bitflags_attr_macros/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
use proc_macro::TokenStream;
use quote::quote;
use syn::{parse::Parse, spanned::Spanned, Error, Ident, ItemEnum, Path, Result};

/// An attribute macro that transforms an C-like enum into a bitflag struct implementing an type API
/// similar to the `bitflags` crate, and implementing traits as listed below.
///
/// The attribute requires that the [`Clone`] and [`Copy`] traits are derived for the type.
///
/// # Generated trait implementations
/// This macro generates some trait implementations: [`ops:Not`], [`ops:BitAnd`],
/// [`ops:BitOr`], [`ops:BitXor`], [`ops:BitAndAssign`], [`ops:BitOrAssign`], [`ops:BitXorAssign`],
/// [`fmt::Binary`], [`fmt::LowerHex`], [`fmt::UpperHex`], [`fmt::Octal`], [`From`], [`Extend`], [`FromIterator`], [`IntoIterator`]
///
/// The custom [`fmt::Debug`] implementation will only be generated if it is included in the
/// `#[derive(...)]` parameters.
///
/// ## Serde feature
///
/// If the crate is compiled with the `serde` feature, this crate will generate implementations for
/// the `serde::{Serialize, Deserialize}` traits if they are included in the `#[derive(...)]`
/// parameters, but it will not import/re-export these traits, your project must have `serde` as
/// dependency.
///
/// Having this feature enabled will also generate a type to represent the parsing error and helper
/// functions to do parsing the generated type from strings. And will generate the implementation
/// for the [`FromStr`] trait.
///
/// ## Custom types
///
/// If the crate is compiled with the `custom-types` feature, it allows to use more than the types
/// defined in Rust `core` (`i8`,`u8`,`i16`,`u16`,`i32`,`u32`,`i64`,`u64`,`i128`,`u128`,`isize`,
/// `usize`,`c_char`,`c_schar`,`c_uchar`,`c_short`,`c_ushort`,`c_int`,`c_uint`,`c_long`,`c_ulong`,
/// `c_longlong`,`c_ulonglong`) as long as it is a type alias to one of those types.
///
/// The reason it is behind a feature flag is that to ensure the validity of such constrain, we have
/// to pay the price of having much worse error messages. With this feature enabled, a invalid type
/// will cause a massive wall of error message.
///
/// # Example
///
/// ```
/// use bitflag_attr::bitflag;
///
/// #[bitflag(u32)]
/// #[derive(Debug, Clone, Copy, PartialEq, PartialOrd, Eq, Ord, Hash)]
/// pub enum Flags {
///     /// The value `A`, at bit position `0`.
///     A = 0b00000001,
///     /// The value `B`, at bit position `1`.
///     B = 0b00000010,
///     /// The value `C`, at bit position `2`.
///     C = 0b00000100,
///
///     /// The combination of `A`, `B`, and `C`.
///     ABC = A | B | C,
/// }
/// ```
///
/// Without generating [`fmt::Debug`]:
///
/// ```
/// use bitflag_attr::bitflag;
///
/// #[bitflag(u32)]
/// #[derive(Clone, Copy, PartialEq, PartialOrd, Eq, Ord, Hash)]
/// pub enum Flags {
///     /// The value `A`, at bit position `0`.
///     A = 0b00000001,
///     /// The value `B`, at bit position `1`.
///     B = 0b00000010,
///     /// The value `C`, at bit position `2`.
///     C = 0b00000100,
///
///     /// The combination of `A`, `B`, and `C`.
///     ABC = A | B | C,
/// }
/// ```
///
/// # Syntax
///
/// ```text
/// #[bitflag($ty)]
/// $visibility enum $StructName {
///     FlagOne = flag1_value_expr,
///     FlagTwo = flag2_value_expr,
///     // ...
///     FlagN = flagn_value_expr,
/// }
/// ```
///
/// [`fmt::Debug`]: core::fmt::Debug
/// [`ops:Not`]: core::ops::Not
/// [`ops:BitAnd`]: core::ops::BitAnd
/// [`ops:BitOr`]: core::ops::BitOr
/// [`ops:BitXor`]: core::ops::BitXor
/// [`ops:BitAndAssign`]: core::ops::BitAndAssign
/// [`ops:BitOrAssign`]: core::ops::BitOrAssign
/// [`ops:BitXorAssign`]: core::ops::BitXorAssign
/// [`fmt::Binary`]: core::fmt::Binary
/// [`fmt::LowerHex`]: core::fmt::LowerHex
/// [`fmt::UpperHex`]: core::fmt::UpperHex
/// [`fmt::Octal`]: core::fmt::Octal
/// [`From`]: From
/// [`FromStr`]: core::str::FromStr
#[proc_macro_attribute]
pub fn bitflag(attr: TokenStream, item: TokenStream) -> TokenStream {
    match bitflag_impl(attr, item) {
        Ok(ts) => ts,
        Err(err) => err.into_compile_error().into(),
    }
}

fn bitflag_impl(attr: TokenStream, item: TokenStream) -> Result<TokenStream> {
    let args: Args = syn::parse(attr)
        .map_err(|err| Error::new(err.span(), "unexpected token: expected a `{integer}` type"))?;
    let ty = args.ty;
    // let ty = parse_ty(attr)?;

    let item: ItemEnum = syn::parse(item)?;
    let item_span = item.span();
    let og_attrs = item.attrs.clone();

    let vis = item.vis;
    let ty_name = item.ident;
    // Attributes
    let attrs = item
        .attrs
        .clone()
        .into_iter()
        .filter(|att| !att.path().is_ident("derive"));

    let derives = item
        .attrs
        .clone()
        .into_iter()
        .filter(|att| att.path().is_ident("derive"));

    let mut derived_traits = Vec::new();
    let mut impl_debug = false;
    let mut impl_serialize = false;
    let mut impl_deserialize = false;
    let mut clone_found = false;
    let mut copy_found = false;

    for derive in derives {
        derive.parse_nested_meta(|meta| {
            if let Some(ident) = meta.path.get_ident() {
                if ident == "Debug" {
                    impl_debug = true;
                    return Ok(());
                }

                if ident == "Serialize" {
                    impl_serialize = true;
                    return Ok(());
                }

                if ident == "Deserialize" {
                    impl_deserialize = true;
                    return Ok(());
                }

                if ident == "Clone" {
                    clone_found = true;
                }

                if ident == "Copy" {
                    copy_found = true;
                }

                derived_traits.push(ident.clone());
            }
            Ok(())
        })?;
    }

    if !clone_found || !copy_found {
        return Err(syn::Error::new(
            item_span,
            "`bitflags` attribute requires the type to derive `Clone` and `Copy`",
        ));
    }

    let iter_name_ty = {
        let span = ty_name.span();
        let mut ty_name = ty_name.to_string();
        ty_name.push_str("IterNames");
        Ident::new(&ty_name, span)
    };
    let iter_ty = {
        let span = ty_name.span();
        let mut ty_name = ty_name.to_string();
        ty_name.push_str("Iter");
        Ident::new(&ty_name, span)
    };

    let const_mut = if cfg!(feature = "const-mut-ref") {
        quote!(mut)
    } else {
        quote!()
    };

    let number_flags = item.variants.len();

    let mut all_attrs = Vec::with_capacity(number_flags);
    let mut all_flags = Vec::with_capacity(number_flags);
    let mut all_flags_names = Vec::with_capacity(number_flags);
    let mut all_variants = Vec::with_capacity(number_flags);

    // The raw flags as private itens to allow defining flags referencing other flag definitions
    let mut raw_flags = Vec::with_capacity(number_flags);

    let mut flags = Vec::with_capacity(number_flags); // Associated constants

    // First generate the raw_flags
    for variant in item.variants.iter() {
        let var_attrs = &variant.attrs;
        let var_name = &variant.ident;

        let expr = match variant.discriminant.as_ref() {
            Some((_, expr)) => expr,
            None => {
                return Err(Error::new_spanned(
                    variant,
                    "a discriminant must be defined",
                ))
            }
        };

        let non_doc_attrs = var_attrs
            .clone()
            .into_iter()
            .filter(|attr| !attr.path().is_ident("doc"))
            .collect::<Vec<syn::Attribute>>();

        all_flags.push(quote!(Self::#var_name));
        // all_flags_names.push(quote!(stringify!(#var_name)));
        all_flags_names.push(syn::LitStr::new(&var_name.to_string(), var_name.span()));
        all_variants.push(var_name.clone());
        all_attrs.push(non_doc_attrs.clone());
        raw_flags.push(quote! {
            #(#non_doc_attrs)*
            #[allow(non_upper_case_globals, dead_code, unused)]
            const #var_name: #ty = #expr;
        });
    }

    for variant in item.variants.iter() {
        let var_attrs = &variant.attrs;
        let var_name = &variant.ident;

        let expr = match variant.discriminant.as_ref() {
            Some((_, expr)) => expr,
            None => {
                return Err(Error::new_spanned(
                    variant,
                    "a discriminant must be defined",
                ))
            }
        };

        let generated = if can_simplify(expr, &all_variants) {
            quote! {
                #(#var_attrs)*
                #vis const #var_name: Self = Self(#expr);
            }
        } else {
            quote! {
                #(#var_attrs)*
                #vis const #var_name: Self = {
                    #(#raw_flags)*

                    Self(#expr)
                };
            }
        };

        flags.push(generated);
    }

    let debug_impl = if !impl_debug {
        quote! {}
    } else {
        quote! {
            #[automatically_derived]
            impl ::core::fmt::Debug for #ty_name {
                fn fmt(&self, f: &mut ::core::fmt::Formatter<'_>) -> ::core::fmt::Result {
                    struct HumanReadable<'a>(&'a #ty_name);

                    impl<'a> ::core::fmt::Debug for HumanReadable<'a> {
                        fn fmt(&self, f: &mut ::core::fmt::Formatter<'_>) -> ::core::fmt::Result {
                            self.0.to_writer(f)
                        }
                    }

                    let name = ::core::stringify!(#ty_name);

                    f.debug_struct(name)
                        .field("bits", &::core::format_args!("{:#b}", self.0))
                        .field("human_readable", &HumanReadable(self))
                        .finish()
                }
            }
        }
    };

    let serialize_impl = if cfg!(feature = "serde") && impl_serialize {
        quote! {
            #[automatically_derived]
            impl ::serde::Serialize for #ty_name {
                fn serialize<S>(&self, serializer: S) -> ::core::result::Result<S::Ok, S::Error>
                where
                    S: ::serde::Serializer
                {
                    struct AsDisplay<'a>(&'a #ty_name);

                    impl<'a> ::core::fmt::Display for AsDisplay<'a> {
                        fn fmt(&self, f: &mut ::core::fmt::Formatter<'_>) -> ::core::fmt::Result {
                            self.0.to_writer(f)
                        }
                    }

                    // Serialize human-readable flags as a string like `"A | B"`
                    if serializer.is_human_readable() {
                        serializer.collect_str(&AsDisplay(self))
                    }
                    // Serialize non-human-readable flags directly as the underlying bits
                    else {
                        self.bits().serialize(serializer)
                    }
                }
            }
        }
    } else {
        quote!()
    };

    let deserialize_impl = if cfg!(feature = "serde") && impl_deserialize {
        quote! {
            #[automatically_derived]
            impl<'de> ::serde::Deserialize<'de> for #ty_name {
                fn deserialize<D>(deserializer: D) -> ::core::result::Result<Self, D::Error>
                where
                    D: ::serde::Deserializer<'de>
                {
                    if deserializer.is_human_readable() {
                        struct HelperVisitor(::core::marker::PhantomData<#ty_name>);

                        impl<'de> ::serde::de::Visitor<'de> for HelperVisitor {
                            type Value = #ty_name;

                            fn expecting(&self,  f: &mut ::core::fmt::Formatter<'_>) -> ::core::fmt::Result {
                                f.write_str("a string value of `|` separated flags")
                            }

                            fn visit_str<E>(self, flags: &str) -> ::core::result::Result<Self::Value, E>
                            where
                                E: ::serde::de::Error,
                            {
                                Self::Value::from_text(flags).map_err(|e| E::custom(e))
                            }
                        }

                        deserializer.deserialize_str(HelperVisitor(::core::marker::PhantomData))
                    } else {
                        let bits = #ty::deserialize(deserializer)?;

                        Ok(#ty_name::from_bits_retain(bits))
                    }
                }
            }
        }
    } else {
        quote!()
    };

    // Serde infra_structure
    let serde_impl = if cfg!(feature = "serde") {
        let parser_error_ty = {
            let span = ty_name.span();
            let mut ty = ty_name.to_string();
            ty.push_str("ParserError");
            Ident::new(&ty, span)
        };
        quote! {

            #[derive(Debug, Clone, PartialEq, PartialOrd, Eq, Ord, Hash)]
            pub enum #parser_error_ty {
                EmptyFlag,
                InvalidNamedFlag,
                InvalidHexFlag,
            }

            #[automatically_derived]
            impl ::core::error::Error for #parser_error_ty {}

            #[automatically_derived]
            impl ::core::fmt::Display for #parser_error_ty {
                fn fmt(&self, f: &mut ::core::fmt::Formatter<'_>) -> ::core::fmt::Result {
                    match self {
                        Self::EmptyFlag => write!(f, "encountered empty flag"),
                        Self::InvalidNamedFlag => write!(f, "unrecognized named flag"),
                        Self::InvalidHexFlag => write!(f, "invalid hex flag"),
                    }
                }
            }

            impl #ty_name {
                /// Helper to parse flags from human readable format. Parse a flags value from text.
                ///
                /// This function will fail on any names that don't correspond to defined flags.
                /// Unknown bits will be retained.
                pub(crate) fn from_text(input: &str) -> ::core::result::Result<Self, #parser_error_ty> {
                    let mut parsed_flags = Self::empty();

                    // If the input is empty, then return an empty set of flags
                    if input.trim().is_empty() {
                        return Ok(parsed_flags);
                    }

                    for flag in input.split('|') {
                        let flag = flag.trim();

                        // If the flag is empty, then we've got a missing input
                        if flag.is_empty() {
                            return Err(#parser_error_ty::EmptyFlag);
                        }

                        // If the flag starts with `0x` ten it's a hex number
                        // Parse it directly to the underlying bits
                        let parsed_flag =  if let Some(flag) = flag.strip_prefix("0x") {
                            let bits = #ty::from_str_radix(flag, 16).map_err(|_| #parser_error_ty::InvalidHexFlag)?;

                            Self::from_bits_retain(bits)
                        } else {
                            // Otherwise, the flag is a name
                            // The generated flags type will determine whether or not it is a valid
                            // identifier
                            Self::from_flag_name(flag).ok_or_else(|| #parser_error_ty::InvalidNamedFlag)?
                        };

                        parsed_flags.set(parsed_flag);
                    }

                    Ok(parsed_flags)
                }

                /// Helper to parse flags from human readable format. Parse a flags value from text.
                ///
                /// This function will fail on any names that don't correspond to defined flags.
                /// Unknown bits will be ignored.
                pub(crate) fn from_text_truncate(input: &str) -> ::core::result::Result<Self, #parser_error_ty> {
                    Ok(Self::from_text(input)?.truncate())
                }

                /// Helper to parse flags from human readable format. Parse a flags value from text.
                ///
                /// This function will fail on any names that don't correspond to defined flags.
                /// This function will fail to parse hex values.
                pub(crate) fn from_text_strict(input: &str) -> ::core::result::Result<Self, #parser_error_ty> {
                    let mut parsed_flags = Self::empty();

                    // If the input is empty, then return an empty set of flags
                    if input.trim().is_empty() {
                        return Ok(parsed_flags);
                    }

                    for flag in input.split('|') {
                        let flag =  flag.trim();

                        // If the flag is empty, then we've got a missing input
                        if flag.is_empty() {
                            return Err(#parser_error_ty::EmptyFlag);
                        }

                        // If the flag starts with `0x` then it is a hex number
                        // There aren't supported in the strict parser
                        if flag.starts_with("0x") {
                            return Err(#parser_error_ty::InvalidHexFlag);
                        }

                        let parsed_flag = Self::from_flag_name(flag).ok_or_else(|| #parser_error_ty::InvalidNamedFlag)?;

                        parsed_flags.set(parsed_flag);
                    }

                    Ok(parsed_flags)
                }
            }

            #[automatically_derived]
            impl ::core::str::FromStr for #ty_name {
                type Err = #parser_error_ty;

                fn from_str(input: &str) -> ::core::result::Result<Self, Self::Err> {
                    Self::from_text(input)
                }
            }
        }
    } else {
        quote!()
    };

    let generated = quote! {
        #[repr(transparent)]
        #(#attrs)*
        #[derive(#(#derived_traits,)*)]
        #vis struct #ty_name(#ty)
        where
            #ty: ::bitflag_attr::BitflagPrimitive;

        #[allow(non_upper_case_globals)]
        impl #ty_name {
            #[doc(hidden)]
            #[allow(clippy::unused_unit)]
            const __OG: () = {
                {
                    // Original enum
                    // This is a hack to make LSP coloring to still sees the original enum variant as a Enum variant token.
                    #(#og_attrs)*
                    enum #ty_name {
                        #(
                            #(#all_attrs)*
                            #all_variants,
                        )*
                    }
                }
                ()
            };

            #(#flags)*
        }

        #[allow(non_upper_case_globals)]
        impl #ty_name {
            /// Return the underlying bits of the bitflag
            #[inline]
            pub const fn bits(&self) -> #ty {
                self.0
            }

            /// Converts from a `bits` value. Returning [`None`] is any unknown bits are set.
            #[inline]
            pub const fn from_bits(bits: #ty) -> Option<Self> {
                let truncated = Self::from_bits_truncate(bits).0;

                if truncated == bits {
                    Some(Self(bits))
                } else {
                    None
                }
            }

            /// Convert from `bits` value, unsetting any unknown bits.
            #[inline]
            pub const fn from_bits_truncate(bits: #ty) -> Self {
                Self(bits & Self::all().0)
            }

            /// Convert from `bits` value exactly.
            #[inline]
            pub const fn from_bits_retain(bits: #ty) -> Self {
                Self(bits)
            }

            /// Convert from a flag `name`.
            #[inline]
            pub fn from_flag_name(name: &str) -> Option<Self> {
                match name {
                    #(
                        #(#all_attrs)*
                        #all_flags_names => Some(#all_flags),
                    )*
                    _ => None
                }
            }

            /// Construct an empty bitflag.
            #[inline]
            pub const fn empty() -> Self {
                Self(0)
            }

            /// Returns `true` if the flag is empty.
            #[inline]
            pub const fn is_empty(&self) -> bool {
                self.0 == 0
            }

            /// Returns a bitflag that contains all value.
            ///
            /// This will include bits that do not have any flags/meaning.
            /// Use [`all`](Self::all) if you want only the specified flags set.
            #[inline]
            pub const fn all_bits() -> Self {
                Self(!0)
            }

            /// Returns `true` if the bitflag contains all value bits set.
            ///
            /// This will check for all bits.
            /// Use [`is_all`](Self::is_all) if you want to check for all specified flags.
            #[inline]
            pub const fn is_all_bits(&self) -> bool {
                self.0 == !0
            }

            /// Construct a bitflag with all known flags set.
            ///
            /// This will only set the flags specified as associated constant.
            #[inline]
            pub const fn all() -> Self {
                // Self(#(#all_flags.0 |)* 0)
                let mut all = 0;

                #(
                    #(#all_attrs)*{
                        all |= #all_flags.0
                    }
                )*

                Self(all)
            }

            /// Returns `true` if the bitflag contais all known flags.
            ///
            #[inline]
            pub const fn is_all(&self) -> bool {
                self.0 == Self::all().0
            }

            /// Returns a bit flag that only has bits corresponding to the specified flags as associated constant.
            #[inline]
            pub const fn truncate(&self) -> Self {
                Self(self.0 & Self::all().0)
            }

            /// Returns `true` if this bitflag intersects with any value in `other`.
            ///
            /// This is equivalent to `(self & other) != Self::empty()`
            #[inline]
            pub const fn intersects(&self, other: Self) -> bool {
                (self.0 & other.0) != Self::empty().0
            }

            /// Returns `true` if this bitflag contains all values of `other`.
            ///
            /// This is equivalent to `(self & other) == other`
            #[inline]
            pub const fn contains(&self, other: Self) -> bool {
                (self.0 & other.0) == other.0
            }

            /// Returns the bitwise NOT of the flag.
            ///
            /// This function does not truncate unused bits (bits that do not have any flags/meaning).
            /// Use [`complement`](Self::complement) if you want that the result to be truncated in one call.
            #[inline]
            #[doc(alias = "complement")]
            pub const fn not(self) -> Self {
                Self(!self.0)
            }

            /// Returns the bitwise AND of the flag.
            #[inline]
            #[doc(alias = "intersection")]
            pub const fn and(self, other: Self) -> Self {
                Self(self.0 & other.0)
            }

            /// Returns the bitwise OR of the flag with `other`.
            #[inline]
            #[doc(alias = "union")]
            pub const fn or(self, other: Self) -> Self {
                Self(self.0 | other.0)
            }

            /// Returns the bitwise XOR of the flag with `other`.
            #[inline]
            #[doc(alias = "symmetric_difference")]
            pub const fn xor(self, other: Self) -> Self {
                Self(self.0 ^ other.0)
            }

            /// Returns the intersection from this value with `other`.
            #[inline]
            #[doc(alias = "and")]
            pub const fn intersection(self, other: Self) -> Self {
                self.and(other)
            }

            /// Returns the union from this value with `other`
            #[inline]
            #[doc(alias = "or")]
            pub const fn union(self, other: Self) -> Self {
                self.or(other)
            }

            /// Returns the difference from this value with `other`.
            ///
            /// In other words, returns the intersection of this value with the negation of `other`.
            #[inline]
            pub const fn difference(self, other: Self) -> Self {
                self.and(other.not())
            }

            /// Returns the symmetric difference from this value with `other`.
            #[inline]
            #[doc(alias = "xor")]
            pub const fn symmetric_difference(self, other: Self) -> Self {
                self.xor(other)
            }

            /// Returns the complement of the value.
            ///
            /// This is very similar to the [`not`](Self::not), but truncates non used bits
            #[inline]
            #[doc(alias = "not")]
            pub const fn complement(self) -> Self {
                self.not().truncate()
            }

            /// Set the flags in `other` in the value.
            #[inline]
            #[doc(alias = "insert")]
            pub #const_mut fn set(&mut self, other: Self) {
                self.0 = self.or(other).0
            }

            /// Unset the flags in `other` in the value.
            #[inline]
            #[doc(alias = "remove")]
            pub #const_mut fn unset(&mut self, other: Self) {
                self.0 = self.difference(other).0
            }

            /// Toggle the flags in `other` in the value.
            #[inline]
            pub #const_mut fn toggle(&mut self, other: Self) {
                self.0 = self.xor(other).0
            }
        }

        #[automatically_derived]
        impl ::core::ops::Not for #ty_name {
            type Output = Self;

            #[inline]
            fn not(self) -> Self::Output {
                self.complement()
            }
        }

        #[automatically_derived]
        impl ::core::ops::BitAnd for #ty_name {
            type Output = Self;

            #[inline]
            fn bitand(self, rhs: Self) -> Self::Output {
                self.and(rhs)
            }
        }

        #[automatically_derived]
        impl ::core::ops::BitOr for #ty_name {
            type Output = Self;

            #[inline]
            fn bitor(self, rhs: Self) -> Self::Output {
                self.or(rhs)
            }
        }

        #[automatically_derived]
        impl ::core::ops::BitXor for #ty_name {
            type Output = Self;

            #[inline]
            fn bitxor(self, rhs: Self) -> Self::Output {
                self.xor(rhs)
            }
        }

        #[automatically_derived]
        impl ::core::ops::BitAndAssign for #ty_name {
            #[inline]
            fn bitand_assign(&mut self, rhs: Self) {
                ::core::ops::BitAndAssign::bitand_assign(&mut self.0, rhs.0)
            }
        }

        #[automatically_derived]
        impl ::core::ops::BitOrAssign for #ty_name {
            #[inline]
            fn bitor_assign(&mut self, rhs: Self) {
                ::core::ops::BitOrAssign::bitor_assign(&mut self.0, rhs.0)
            }
        }

        #[automatically_derived]
        impl ::core::ops::BitXorAssign for #ty_name {
            #[inline]
            fn bitxor_assign(&mut self, rhs: Self) {
                ::core::ops::BitXorAssign::bitxor_assign(&mut self.0, rhs.0)
            }
        }

        #[automatically_derived]
        impl ::core::ops::Sub for #ty_name {
            type Output = Self;

            /// The intersection of a source flag with the complement of a target flags value
            #[inline]
            fn sub(self, rhs: Self) -> Self::Output {
                self.difference(rhs)
            }
        }

        #[automatically_derived]
        impl ::core::ops::SubAssign for #ty_name {
            /// The intersection of a source flag with the complement of a target flags value
            #[inline]
            fn sub_assign(&mut self, rhs: Self) {
                self.unset(rhs)
            }
        }

        #[automatically_derived]
        impl ::core::convert::From<#ty> for #ty_name {
            #[inline]
            fn from(val: #ty) -> Self {
                Self::from_bits_truncate(val)
            }
        }

        #[automatically_derived]
        impl ::core::convert::From<#ty_name> for #ty {
            #[inline]
            fn from(val: #ty_name) -> Self {
                val.0
            }
        }

        #[automatically_derived]
        impl ::core::fmt::Binary for #ty_name {
            #[inline]
            fn fmt(&self, f: &mut ::core::fmt::Formatter<'_>) -> ::core::fmt::Result {
                ::core::fmt::Binary::fmt(&self.0, f)
            }
        }

        #[automatically_derived]
        impl ::core::fmt::LowerHex for #ty_name {
            #[inline]
            fn fmt(&self, f: &mut ::core::fmt::Formatter<'_>) -> ::core::fmt::Result {
                ::core::fmt::LowerHex::fmt(&self.0, f)
            }
        }

        #[automatically_derived]
        impl ::core::fmt::UpperHex for #ty_name {
            #[inline]
            fn fmt(&self, f: &mut ::core::fmt::Formatter<'_>) -> ::core::fmt::Result {
                ::core::fmt::UpperHex::fmt(&self.0, f)
            }
        }

        #[automatically_derived]
        impl ::core::fmt::Octal for #ty_name {
            #[inline]
            fn fmt(&self, f: &mut ::core::fmt::Formatter<'_>) -> ::core::fmt::Result {
                ::core::fmt::Octal::fmt(&self.0, f)
            }
        }

        #debug_impl

        impl #ty_name {
            const FLAGS: &'static [(&'static str, #ty_name)] = &[#(
                #(#all_attrs)*
                (#all_flags_names , #all_flags) ,
            )*];

            /// Yield a set of contained flags values.
            ///
            /// Each yielded flags value will correspond to a defined named flag. Any unknown bits
            /// will be yielded together as a final flags value.
            #[inline]
            pub const fn iter(&self) -> #iter_ty {
                #iter_ty::new(self)
            }

            /// Yield a set of contained named flags values.
            ///
            /// This method is like [`iter`](#method.iter), except only yields bits in contained named flags.
            /// Any unknown bits, or bits not corresponding to a contained flag will not be yielded.
            #[inline]
            pub const fn iter_names(&self) -> #iter_name_ty {
                #iter_name_ty::new(self)
            }

            /// Helper for formatting in human readable format. Write a flags value as text.
            ///
            /// Any bits that aren't part of a contained flag will be formatted as a hex number.
            pub(crate) fn to_writer<W>(&self, mut writer: W) -> ::core::fmt::Result
            where
                W: ::core::fmt::Write,
            {
                // A formatter for bitflags that produces text output like:
                //
                // A | B | 0xf6
                //
                // The names of set flags are written in a bar-separated-format,
                // followed by a hex number of any remaining bits that are set
                // but don't correspond to any flags.

                // Iterate over known flag values
                let mut first = true;
                let mut iter = self.iter_names();
                for (name, _) in &mut iter {
                    if !first {
                        writer.write_str(" | ")?;
                    }

                    first = false;
                    writer.write_str(name)?;
                }

                // Append any extra bits that correspond to flags to the end of the format
                let remaining = iter.remaining();
                if !remaining.is_empty() {
                    if !first {
                        writer.write_str(" | ")?;
                    }

                    ::core::write!(writer, "{:#X}", remaining.bits())?;
                }

                ::core::fmt::Result::Ok(())
            }

            /// Helper for formatting in human readable format. Write a flags value as text,
            /// ignoring any unknown bits.
            pub(crate) fn to_writer_truncate<W>(&self, writer: W) -> ::core::fmt::Result
            where
                W: ::core::fmt::Write
            {
                self.truncate().to_writer(writer)
            }

            /// Helper for formatting in human readable format. Write only the contained, defined,
            /// named flags in a flags value as text.
            pub(crate) fn to_writer_strict<W>(&self, mut writer: W) -> ::core::fmt::Result
            where
                W: ::core::fmt::Write
            {
                // This is a simplified version of `to_writer` that ignores
                // any bits not corresponding to a named flag

                let mut first = true;
                let mut iter = self.iter_names();
                for (name, _) in &mut iter {
                    if !first {
                        writer.write_str(" | ")?;
                    }

                    first = false;
                    writer.write_str(name)?;
                }

                ::core::fmt::Result::Ok(())
            }
        }

        #[automatically_derived]
        impl ::core::iter::Extend<#ty_name> for #ty_name {
            /// Set all flags of `iter` to self
            fn extend<T: ::core::iter::IntoIterator<Item = Self>>(&mut self, iter: T) {
                for item in iter {
                    self.set(item);
                }
            }
        }

        #[automatically_derived]
        impl ::core::iter::FromIterator<#ty_name> for #ty_name {
            /// Create a `#ty_name` from a iterator of flags.
            fn from_iter<T: ::core::iter::IntoIterator<Item = Self>>(iter: T) -> Self {
                use ::core::iter::Extend;

                let mut res = Self::empty();
                res.extend(iter);
                res
            }
        }

        #[automatically_derived]
        impl ::core::iter::IntoIterator for #ty_name {
            type Item = Self;
            type IntoIter = #iter_ty;

            fn into_iter(self) -> Self::IntoIter {
                self.iter()
            }
        }

        #[automatically_derived]
        impl ::core::iter::IntoIterator for &#ty_name {
            type Item = #ty_name;
            type IntoIter = #iter_ty;

            fn into_iter(self) -> Self::IntoIter {
                self.iter()
            }
        }

        /// An iterator over flags values.
        ///
        /// This iterator only yields flags values for contained, defined, named flags. Any remaining bits
        /// won't be yielded, but can be found with the [`#iter_name_ty::remaining`] method.
        #vis struct #iter_name_ty {
            flags: &'static [(&'static str, #ty_name)],
            index: usize,
            source: #ty_name,
            remaining: #ty_name,
        }

        impl #iter_name_ty {
            pub(crate) const fn new(flags: &#ty_name) -> Self {
                Self {
                    flags: #ty_name::FLAGS,
                    index: 0,
                    remaining: *flags,
                    source: *flags,
                }
            }

            /// Get a flags value of any remaining bits that haven't been yielded yet.
            ///
            /// Once the iterator has finished, this method can be used to
            /// check whether or not there are any bits that didn't correspond
            /// to a contained, defined, named flag remaining.
            pub const fn remaining(&self) -> #ty_name {
                self.remaining
            }
        }

        #[automatically_derived]
        impl ::core::iter::Iterator for #iter_name_ty {
            type Item = (&'static str, #ty_name);

            fn next(&mut self) -> ::core::option::Option<Self::Item> {
                while let Some((name, flag)) = self.flags.get(self.index) {
                    // Short-circuit if our state is empty
                    if self.remaining.is_empty() {
                        return None;
                    }

                    self.index += 1;

                    // If the flag is set in the original source _and_ it has bits that haven't
                    // been covered by a previous flag yet then yield it. These conditions cover
                    // two cases for multi-bit flags:
                    //
                    // 1. When flags partially overlap, such as `0b00000001` and `0b00000101`, we'll
                    // yield both flags.
                    // 2. When flags fully overlap, such as in convenience flags that are a shorthand for others,
                    // we won't yield both flags.
                    if self.source.contains(*flag) && self.remaining.intersects(*flag) {
                        self.remaining.unset(*flag);

                        return Some((name, *flag))
                    }
                }

                None
            }
        }

        #[automatically_derived]
        impl ::core::iter::FusedIterator for #iter_name_ty {}

        /// An iterator over flags values.
        ///
        /// This iterator will yield flags values for contained, defined flags first, with any remaining bits yielded
        /// as a final flags value.
        #vis struct #iter_ty {
            inner: #iter_name_ty,
            done: bool,
        }

        impl #iter_ty {
            pub(crate) const fn new(flags: &#ty_name) -> Self  {
                Self {
                    inner: #iter_name_ty::new(flags),
                    done: false,
                }
            }
        }

        #[automatically_derived]
        impl ::core::iter::Iterator for #iter_ty {
            type Item = #ty_name;

            fn next(&mut self) -> ::core::option::Option<Self::Item> {
                match self.inner.next() {
                    Some((_, flag)) => Some(flag),
                    None if !self.done => {
                        self.done = true;

                        // After iterating through valid names, if there are any bits left over
                        // then return one final value that includes them. This makes `into_iter`
                        // and `from_iter` roundtrip
                        if !self.inner.remaining().is_empty() {
                            Some(self.inner.remaining)
                        } else {
                            None
                        }
                    }
                    None => None
                }
            }
        }

        #[automatically_derived]
        impl ::core::iter::FusedIterator for #iter_ty {}

        #serde_impl

        #serialize_impl
        #deserialize_impl
    };

    Ok(generated.into())
}

static VALID_TYPES: [&str; 23] = [
    "i8",
    "u8",
    "i16",
    "u16",
    "i32",
    "u32",
    "i64",
    "u64",
    "i128",
    "u128",
    "isize",
    "usize",
    "c_char",
    "c_schar",
    "c_uchar",
    "c_short",
    "c_ushort",
    "c_int",
    "c_uint",
    "c_long",
    "c_ulong",
    "c_longlong",
    "c_ulonglong",
];

struct Args {
    ty: Path,
}

impl Parse for Args {
    fn parse(input: syn::parse::ParseStream) -> Result<Self> {
        let ty: Path = input.parse().map_err(|err| {
            Error::new(err.span(), "unexpected token: expected a `{integer}` type")
        })?;

        if !cfg!(feature = "custom-types") {
            if let Some(ident) = ty.get_ident() {
                if !VALID_TYPES.contains(&ident.to_string().as_str()) {
                    return Err(Error::new_spanned(ident, "type must be a `{integer}` type"));
                }
            }
        }

        Ok(Args { ty })

        // let content: Punctuated<_, _> = input.parse_terminated(Ident::parse, Token![,])?;

        // if content.empty_or_trailing() {
        //     return Ok(Args {
        //         ty: Ident::new("u32", Span::call_site().into()),
        //         no_auto_debug: false,
        //     });
        // }

        // if content.len() > 2 {
        //     return Err(Error::new_spanned(
        //         content.last().unwrap(),
        //         "more arguments than expected. Expected a max of one integer type and one `no_auto_debug` flag",
        //     ));
        // }

        // let mut no_debug_set = false;
        // let mut ty_set = false;

        // let mut no_auto_debug = false;
        // let mut ty = Ident::new("u32", Span::call_site().into());

        // for i in content {
        //     if i == "no_auto_debug" {
        //         if no_debug_set {
        //             return Err(Error::new_spanned(
        //                 i,
        //                 "there must be only one instance of `no_auto_debug` flag",
        //             ));
        //         }
        //         no_auto_debug = true;
        //         no_debug_set = true;
        //         continue;
        //     }
        //     if cfg!(feature = "custom-types") {
        //         if ty_set {
        //             return Err(Error::new_spanned(
        //                 i,
        //                 "there must be only one instance of `{integer}` type specified",
        //             ));
        //         }
        //         ty = i;
        //         ty_set = true;
        //     } else if VALID_TYPES.contains(&i.to_string().as_str()) {
        //         if ty_set {
        //             return Err(Error::new_spanned(
        //                 i,
        //                 "there must be only one instance of `{integer}` type specified",
        //             ));
        //         }
        //         ty = i;
        //         ty_set = true;
        //         continue;
        //     } else {
        //         return Err(Error::new_spanned(i, "type must be a integer"));
        //     }
        // }

        // Ok(Args { ty, no_auto_debug })
    }
}

/// Recursively check if a expression can be simplified to a simple wrap of `Self(<expr>)`.
///
/// Logic behind this:
/// A literal and a path where it is not fancy and is not one of the variants names are always able to be simplified.
///
/// A unary expression can be simplified if it's underlying expression is also able to be simplified.
///
/// A binary expression can be simplified if both expression that compose it also are able to be simplified.
///
/// A parenthesized expression can be simplified if it's underlying expression is also able to be simplified.
///
/// A "as" cast can be simplified if it's underlying expression is also able to be simplified.
fn can_simplify(expr: &syn::Expr, variants: &[Ident]) -> bool {
    match expr {
        syn::Expr::Lit(_) => true,
        syn::Expr::Path(expr_path) if is_simple_path(expr_path, variants) => true,
        syn::Expr::Unary(expr_unary) => can_simplify(&expr_unary.expr, variants),
        syn::Expr::Binary(expr_binary) => {
            can_simplify(&expr_binary.left, variants) && can_simplify(&expr_binary.right, variants)
        }
        syn::Expr::Paren(expr_paren) => can_simplify(&expr_paren.expr, variants),
        syn::Expr::Cast(expr_cast) => can_simplify(&expr_cast.expr, variants),
        _ => false,
    }
}

fn is_simple_path(expr: &syn::ExprPath, variants: &[Ident]) -> bool {
    if expr.qself.is_some() {
        return false;
    }

    // simplest path
    if let Some(ident) = expr.path.get_ident() {
        // if the ident is in variants, it is not a simple path
        if !variants.contains(ident) {
            return true;
        }
    }

    false
}