bitstream_io/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
// Copyright 2017 Brian Langenberger
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Traits and helpers for bitstream handling functionality
//!
//! Bitstream readers are for reading signed and unsigned integer
//! values from a stream whose sizes may not be whole bytes.
//! Bitstream writers are for writing signed and unsigned integer
//! values to a stream, also potentially un-aligned at a whole byte.
//!
//! Both big-endian and little-endian streams are supported.
//!
//! The only requirement for wrapped reader streams is that they must
//! implement the `Read` trait, and the only requirement
//! for writer streams is that they must implement the `Write` trait.
//!
//! In addition, reader streams do not consume any more bytes
//! from the underlying reader than necessary, buffering only a
//! single partial byte as needed.
//! Writer streams also write out all whole bytes as they are accumulated.
//!
//! Readers and writers are also designed to work with integer
//! types of any possible size.
//! Many of Rust's built-in integer types are supported by default.
//! # Minimum Compiler Version
//!
//! Beginning with version 2.4, the minimum compiler version has been
//! updated to Rust 1.79.
//!
//! The issue is that reading an excessive number of
//! bits to a type which is too small to hold them,
//! or writing an excessive number of bits from too small of a type,
//! are always errors:
//! ```
//! use std::io::{Read, Cursor};
//! use bitstream_io::{BigEndian, BitReader, BitRead};
//! let data = [0; 10];
//! let mut r = BitReader::endian(Cursor::new(&data), BigEndian);
//! let x: Result<u32, _> = r.read(64); // reading 64 bits to u32 always fails at runtime
//! assert!(x.is_err());
//! ```
//! but those errors will not be caught until the program runs,
//! which is less than ideal for the common case in which
//! the number of bits is already known at compile-time.
//!
//! But starting with Rust 1.79, we can now have read and write methods
//! which take a constant number of bits and can validate the number of bits
//! are small enough for the type being read/written at compile-time:
//! ```rust,ignore
//! use std::io::{Read, Cursor};
//! use bitstream_io::{BigEndian, BitReader, BitRead};
//! let data = [0; 10];
//! let mut r = BitReader::endian(Cursor::new(&data), BigEndian);
//! let x: Result<u32, _> = r.read_in::<64, _>(); // doesn't compile at all
//! ```
//! Since catching potential bugs at compile-time is preferable
//! to encountering errors at runtime, this will hopefully be
//! an improvement in the long run.
//! # Migrating From Pre 1.0.0
//!
//! There are now `BitRead` and `BitWrite` traits for bitstream
//! reading and writing (analogous to the standard library's
//! `Read` and `Write` traits) which you will also need to import.
//! The upside to this approach is that library consumers
//! can now make functions and methods generic over any sort
//! of bit reader or bit writer, regardless of the underlying
//! stream byte source or endianness.
#![warn(missing_docs)]
#![forbid(unsafe_code)]
#![cfg_attr(feature = "alloc", no_std)]
#[cfg(feature = "alloc")]
extern crate alloc;
use core::fmt::Debug;
use core::marker::PhantomData;
use core::mem;
use core::ops::{BitOrAssign, BitXor, Not, Rem, RemAssign, Shl, ShlAssign, Shr, ShrAssign, Sub};
#[cfg(feature = "alloc")]
use core2::io;
#[cfg(not(feature = "alloc"))]
use std::io;
pub mod huffman;
pub mod read;
pub mod write;
pub use read::{
BitRead, BitReader, ByteRead, ByteReader, FromBitStream, FromBitStreamWith, FromByteStream,
FromByteStreamWith, HuffmanRead,
};
pub use write::{
BitCounter, BitRecorder, BitWrite, BitWriter, ByteWrite, ByteWriter, HuffmanWrite, ToBitStream,
ToBitStreamWith, ToByteStream, ToByteStreamWith,
};
/// A trait intended for simple fixed-length primitives (such as ints and floats)
/// which allows them to be read and written to streams of
/// different endiannesses verbatim.
pub trait Primitive {
/// The raw byte representation of this numeric type
type Bytes: AsRef<[u8]> + AsMut<[u8]>;
/// An empty buffer of this type's size
fn buffer() -> Self::Bytes;
/// Our value in big-endian bytes
fn to_be_bytes(self) -> Self::Bytes;
/// Our value in little-endian bytes
fn to_le_bytes(self) -> Self::Bytes;
/// Convert big-endian bytes to our value
fn from_be_bytes(bytes: Self::Bytes) -> Self;
/// Convert little-endian bytes to our value
fn from_le_bytes(bytes: Self::Bytes) -> Self;
}
macro_rules! define_primitive_numeric {
($t:ty) => {
impl Primitive for $t {
type Bytes = [u8; mem::size_of::<$t>()];
#[inline(always)]
fn buffer() -> Self::Bytes {
[0; mem::size_of::<$t>()]
}
#[inline(always)]
fn to_be_bytes(self) -> Self::Bytes {
self.to_be_bytes()
}
#[inline(always)]
fn to_le_bytes(self) -> Self::Bytes {
self.to_le_bytes()
}
#[inline(always)]
fn from_be_bytes(bytes: Self::Bytes) -> Self {
<$t>::from_be_bytes(bytes)
}
#[inline(always)]
fn from_le_bytes(bytes: Self::Bytes) -> Self {
<$t>::from_le_bytes(bytes)
}
}
};
}
impl<const N: usize> Primitive for [u8; N] {
type Bytes = [u8; N];
#[inline(always)]
fn buffer() -> Self::Bytes {
[0; N]
}
#[inline(always)]
fn to_be_bytes(self) -> Self::Bytes {
self
}
#[inline(always)]
fn to_le_bytes(self) -> Self::Bytes {
self
}
#[inline(always)]
fn from_be_bytes(bytes: Self::Bytes) -> Self {
bytes
}
#[inline(always)]
fn from_le_bytes(bytes: Self::Bytes) -> Self {
bytes
}
}
/// This trait extends many common integer types (both unsigned and signed)
/// with a few trivial methods so that they can be used
/// with the bitstream handling traits.
pub trait Numeric:
Primitive
+ Sized
+ Copy
+ Default
+ Debug
+ PartialOrd
+ Shl<u32, Output = Self>
+ ShlAssign<u32>
+ Shr<u32, Output = Self>
+ ShrAssign<u32>
+ Rem<Self, Output = Self>
+ RemAssign<Self>
+ BitOrAssign<Self>
+ BitXor<Self, Output = Self>
+ Not<Output = Self>
+ Sub<Self, Output = Self>
{
/// Size of type in bits
const BITS_SIZE: u32;
/// The value of 1 in this type
const ONE: Self;
/// Returns true if this value is 0, in its type
fn is_zero(self) -> bool;
/// Returns a `u8` value in this type
fn from_u8(u: u8) -> Self;
/// Assuming 0 <= value < 256, returns this value as a `u8` type
fn to_u8(self) -> u8;
/// Counts the number of 1 bits
fn count_ones(self) -> u32;
/// Counts the number of leading zeros
fn leading_zeros(self) -> u32;
/// Counts the number of trailing zeros
fn trailing_zeros(self) -> u32;
/// Convert to a generic unsigned write value for stream recording purposes
fn unsigned_value(self) -> write::UnsignedValue;
}
macro_rules! define_numeric {
($t:ty) => {
define_primitive_numeric!($t);
impl Numeric for $t {
const BITS_SIZE: u32 = mem::size_of::<$t>() as u32 * 8;
const ONE: Self = 1;
#[inline(always)]
fn is_zero(self) -> bool {
self == 0
}
#[inline(always)]
fn from_u8(u: u8) -> Self {
u as $t
}
#[inline(always)]
fn to_u8(self) -> u8 {
self as u8
}
#[inline(always)]
fn count_ones(self) -> u32 {
self.count_ones()
}
#[inline(always)]
fn leading_zeros(self) -> u32 {
self.leading_zeros()
}
#[inline(always)]
fn trailing_zeros(self) -> u32 {
self.trailing_zeros()
}
#[inline(always)]
fn unsigned_value(self) -> write::UnsignedValue {
self.into()
}
}
};
}
/// This trait extends many common signed integer types
/// so that they can be used with the bitstream handling traits.
pub trait SignedNumeric: Numeric {
/// Returns true if this value is negative
fn is_negative(self) -> bool;
/// Given a two-complement positive value and certain number of bits,
/// returns this value as a negative number.
fn as_negative(self, bits: u32) -> Self;
/// Given a two-complement positive value and certain number of bits,
/// returns this value as a negative number.
fn as_negative_fixed<const BITS: u32>(self) -> Self;
/// Given a negative value and a certain number of bits,
/// returns this value as a twos-complement positive number.
fn as_unsigned(self, bits: u32) -> Self;
/// Given a negative value and a certain number of bits,
/// returns this value as a twos-complement positive number.
fn as_unsigned_fixed<const BITS: u32>(self) -> Self;
/// Converts to a generic signed value for stream recording purposes.
fn signed_value(self) -> write::SignedValue;
}
macro_rules! define_signed_numeric {
($t:ty) => {
impl SignedNumeric for $t {
#[inline(always)]
fn is_negative(self) -> bool {
self < 0
}
#[inline(always)]
fn as_negative(self, bits: u32) -> Self {
self + (-1 << (bits - 1))
}
#[inline(always)]
fn as_negative_fixed<const BITS: u32>(self) -> Self {
self + (-1 << (BITS - 1))
}
#[inline(always)]
fn as_unsigned(self, bits: u32) -> Self {
self - (-1 << (bits - 1))
}
#[inline(always)]
fn as_unsigned_fixed<const BITS: u32>(self) -> Self {
self - (-1 << (BITS - 1))
}
#[inline(always)]
fn signed_value(self) -> write::SignedValue {
self.into()
}
}
};
}
define_numeric!(u8);
define_numeric!(i8);
define_numeric!(u16);
define_numeric!(i16);
define_numeric!(u32);
define_numeric!(i32);
define_numeric!(u64);
define_numeric!(i64);
define_numeric!(u128);
define_numeric!(i128);
define_signed_numeric!(i8);
define_signed_numeric!(i16);
define_signed_numeric!(i32);
define_signed_numeric!(i64);
define_signed_numeric!(i128);
define_primitive_numeric!(f32);
define_primitive_numeric!(f64);
/// A stream's endianness, or byte order, for determining
/// how bits should be read.
///
/// It comes in `BigEndian` and `LittleEndian` varieties
/// (which may be shortened to `BE` and `LE`)
/// and is not something programmers should have to implement
/// in most cases.
pub trait Endianness: Sized {
/// Pushes the given bits and value onto an accumulator
/// with the given bits and value.
fn push<N>(queue: &mut BitQueue<Self, N>, bits: u32, value: N)
where
N: Numeric;
/// Pushes the given constant number of bits and value onto an accumulator
/// with the given bits and value.
fn push_fixed<const B: u32, N>(queue: &mut BitQueue<Self, N>, value: N)
where
N: Numeric;
/// Pops a value with the given number of bits from an accumulator
/// with the given bits and value.
fn pop<N>(queue: &mut BitQueue<Self, N>, bits: u32) -> N
where
N: Numeric;
/// Pops a value with the given number of constant bits
/// from an accumulator with the given bits and value.
fn pop_fixed<const B: u32, N>(queue: &mut BitQueue<Self, N>) -> N
where
N: Numeric;
/// Drops the given number of bits from an accumulator
/// with the given bits and value.
fn drop<N>(queue: &mut BitQueue<Self, N>, bits: u32)
where
N: Numeric;
/// Returns the next number of 0 bits from an accumulator
/// with the given bits and value.
fn next_zeros<N>(queue: &BitQueue<Self, N>) -> u32
where
N: Numeric;
/// Returns the next number of 1 bits from an accumulator
/// with the given bits and value.
fn next_ones<N>(queue: &BitQueue<Self, N>) -> u32
where
N: Numeric;
/// Reads signed value from reader in this endianness
fn read_signed<R, S>(r: &mut R, bits: u32) -> io::Result<S>
where
R: BitRead,
S: SignedNumeric;
/// Reads signed value from reader in this endianness
fn read_signed_fixed<R, const B: u32, S>(r: &mut R) -> io::Result<S>
where
R: BitRead,
S: SignedNumeric;
/// Writes signed value to writer in this endianness
fn write_signed<W, S>(w: &mut W, bits: u32, value: S) -> io::Result<()>
where
W: BitWrite,
S: SignedNumeric;
/// Writes signed value to writer in this endianness
fn write_signed_fixed<W, const B: u32, S>(w: &mut W, value: S) -> io::Result<()>
where
W: BitWrite,
S: SignedNumeric;
/// Reads convertable numeric value from reader in this endianness
fn read_primitive<R, V>(r: &mut R) -> io::Result<V>
where
R: BitRead,
V: Primitive;
/// Writes convertable numeric value to writer in this endianness
fn write_primitive<W, V>(w: &mut W, value: V) -> io::Result<()>
where
W: BitWrite,
V: Primitive;
/// Reads entire numeric value from reader in this endianness
fn read_numeric<R, V>(r: R) -> io::Result<V>
where
R: io::Read,
V: Primitive;
/// Writes entire numeric value to writer in this endianness
fn write_numeric<W, V>(w: W, value: V) -> io::Result<()>
where
W: io::Write,
V: Primitive;
}
/// Big-endian, or most significant bits first
#[derive(Copy, Clone, Debug)]
pub struct BigEndian;
/// Big-endian, or most significant bits first
pub type BE = BigEndian;
impl Endianness for BigEndian {
#[inline]
fn push<N>(queue: &mut BitQueue<Self, N>, bits: u32, value: N)
where
N: Numeric,
{
if !queue.value.is_zero() {
queue.value <<= bits;
}
queue.value |= value;
queue.bits += bits;
}
#[inline]
fn push_fixed<const B: u32, N>(queue: &mut BitQueue<Self, N>, value: N)
where
N: Numeric,
{
if !queue.value.is_zero() {
queue.value <<= B;
}
queue.value |= value;
queue.bits += B;
}
#[inline]
fn pop<N>(queue: &mut BitQueue<Self, N>, bits: u32) -> N
where
N: Numeric,
{
if bits < queue.bits {
let offset = queue.bits - bits;
let to_return = queue.value >> offset;
queue.value %= N::ONE << offset;
queue.bits -= bits;
to_return
} else {
let to_return = queue.value;
queue.value = N::default();
queue.bits = 0;
to_return
}
}
#[inline]
fn pop_fixed<const B: u32, N>(queue: &mut BitQueue<Self, N>) -> N
where
N: Numeric,
{
if B < queue.bits {
let offset = queue.bits - B;
let to_return = queue.value >> offset;
queue.value %= N::ONE << offset;
queue.bits -= B;
to_return
} else {
let to_return = queue.value;
queue.value = N::default();
queue.bits = 0;
to_return
}
}
#[inline]
fn drop<N>(queue: &mut BitQueue<Self, N>, bits: u32)
where
N: Numeric,
{
if bits < queue.bits {
queue.value %= N::ONE << (queue.bits - bits);
queue.bits -= bits;
} else {
queue.value = N::default();
queue.bits = 0;
}
}
#[inline]
fn next_zeros<N>(queue: &BitQueue<Self, N>) -> u32
where
N: Numeric,
{
queue.value.leading_zeros() - (N::BITS_SIZE - queue.bits)
}
#[inline]
fn next_ones<N>(queue: &BitQueue<Self, N>) -> u32
where
N: Numeric,
{
if queue.bits < N::BITS_SIZE {
(queue.value ^ ((N::ONE << queue.bits) - N::ONE)).leading_zeros()
- (N::BITS_SIZE - queue.bits)
} else {
(!queue.value).leading_zeros()
}
}
fn read_signed<R, S>(r: &mut R, bits: u32) -> io::Result<S>
where
R: BitRead,
S: SignedNumeric,
{
let is_negative = r.read_bit()?;
let unsigned = r.read::<S>(bits - 1)?;
Ok(if is_negative {
unsigned.as_negative(bits)
} else {
unsigned
})
}
fn read_signed_fixed<R, const B: u32, S>(r: &mut R) -> io::Result<S>
where
R: BitRead,
S: SignedNumeric,
{
let is_negative = r.read_bit()?;
let unsigned = r.read::<S>(B - 1)?;
Ok(if is_negative {
unsigned.as_negative_fixed::<B>()
} else {
unsigned
})
}
fn write_signed<W, S>(w: &mut W, bits: u32, value: S) -> io::Result<()>
where
W: BitWrite,
S: SignedNumeric,
{
if bits == S::BITS_SIZE {
w.write_bytes(value.to_be_bytes().as_ref())
} else if value.is_negative() {
w.write_bit(true)
.and_then(|()| w.write(bits - 1, value.as_unsigned(bits)))
} else {
w.write_bit(false).and_then(|()| w.write(bits - 1, value))
}
}
fn write_signed_fixed<W, const B: u32, S>(w: &mut W, value: S) -> io::Result<()>
where
W: BitWrite,
S: SignedNumeric,
{
if B == S::BITS_SIZE {
w.write_bytes(value.to_be_bytes().as_ref())
} else if value.is_negative() {
w.write_bit(true)
.and_then(|()| w.write(B - 1, value.as_unsigned(B)))
} else {
w.write_bit(false).and_then(|()| w.write(B - 1, value))
}
}
#[inline]
fn read_primitive<R, V>(r: &mut R) -> io::Result<V>
where
R: BitRead,
V: Primitive,
{
let mut buffer = V::buffer();
r.read_bytes(buffer.as_mut())?;
Ok(V::from_be_bytes(buffer))
}
#[inline]
fn write_primitive<W, V>(w: &mut W, value: V) -> io::Result<()>
where
W: BitWrite,
V: Primitive,
{
w.write_bytes(value.to_be_bytes().as_ref())
}
#[inline]
fn read_numeric<R, V>(mut r: R) -> io::Result<V>
where
R: io::Read,
V: Primitive,
{
let mut buffer = V::buffer();
r.read_exact(buffer.as_mut())?;
Ok(V::from_be_bytes(buffer))
}
#[inline]
fn write_numeric<W, V>(mut w: W, value: V) -> io::Result<()>
where
W: io::Write,
V: Primitive,
{
w.write_all(value.to_be_bytes().as_ref())
}
}
/// Little-endian, or least significant bits first
#[derive(Copy, Clone, Debug)]
pub struct LittleEndian;
/// Little-endian, or least significant bits first
pub type LE = LittleEndian;
impl Endianness for LittleEndian {
#[inline]
fn push<N>(queue: &mut BitQueue<Self, N>, bits: u32, mut value: N)
where
N: Numeric,
{
if !value.is_zero() {
value <<= queue.bits;
queue.value |= value;
}
queue.bits += bits;
}
#[inline]
fn push_fixed<const B: u32, N>(queue: &mut BitQueue<Self, N>, mut value: N)
where
N: Numeric,
{
if !value.is_zero() {
value <<= queue.bits;
queue.value |= value;
}
queue.bits += B;
}
#[inline]
fn pop<N>(queue: &mut BitQueue<Self, N>, bits: u32) -> N
where
N: Numeric,
{
if bits < queue.bits {
let to_return = queue.value % (N::ONE << bits);
queue.value >>= bits;
queue.bits -= bits;
to_return
} else {
let to_return = queue.value;
queue.value = N::default();
queue.bits = 0;
to_return
}
}
fn pop_fixed<const B: u32, N>(queue: &mut BitQueue<Self, N>) -> N
where
N: Numeric,
{
if B < queue.bits {
let to_return = queue.value % (N::ONE << B);
queue.value >>= B;
queue.bits -= B;
to_return
} else {
let to_return = queue.value;
queue.value = N::default();
queue.bits = 0;
to_return
}
}
#[inline]
fn drop<N>(queue: &mut BitQueue<Self, N>, bits: u32)
where
N: Numeric,
{
if bits < queue.bits {
queue.value >>= bits;
queue.bits -= bits;
} else {
queue.value = N::default();
queue.bits = 0;
}
}
#[inline(always)]
fn next_zeros<N>(queue: &BitQueue<Self, N>) -> u32
where
N: Numeric,
{
queue.value.trailing_zeros()
}
#[inline]
fn next_ones<N>(queue: &BitQueue<Self, N>) -> u32
where
N: Numeric,
{
(queue.value ^ !N::default()).trailing_zeros()
}
fn read_signed<R, S>(r: &mut R, bits: u32) -> io::Result<S>
where
R: BitRead,
S: SignedNumeric,
{
let unsigned = r.read::<S>(bits - 1)?;
let is_negative = r.read_bit()?;
Ok(if is_negative {
unsigned.as_negative(bits)
} else {
unsigned
})
}
fn read_signed_fixed<R, const B: u32, S>(r: &mut R) -> io::Result<S>
where
R: BitRead,
S: SignedNumeric,
{
let unsigned = r.read::<S>(B - 1)?;
let is_negative = r.read_bit()?;
Ok(if is_negative {
unsigned.as_negative_fixed::<B>()
} else {
unsigned
})
}
fn write_signed<W, S>(w: &mut W, bits: u32, value: S) -> io::Result<()>
where
W: BitWrite,
S: SignedNumeric,
{
if bits == S::BITS_SIZE {
w.write_bytes(value.to_le_bytes().as_ref())
} else if value.is_negative() {
w.write(bits - 1, value.as_unsigned(bits))
.and_then(|()| w.write_bit(true))
} else {
w.write(bits - 1, value).and_then(|()| w.write_bit(false))
}
}
fn write_signed_fixed<W, const B: u32, S>(w: &mut W, value: S) -> io::Result<()>
where
W: BitWrite,
S: SignedNumeric,
{
if B == S::BITS_SIZE {
w.write_bytes(value.to_le_bytes().as_ref())
} else if value.is_negative() {
w.write(B - 1, value.as_unsigned_fixed::<B>())
.and_then(|()| w.write_bit(true))
} else {
w.write(B - 1, value).and_then(|()| w.write_bit(false))
}
}
#[inline]
fn read_primitive<R, V>(r: &mut R) -> io::Result<V>
where
R: BitRead,
V: Primitive,
{
let mut buffer = V::buffer();
r.read_bytes(buffer.as_mut())?;
Ok(V::from_le_bytes(buffer))
}
#[inline]
fn write_primitive<W, V>(w: &mut W, value: V) -> io::Result<()>
where
W: BitWrite,
V: Primitive,
{
w.write_bytes(value.to_le_bytes().as_ref())
}
fn read_numeric<R, V>(mut r: R) -> io::Result<V>
where
R: io::Read,
V: Primitive,
{
let mut buffer = V::buffer();
r.read_exact(buffer.as_mut())?;
Ok(V::from_le_bytes(buffer))
}
#[inline]
fn write_numeric<W, V>(mut w: W, value: V) -> io::Result<()>
where
W: io::Write,
V: Primitive,
{
w.write_all(value.to_le_bytes().as_ref())
}
}
/// A queue for efficiently pushing bits onto a value
/// and popping them off a value.
#[derive(Clone, Debug, Default)]
pub struct BitQueue<E: Endianness, N: Numeric> {
phantom: PhantomData<E>,
value: N,
bits: u32,
}
impl<E: Endianness, N: Numeric> BitQueue<E, N> {
/// Returns a new empty queue
#[inline]
pub fn new() -> BitQueue<E, N> {
BitQueue {
phantom: PhantomData,
value: N::default(),
bits: 0,
}
}
/// Creates a new queue from the given value with the given size
/// Panics if the value is larger than the given number of bits.
#[inline]
pub fn from_value(value: N, bits: u32) -> BitQueue<E, N> {
assert!(if bits < N::BITS_SIZE {
value < (N::ONE << bits)
} else {
bits <= N::BITS_SIZE
});
BitQueue {
phantom: PhantomData,
value,
bits,
}
}
/// Sets the queue to a given value with the given number of bits
/// Panics if the value is larger than the given number of bits
#[inline]
pub fn set(&mut self, value: N, bits: u32) {
assert!(if bits < N::BITS_SIZE {
value < (N::ONE << bits)
} else {
bits <= N::BITS_SIZE
});
self.value = value;
self.bits = bits;
}
/// Consumes the queue and returns its current value
#[inline(always)]
pub fn value(self) -> N {
self.value
}
/// Returns the total bits in the queue
#[inline(always)]
pub fn len(&self) -> u32 {
self.bits
}
/// Returns the maximum bits the queue can hold
#[inline(always)]
pub fn max_len(&self) -> u32 {
N::BITS_SIZE
}
/// Returns the remaining bits the queue can hold
#[inline(always)]
pub fn remaining_len(&self) -> u32 {
self.max_len() - self.len()
}
/// Returns true if the queue is empty
#[inline(always)]
pub fn is_empty(&self) -> bool {
self.bits == 0
}
/// Returns true if the queue is full
#[inline(always)]
pub fn is_full(&self) -> bool {
self.bits == N::BITS_SIZE
}
/// Drops all values in the queue
#[inline(always)]
pub fn clear(&mut self) {
self.set(N::default(), 0)
}
/// Returns true if all bits remaining in the queue are 0
#[inline(always)]
pub fn all_0(&self) -> bool {
self.value.count_ones() == 0
}
/// Returns true if all bits remaining in the queue are 1
#[inline(always)]
pub fn all_1(&self) -> bool {
self.value.count_ones() == self.bits
}
/// Pushes a value with the given number of bits onto the tail of the queue
/// Panics if the number of bits pushed is larger than the queue can hold.
#[inline(always)]
pub fn push(&mut self, bits: u32, value: N) {
assert!(bits <= self.remaining_len()); // check for overflow
E::push(self, bits, value)
}
/// Pushes a value with the given number of bits onto the tail of the queue
/// Panics if the number of bits pushed is larger than the queue can hold.
#[inline(always)]
pub fn push_fixed<const B: u32>(&mut self, value: N) {
assert!(B <= self.remaining_len()); // check for overflow
E::push_fixed::<B, N>(self, value)
}
/// Pops a value with the given number of bits from the head of the queue
/// Panics if the number of bits popped is larger than the number
/// of bits in the queue.
#[inline(always)]
pub fn pop(&mut self, bits: u32) -> N {
assert!(bits <= self.len()); // check for underflow
E::pop(self, bits)
}
/// Pops a value with the given number of bits from the head of the queue
pub fn pop_fixed<const B: u32>(&mut self) -> N {
assert!(B <= self.len()); // check for underflow
E::pop_fixed::<B, N>(self)
}
/// Pops all the current bits from the queue
/// and resets it to an empty state.
#[inline]
pub fn pop_all(&mut self) -> N {
let to_return = self.value;
self.value = N::default();
self.bits = 0;
to_return
}
/// Drops the given number of bits from the head of the queue
/// without returning them.
/// Panics if the number of bits dropped is larger than the
/// number of bits in the queue.
#[inline(always)]
pub fn drop(&mut self, bits: u32) {
assert!(bits <= self.len()); // check for underflow
E::drop(self, bits)
}
/// Pops all 0 bits up to and including the next 1 bit
/// and returns the amount of 0 bits popped
#[inline]
pub fn pop_0(&mut self) -> u32 {
let zeros = E::next_zeros(self);
self.drop(zeros + 1);
zeros
}
/// Pops all 1 bits up to and including the next 0 bit
/// and returns the amount of 1 bits popped
#[inline]
pub fn pop_1(&mut self) -> u32 {
let ones = E::next_ones(self);
self.drop(ones + 1);
ones
}
}
impl<E: Endianness> BitQueue<E, u8> {
/// Returns the state of the queue as a single value
/// which can be used to perform lookups.
#[inline(always)]
pub fn to_state(&self) -> usize {
(1 << self.bits) | (self.value as usize)
}
}