bon_macros/builder/builder_gen/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
mod builder_decl;
mod builder_derives;
mod finish_fn;
mod member;
mod models;
mod setters;
mod start_fn;
mod state_mod;
mod top_level_config;
pub(crate) mod input_fn;
pub(crate) mod input_struct;
pub(crate) use top_level_config::TopLevelConfig;
use crate::util::prelude::*;
use member::{CustomField, Member, MemberOrigin, NamedMember, RawMember, StartFnMember};
use models::{AssocMethodCtx, AssocMethodReceiverCtx, BuilderGenCtx, FinishFnBody, Generics};
use setters::SettersCtx;
pub(crate) struct MacroOutput {
pub(crate) start_fn: syn::ItemFn,
pub(crate) other_items: TokenStream,
}
impl BuilderGenCtx {
fn receiver(&self) -> Option<&AssocMethodReceiverCtx> {
self.assoc_method_ctx.as_ref()?.receiver.as_ref()
}
fn named_members(&self) -> impl Iterator<Item = &NamedMember> {
self.members.iter().filter_map(Member::as_named)
}
fn custom_fields(&self) -> impl Iterator<Item = &CustomField> {
self.members.iter().filter_map(Member::as_field)
}
fn start_fn_args(&self) -> impl Iterator<Item = &StartFnMember> {
self.members.iter().filter_map(Member::as_start_fn)
}
fn stateful_members(&self) -> impl Iterator<Item = &NamedMember> {
self.named_members().filter(|member| member.is_stateful())
}
pub(crate) fn output(self) -> Result<MacroOutput> {
let mut start_fn = self.start_fn();
let state_mod = state_mod::StateModGenCtx::new(&self).state_mod();
let builder_decl = self.builder_decl();
let builder_impl = self.builder_impl()?;
let builder_derives = self.builder_derives();
let default_allows = syn::parse_quote!(#[allow(
// We have a `deprecated` lint on all `bon::__` items which we
// use in the generated code extensively
deprecated
)]);
let allows = self.allow_attrs.iter().cloned().chain([default_allows]);
// -- Postprocessing --
// Here we parse all items back and add the `allow` attributes to them.
let other_items = quote! {
#state_mod
#builder_decl
#builder_derives
#builder_impl
};
let other_items_str = other_items.to_string();
let other_items: syn::File = syn::parse2(other_items).map_err(|err| {
err!(
&Span::call_site(),
"bug in the `bon` crate: the macro generated code that contains syntax errors; \
please report this issue at our Github repository: \
https://github.com/elastio/bon;\n\
syntax error in generated code: {err:#?};\n\
generated code:\n\
```rust
{other_items_str}\n\
```",
)
})?;
let mut other_items = other_items.items;
for item in &mut other_items {
if let Some(attrs) = item.attrs_mut() {
attrs.extend(allows.clone());
}
}
start_fn.attrs.extend(allows);
Ok(MacroOutput {
start_fn,
other_items: quote!(#(#other_items)*),
})
}
fn builder_impl(&self) -> Result<TokenStream> {
let finish_fn = self.finish_fn();
let setter_methods = self
.named_members()
.map(|member| SettersCtx::new(self, member).setter_methods())
.collect::<Result<Vec<_>>>()?;
let generics_decl = &self.generics.decl_without_defaults;
let generic_args = &self.generics.args;
let where_clause = &self.generics.where_clause;
let builder_ident = &self.builder_type.ident;
let state_mod = &self.state_mod.ident;
let state_var = &self.state_var;
let allows = allow_warnings_on_member_types();
Ok(quote! {
#allows
#[automatically_derived]
impl<
#(#generics_decl,)*
#state_var: #state_mod::State
>
#builder_ident<#(#generic_args,)* #state_var>
#where_clause
{
#finish_fn
#(#setter_methods)*
}
})
}
/// Generates code that has no meaning to the compiler, but it helps
/// IDEs to provide better code highlighting, completions and other
/// hints.
fn ide_hints(&self) -> TokenStream {
let type_patterns = self
.on
.iter()
.map(|params| ¶ms.type_pattern)
.collect::<Vec<_>>();
if type_patterns.is_empty() {
return quote! {};
}
quote! {
// This is wrapped in a special cfg set by `rust-analyzer` to enable this
// code for rust-analyzer's analysis only, but prevent the code from being
// compiled by `rustc`. Rust Analyzer should be able to use the syntax
// provided inside of the block to figure out the semantic meaning of
// the tokens passed to the attribute.
#[allow(unexpected_cfgs)]
{
#[cfg(rust_analyzer)]
{
// Let IDEs know that these are type patterns like the ones that
// could be written in a type annotation for a variable. Note that
// we don't initialize the variable with any value because we don't
// have any meaningful value to assign to this variable, especially
// because its type may contain wildcard patterns like `_`. This is
// used only to signal the IDEs that these tokens are meant to be
// type patterns by placing them in the context where type patterns
// are expected.
let _: (#(#type_patterns,)*);
}
}
}
}
fn phantom_data(&self) -> TokenStream {
let member_types = self.members.iter().filter_map(|member| {
match member {
// The types of these members already appear in the struct as regular fields.
Member::StartFn(_) | Member::Field(_) | Member::Named(_) => None,
Member::FinishFn(member) => Some(member.ty.norm.as_ref()),
Member::Skip(member) => Some(member.norm_ty.as_ref()),
}
});
let receiver_ty = self
.assoc_method_ctx
.as_ref()
.map(|ctx| ctx.self_ty.as_ref());
let generic_types = self.generics.args.iter().filter_map(|arg| match arg {
syn::GenericArgument::Type(ty) => Some(ty),
_ => None,
});
let types = std::iter::empty()
.chain(receiver_ty)
.chain(member_types)
.chain(generic_types)
.map(|ty| {
// Wrap `ty` in another phantom data because it can be `?Sized`,
// and simply using it as a type of the tuple member would
// be wrong, because tuple's members must be sized.
//
// We also wrap this in an `fn() -> ...` to make the compiler think
// that the builder doesn't "own" an instance of the given type.
// This removes unnecessary requirements when evaluating the
// applicability of the auto traits.
quote!(fn() -> ::core::marker::PhantomData<#ty>)
});
let lifetimes = self.generics.args.iter().filter_map(|arg| match arg {
syn::GenericArgument::Lifetime(lifetime) => Some(lifetime),
_ => None,
});
let state_var = &self.state_var;
quote! {
::core::marker::PhantomData<(
// We have to store the builder state in phantom data otherwise it
// would be reported as an unused type parameter.
//
// We also wrap this in an `fn() -> ...` to make the compiler think
// that the builder doesn't "own" an instance of the given type.
// This removes unnecessary requirements when evaluating the
// applicability of the auto traits.
fn() -> #state_var,
// Even though lifetimes will most likely be used somewhere in
// member types, it is not guaranteed in case of functions/methods,
// so we mention them all separately. This covers a special case
// for function builders where the lifetime can be entirely unused
// (the language permis that).
//
// This edge case was discovered thanks to @tonywu6 ❤️:
// https://github.com/elastio/bon/issues/206
#( &#lifetimes (), )*
// There is an interesting quirk with lifetimes in Rust, which is the
// reason why we thoughtlessly store all the function parameter types
// in phantom data here.
//
// Suppose a function was defined with an argument of type `&'a T`
// and then we generate an impl block (simplified):
//
// ```
// impl<'a, T, U> for Foo<U>
// where
// U: Into<&'a T>,
// {}
// ```
// Then compiler will complain with the message "the parameter type `T`
// may not live long enough". So we would need to manually add the bound
// `T: 'a` to fix this. However, it's hard to infer such a bound in macro
// context. A workaround for that would be to store the `&'a T` inside of
// the struct itself, which auto-implies this bound for us implicitly.
//
// That's a weird implicit behavior in Rust, I suppose there is a reasonable
// explanation for it, I just didn't care to research it yet ¯\_(ツ)_/¯.
#(#types,)*
)>
}
}
}
fn allow_warnings_on_member_types() -> TokenStream {
quote! {
// This warning may occur when the original unnormalized syntax was
// using parens around an `impl Trait` like that:
// ```
// &(impl Clone + Default)
// ```
// in which case the normalized version will be:
// ```
// &(T)
// ```
//
// And it triggers the warning. We just suppress it here.
#[allow(unused_parens)]
}
}