1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
#![no_std]
pub extern crate byteorder;
pub extern crate block_padding;
pub extern crate generic_array;
extern crate byte_tools;

use byteorder::{ByteOrder, BE};
use byte_tools::zero;
use block_padding::{Padding, PadError};
use generic_array::{GenericArray, ArrayLength};
use core::slice;

/// Buffer for block processing of data
#[derive(Clone, Default)]
pub struct BlockBuffer<BlockSize: ArrayLength<u8>>  {
    buffer: GenericArray<u8, BlockSize>,
    pos: usize,
}

#[inline(always)]
unsafe fn cast<N: ArrayLength<u8>>(block: &[u8]) -> &GenericArray<u8, N> {
    debug_assert_eq!(block.len(), N::to_usize());
    &*(block.as_ptr() as *const GenericArray<u8, N>)
}



impl<BlockSize: ArrayLength<u8>> BlockBuffer<BlockSize> {
    /// Process data in `input` in blocks of size `BlockSize` using function `f`.
    #[inline]
    pub fn input<F>(&mut self, mut input: &[u8], mut f: F)
        where F: FnMut(&GenericArray<u8, BlockSize>)
    {
        // If there is already data in the buffer, process it if we have
        // enough to complete the chunk.
        let rem = self.remaining();
        if self.pos != 0 && input.len() >= rem {
            let (l, r) = input.split_at(rem);
            input = r;
            self.buffer[self.pos..].copy_from_slice(l);
            self.pos = 0;
            f(&self.buffer);
        }

        // While we have at least a full buffer size chunks's worth of data,
        // process that data without copying it into the buffer
        while input.len() >= self.size() {
            let (block, r) = input.split_at(self.size());
            input = r;
            f(unsafe { cast(block) });
        }

        // Copy any remaining data into the buffer.
        self.buffer[self.pos..self.pos+input.len()].copy_from_slice(input);
        self.pos += input.len();
    }

    /*
    /// Process data in `input` in blocks of size `BlockSize` using function `f`, which accepts
    /// slice of blocks.
    #[inline]
    pub fn input2<F>(&mut self, mut input: &[u8], mut f: F)
        where F: FnMut(&[GenericArray<u8, BlockSize>])
    {
        // If there is already data in the buffer, process it if we have
        // enough to complete the chunk.
        let rem = self.remaining();
        if self.pos != 0 && input.len() >= rem {
            let (l, r) = input.split_at(rem);
            input = r;
            self.buffer[self.pos..].copy_from_slice(l);
            self.pos = 0;
            f(slice::from_ref(&self.buffer));
        }

        // While we have at least a full buffer size chunks's worth of data,
        // process it data without copying into the buffer
        let n_blocks = input.len()/self.size();
        let (left, right) = input.split_at(n_blocks*self.size());
        // safe because we guarantee that `blocks` does not point outside of `input` 
        let blocks = unsafe {
            slice::from_raw_parts(
                left.as_ptr() as *const GenericArray<u8, BlockSize>,
                n_blocks,
            )
        };
        f(blocks);

        // Copy remaining data into the buffer.
        self.buffer[self.pos..self.pos+right.len()].copy_from_slice(right);
        self.pos += right.len();
    }
    */

    /// Variant that doesn't flush the buffer until there's additional
    /// data to be processed. Suitable for tweakable block ciphers
    /// like Threefish that need to know whether a block is the *last*
    /// data block before processing it.
    #[inline]
    pub fn input_lazy<F>(&mut self, mut input: &[u8], mut f: F)
        where F: FnMut(&GenericArray<u8, BlockSize>)
    {
        let rem = self.remaining();
        if self.pos != 0 && input.len() > rem {
            let (l, r) = input.split_at(rem);
            input = r;
            self.buffer[self.pos..].copy_from_slice(l);
            self.pos = 0;
            f(&self.buffer);
        }

        while input.len() > self.size() {
            let (block, r) = input.split_at(self.size());
            input = r;
            f(unsafe { cast(block) });
        }

        self.buffer[self.pos..self.pos+input.len()].copy_from_slice(input);
        self.pos += input.len();
    }

    /// Pad buffer with `prefix` and make sure that internall buffer
    /// has at least `up_to` free bytes. All remaining bytes get
    /// zeroed-out.
    #[inline]
    fn digest_pad<F>(&mut self, up_to: usize, f: &mut F)
        where F: FnMut(&GenericArray<u8, BlockSize>)
    {
        if self.pos == self.size() {
            f(&self.buffer);
            self.pos = 0;
        }
        self.buffer[self.pos] = 0x80;
        self.pos += 1;

        zero(&mut self.buffer[self.pos..]);

        if self.remaining() < up_to {
            f(&self.buffer);
            zero(&mut self.buffer[..self.pos]);
        }
    }

    /// Pad message with 0x80, zeros and 64-bit message length
    /// in a byte order specified by `B`
    #[inline]
    pub fn len64_padding<B, F>(&mut self, data_len: u64, mut f: F)
        where B: ByteOrder, F: FnMut(&GenericArray<u8, BlockSize>)
    {
        // TODO: replace `F` with `impl Trait` on MSRV bump
        self.digest_pad(8, &mut f);
        let s = self.size();
        B::write_u64(&mut self.buffer[s-8..], data_len);
        f(&self.buffer);
        self.pos = 0;
    }


    /// Pad message with 0x80, zeros and 128-bit message length
    /// in the big-endian byte order
    #[inline]
    pub fn len128_padding_be<F>(&mut self, hi: u64, lo: u64, mut f: F)
        where F: FnMut(&GenericArray<u8, BlockSize>)
    {
        // TODO: on MSRV bump replace `F` with `impl Trait`, use `u128`, add `B`
        self.digest_pad(16, &mut f);
        let s = self.size();
        BE::write_u64(&mut self.buffer[s-16..s-8], hi);
        BE::write_u64(&mut self.buffer[s-8..], lo);
        f(&self.buffer);
        self.pos = 0;
    }

    /// Pad message with a given padding `P`
    ///
    /// Returns `PadError` if internall buffer is full, which can only happen if
    /// `input_lazy` was used.
    #[inline]
    pub fn pad_with<P: Padding>(&mut self)
        -> Result<&mut GenericArray<u8, BlockSize>, PadError>
    {
        P::pad_block(&mut self.buffer[..], self.pos)?;
        self.pos = 0;
        Ok(&mut self.buffer)
    }

    /// Return size of the internall buffer in bytes
    #[inline]
    pub fn size(&self) -> usize {
        BlockSize::to_usize()
    }

    /// Return current cursor position
    #[inline]
    pub fn position(&self) -> usize {
        self.pos
    }

    /// Return number of remaining bytes in the internall buffer
    #[inline]
    pub fn remaining(&self) -> usize {
        self.size() - self.pos
    }

    /// Reset buffer by setting cursor position to zero
    #[inline]
    pub fn reset(&mut self)  {
        self.pos = 0
    }
}