bitstream_io/huffman.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
// Copyright 2017 Brian Langenberger
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Traits and implementations for reading or writing Huffman codes
//! from or to a stream.
#![warn(missing_docs)]
use super::BitQueue;
use super::Endianness;
#[cfg(feature = "alloc")]
use alloc::boxed::Box;
#[cfg(feature = "alloc")]
use alloc::collections::BTreeMap;
#[cfg(feature = "alloc")]
use alloc::vec::Vec;
#[cfg(feature = "alloc")]
use core::fmt;
#[cfg(feature = "alloc")]
use core::marker::PhantomData;
#[cfg(feature = "alloc")]
use core2::error::Error;
#[cfg(not(feature = "alloc"))]
use std::collections::BTreeMap;
#[cfg(not(feature = "alloc"))]
use std::error::Error;
#[cfg(not(feature = "alloc"))]
use std::fmt;
#[cfg(not(feature = "alloc"))]
use std::marker::PhantomData;
/// A compiled Huffman tree element for use with the `read_huffman` method.
/// Returned by `compile_read_tree`.
///
/// Compiled read trees are optimized for faster lookup
/// and are therefore endian-specific.
///
/// In addition, each symbol in the source tree may occur many times
/// in the compiled tree. If symbols require a nontrivial amount of space,
/// consider using reference counting so that they may be cloned
/// more efficiently.
pub enum ReadHuffmanTree<E: Endianness, T: Clone> {
/// The final value and new reader state
Done(T, u8, u32, PhantomData<E>),
/// Another byte is necessary to determine final value
Continue(Box<[ReadHuffmanTree<E, T>]>),
/// An invalid reader state has been used
InvalidState,
}
/// Given a vector of symbol/code pairs, compiles a Huffman tree
/// for reading.
///
/// Code must be 0 or 1 bits and are always read from the stream
/// from least-significant in the list to most signficant
/// (which makes them easier to read for humans).
///
/// All possible codes must be assigned some symbol,
/// and it is acceptable for the same symbol to occur multiple times.
///
/// ## Examples
/// ```
/// use bitstream_io::huffman::compile_read_tree;
/// use bitstream_io::BigEndian;
/// assert!(compile_read_tree::<BigEndian,i32>(
/// vec![(1, vec![0]),
/// (2, vec![1, 0]),
/// (3, vec![1, 1])]).is_ok());
/// ```
///
/// ```
/// use std::io::{Read, Cursor};
/// use bitstream_io::{BigEndian, BitReader, HuffmanRead};
/// use bitstream_io::huffman::compile_read_tree;
/// let tree = compile_read_tree(
/// vec![('a', vec![0]),
/// ('b', vec![1, 0]),
/// ('c', vec![1, 1, 0]),
/// ('d', vec![1, 1, 1])]).unwrap();
/// let data = [0b10110111];
/// let mut cursor = Cursor::new(&data);
/// let mut reader = BitReader::endian(&mut cursor, BigEndian);
/// assert_eq!(reader.read_huffman(&tree).unwrap(), 'b');
/// assert_eq!(reader.read_huffman(&tree).unwrap(), 'c');
/// assert_eq!(reader.read_huffman(&tree).unwrap(), 'd');
/// ```
pub fn compile_read_tree<E, T>(
values: Vec<(T, Vec<u8>)>,
) -> Result<Box<[ReadHuffmanTree<E, T>]>, HuffmanTreeError>
where
E: Endianness,
T: Clone,
{
let tree = FinalHuffmanTree::new(values)?;
let mut result = Vec::with_capacity(256);
result.extend((0..256).map(|_| ReadHuffmanTree::InvalidState));
let queue = BitQueue::from_value(0, 0);
let i = queue.to_state();
result[i] = compile_queue(queue, &tree);
for bits in 1..8 {
for value in 0..(1 << bits) {
let queue = BitQueue::from_value(value, bits);
let i = queue.to_state();
result[i] = compile_queue(queue, &tree);
}
}
assert_eq!(result.len(), 256);
Ok(result.into_boxed_slice())
}
fn compile_queue<E, T>(
mut queue: BitQueue<E, u8>,
tree: &FinalHuffmanTree<T>,
) -> ReadHuffmanTree<E, T>
where
E: Endianness,
T: Clone,
{
match tree {
FinalHuffmanTree::Leaf(ref value) => {
let len = queue.len();
ReadHuffmanTree::Done(value.clone(), queue.value(), len, PhantomData)
}
FinalHuffmanTree::Tree(ref bit0, ref bit1) => {
if queue.is_empty() {
ReadHuffmanTree::Continue(
(0..256)
.map(|byte| compile_queue(BitQueue::from_value(byte as u8, 8), tree))
.collect::<Vec<ReadHuffmanTree<E, T>>>()
.into_boxed_slice(),
)
} else if queue.pop(1) == 0 {
compile_queue(queue, bit0)
} else {
compile_queue(queue, bit1)
}
}
}
}
// A complete Huffman tree with no empty nodes
enum FinalHuffmanTree<T: Clone> {
Leaf(T),
Tree(Box<FinalHuffmanTree<T>>, Box<FinalHuffmanTree<T>>),
}
impl<T: Clone> FinalHuffmanTree<T> {
fn new(values: Vec<(T, Vec<u8>)>) -> Result<FinalHuffmanTree<T>, HuffmanTreeError> {
let mut tree = WipHuffmanTree::new_empty();
for (symbol, code) in values {
tree.add(code.as_slice(), symbol)?;
}
tree.into_read_tree()
}
}
// Work-in-progress trees may have empty nodes during construction
// but those are not allowed in a finalized tree.
// If the user wants some codes to be None or an error symbol of some sort,
// those will need to be specified explicitly.
enum WipHuffmanTree<T: Clone> {
Empty,
Leaf(T),
Tree(Box<WipHuffmanTree<T>>, Box<WipHuffmanTree<T>>),
}
impl<T: Clone> WipHuffmanTree<T> {
fn new_empty() -> WipHuffmanTree<T> {
WipHuffmanTree::Empty
}
fn new_leaf(value: T) -> WipHuffmanTree<T> {
WipHuffmanTree::Leaf(value)
}
fn new_tree() -> WipHuffmanTree<T> {
WipHuffmanTree::Tree(Box::new(Self::new_empty()), Box::new(Self::new_empty()))
}
fn into_read_tree(self) -> Result<FinalHuffmanTree<T>, HuffmanTreeError> {
match self {
WipHuffmanTree::Empty => Err(HuffmanTreeError::MissingLeaf),
WipHuffmanTree::Leaf(v) => Ok(FinalHuffmanTree::Leaf(v)),
WipHuffmanTree::Tree(zero, one) => {
let zero = zero.into_read_tree()?;
let one = one.into_read_tree()?;
Ok(FinalHuffmanTree::Tree(Box::new(zero), Box::new(one)))
}
}
}
fn add(&mut self, code: &[u8], symbol: T) -> Result<(), HuffmanTreeError> {
match self {
WipHuffmanTree::Empty => {
if code.is_empty() {
*self = WipHuffmanTree::new_leaf(symbol);
Ok(())
} else {
*self = WipHuffmanTree::new_tree();
self.add(code, symbol)
}
}
WipHuffmanTree::Leaf(_) => Err(if code.is_empty() {
HuffmanTreeError::DuplicateLeaf
} else {
HuffmanTreeError::OrphanedLeaf
}),
WipHuffmanTree::Tree(ref mut zero, ref mut one) => {
if code.is_empty() {
Err(HuffmanTreeError::DuplicateLeaf)
} else {
match code[0] {
0 => zero.add(&code[1..], symbol),
1 => one.add(&code[1..], symbol),
_ => Err(HuffmanTreeError::InvalidBit),
}
}
}
}
}
}
/// An error type during Huffman tree compilation.
#[derive(PartialEq, Eq, Copy, Clone, Debug)]
pub enum HuffmanTreeError {
/// One of the bits in a Huffman code is not 0 or 1
InvalidBit,
/// A Huffman code in the specification has no defined symbol
MissingLeaf,
/// The same Huffman code specifies multiple symbols
DuplicateLeaf,
/// A Huffman code is the prefix of some longer code
OrphanedLeaf,
}
impl fmt::Display for HuffmanTreeError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
HuffmanTreeError::InvalidBit => write!(f, "invalid bit in code"),
HuffmanTreeError::MissingLeaf => write!(f, "missing leaf node in specification"),
HuffmanTreeError::DuplicateLeaf => write!(f, "duplicate leaf node in specification"),
HuffmanTreeError::OrphanedLeaf => write!(f, "orphaned leaf node in specification"),
}
}
}
impl Error for HuffmanTreeError {}
/// Given a vector of symbol/code pairs, compiles a Huffman tree
/// for writing.
///
/// Code must be 0 or 1 bits and are always written to the stream
/// from least-significant in the list to most signficant
/// (which makes them easier to read for humans).
///
/// If the same symbol occurs multiple times, the first code is used.
/// Unlike in read trees, not all possible codes need to be
/// assigned a symbol.
///
/// ## Examples
/// ```
/// use bitstream_io::huffman::compile_write_tree;
/// use bitstream_io::BigEndian;
/// assert!(compile_write_tree::<BigEndian,i32>(
/// vec![(1, vec![0]),
/// (2, vec![1, 0]),
/// (3, vec![1, 1])]).is_ok());
/// ```
///
/// ```
/// use std::io::Write;
/// use bitstream_io::{BigEndian, BitWriter, HuffmanWrite};
/// use bitstream_io::huffman::compile_write_tree;
/// let tree = compile_write_tree(
/// vec![('a', vec![0]),
/// ('b', vec![1, 0]),
/// ('c', vec![1, 1, 0]),
/// ('d', vec![1, 1, 1])]).unwrap();
/// let mut data = Vec::new();
/// {
/// let mut writer = BitWriter::endian(&mut data, BigEndian);
/// writer.write_huffman(&tree, 'b').unwrap();
/// writer.write_huffman(&tree, 'c').unwrap();
/// writer.write_huffman(&tree, 'd').unwrap();
/// }
/// assert_eq!(data, [0b10110111]);
/// ```
pub fn compile_write_tree<E, T>(
values: Vec<(T, Vec<u8>)>,
) -> Result<WriteHuffmanTree<E, T>, HuffmanTreeError>
where
E: Endianness,
T: Ord + Clone,
{
let mut map = BTreeMap::new();
for (symbol, code) in values {
let mut encoded = Vec::new();
for bits in code.chunks(32) {
let mut acc = BitQueue::<E, u32>::new();
for bit in bits {
match *bit {
0 => acc.push(1, 0),
1 => acc.push(1, 1),
_ => return Err(HuffmanTreeError::InvalidBit),
}
}
let len = acc.len();
encoded.push((len, acc.value()))
}
map.entry(symbol)
.or_insert_with(|| encoded.into_boxed_slice());
}
Ok(WriteHuffmanTree {
map,
phantom: PhantomData,
})
}
/// A compiled Huffman tree for use with the `write_huffman` method.
/// Returned by `compiled_write_tree`.
pub struct WriteHuffmanTree<E: Endianness, T: Ord> {
map: BTreeMap<T, Box<[(u32, u32)]>>,
phantom: PhantomData<E>,
}
impl<E: Endianness, T: Ord + Clone> WriteHuffmanTree<E, T> {
/// Returns true if symbol is in tree.
#[inline]
pub fn has_symbol(&self, symbol: &T) -> bool {
self.map.contains_key(symbol)
}
/// Given symbol, returns iterator of
/// (bits, value) pairs for writing code.
/// Panics if symbol is not found.
#[inline]
pub fn get(&self, symbol: &T) -> impl Iterator<Item = &(u32, u32)> {
self.map[symbol].iter()
}
}