all types.
pub trait Hash:
Copy
+ Clone
+ PartialEq
+ Eq
+ PartialOrd
+ Ord
+ hash::Hash
+ fmt::Debug
+ fmt::Display
+ fmt::LowerHex
+ ops::Index<ops::RangeFull, Output = [u8]>
+ ops::Index<ops::RangeFrom<usize>, Output = [u8]>
+ ops::Index<ops::RangeTo<usize>, Output = [u8]>
+ ops::Index<ops::Range<usize>, Output = [u8]>
+ ops::Index<usize, Output = u8>
+ borrow::Borrow<[u8]>
{
/// A hashing engine which bytes can be serialized into. It is expected
/// to implement the `io::Write` trait, and to never return errors under
/// any conditions.
type Engine: HashEngine;
/// The byte array that represents the hash internally.
type Bytes: hex::FromHex + Copy;
/// Constructs a new engine.
fn engine() -> Self::Engine { Self::Engine::default() }
/// Produces a hash from the current state of a given engine.
fn from_engine(e: Self::Engine) -> Self;
/// Length of the hash, in bytes.
const LEN: usize;
/// Copies a byte slice into a hash object.
fn from_slice(sl: &[u8]) -> Result<Self, FromSliceError>;
/// Hashes some bytes.
fn hash(data: &[u8]) -> Self {
let mut engine = Self::engine();
engine.input(data);
Self::from_engine(engine)
}
/// Hashes all the byte slices retrieved from the iterator together.
fn hash_byte_chunks<B, I>(byte_slices: I) -> Self
where
B: AsRef<[u8]>,
I: IntoIterator<Item = B>,
{
let mut engine = Self::engine();
for slice in byte_slices {
engine.input(slice.as_ref());
}
Self::from_engine(engine)
}
/// Flag indicating whether user-visible serializations of this hash
/// should be backward. For some reason Satoshi decided this should be
/// true for `Sha256dHash`, so here we are.
const DISPLAY_BACKWARD: bool = false;
/// Returns the underlying byte array.
fn to_byte_array(self) -> Self::Bytes;
/// Returns a reference to the underlying byte array.
fn as_byte_array(&self) -> &Self::Bytes;
/// Constructs a hash from the underlying byte array.
fn from_byte_array(bytes: Self::Bytes) -> Self;
/// Returns an all zero hash.
///
/// An all zeros hash is a made up construct because there is not a known input that can create
/// it, however it is used in various places in Bitcoin e.g., the Bitcoin genesis block's
/// previous blockhash and the coinbase transaction's outpoint txid.
fn all_zeros() -> Self;
}
/// Attempted to create a hash from an invalid length slice.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct FromSliceError {
expected: usize,
got: usize,
}
impl FromSliceError {
/// Returns the expected slice length.
pub fn expected_length(&self) -> usize { self.expected }
/// Returns the invalid slice length.
pub fn invalid_length(&self) -> usize { self.got }
}
impl fmt::Display for FromSliceError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "invalid slice length {} (expected {})", self.got, self.expected)
}
}
#[cfg(feature = "std")]
impl std::error::Error for FromSliceError {}
#[cfg(test)]
mod tests {
use crate::{sha256d, Hash};
hash_newtype! {
/// A test newtype
struct TestNewtype(sha256d::Hash);
/// A test newtype
struct TestNewtype2(sha256d::Hash);
}
#[test]
fn convert_newtypes() {
let h1 = TestNewtype::hash(&[]);
let h2: TestNewtype2 = h1.to_raw_hash().into();
assert_eq!(&h1[..], &h2[..]);
let h = sha256d::Hash::hash(&[]);
let h2: TestNewtype = h.to_string().parse().unwrap();
assert_eq!(h2.to_raw_hash(), h);
}
#[test]
fn newtype_fmt_roundtrip() {
let orig = TestNewtype::hash(&[]);
let hex = format!("{}", orig);
let rinsed = hex.parse::<TestNewtype>().expect("failed to parse hex");
assert_eq!(rinsed, orig)
}
}