1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
//! This crate provides two types of bounded integer.
//!
//! # Macro-generated bounded integers
//!
//! The [`bounded_integer!`] macro allows you to define your own bounded integer type, given a
//! specific range it inhabits. For example:
//!
//! ```rust
#![cfg_attr(not(feature = "macro"), doc = "# #[cfg(any())] {")]
#![cfg_attr(feature = "step_trait", doc = "# #![feature(step_trait)]")]
//! # use bounded_integer::bounded_integer;
//! bounded_integer! {
//! struct MyInteger { 0..8 }
//! }
//! let num = MyInteger::new(5).unwrap();
//! assert_eq!(num, 5);
#![cfg_attr(not(feature = "macro"), doc = "# }")]
//! ```
//!
//! This macro supports both `struct`s and `enum`s. See the [`examples`] module for the
//! documentation of generated types.
//!
//! # Const generics-based bounded integers
//!
//! You can also create ad-hoc bounded integers via types in this library that use const generics,
//! for example:
//!
//! ```rust
#![cfg_attr(feature = "step_trait", doc = "# #![feature(step_trait)]")]
#![cfg_attr(not(feature = "types"), doc = "# #[cfg(any())] {")]
//! # use bounded_integer::BoundedU8;
//! let num = <BoundedU8<0, 7>>::new(5).unwrap();
//! assert_eq!(num, 5);
#![cfg_attr(not(feature = "types"), doc = "# }")]
//! ```
//!
//! These integers are shorter to use as they don't require a type declaration or explicit name,
//! and they interoperate better with other integers that have different ranges. However due to the
//! limits of const generics, they do not implement some traits like `Default`.
//!
//! # `no_std`
//!
//! All the integers in this crate depend only on libcore and so work in `#![no_std]` environments.
//!
//! # Crate Features
//!
//! By default, no crate features are enabled.
//! - `std`: Interopate with `std` — implies `alloc`. Enables the following things:
//! - An implementation of [`Error`] for [`ParseError`].
//! - Support for indexing with the const-generic integers on `VecDeque`.
//! - `alloc`: Interopate with `alloc`. Enables the following things:
//! - Support for indexing with the const-generic integers on `Vec`.
//! - `macro`: Enable the [`bounded_integer!`] macro.
//! - `types`: Enable the bounded integer types that use const generics.
//! - `arbitrary1`: Implement [`Arbitrary`] for the bounded integers. This is useful when using
//! bounded integers as fuzzing inputs.
//! - `bytemuck1`: Implement [`Contiguous`] for all bounded integers, and [`Zeroable`] for
//! macro-generated bounded integers that support it.
//! - `num-traits02`: Implement [`Bounded`], [`AsPrimitive`], [`FromPrimitive`], [`NumCast`],
//! [`ToPrimitive`], [`CheckedAdd`], [`CheckedDiv`], [`CheckedMul`], [`CheckedNeg`], [`CheckedRem`],
//! [`CheckedSub`], [`MulAdd`], [`SaturatingAdd`], [`SaturatingMul`] and [`SaturatingSub`] for all
//! const-generic bounded integers.
//! - `serde1`: Implement [`Serialize`] and [`Deserialize`] for the bounded integers, making sure all
//! values will never be out of bounds. This has a deprecated alias `serde`.
//! - `zerocopy06`: Implement [`AsBytes`] for all bounded integers, and [`Unaligned`] for
//! macro-generated ones.
//! - `step_trait`: Implement the [`Step`] trait which allows the bounded integers to be easily used
//! in ranges. This will require you to use nightly and place `#![feature(step_trait)]` in your
//! crate root if you use the macro.
//!
//! [`bounded_integer!`]: https://docs.rs/bounded-integer/*/bounded_integer/macro.bounded_integer.html
//! [`examples`]: https://docs.rs/bounded-integer/*/bounded_integer/examples/
//! [`Arbitrary`]: https://docs.rs/arbitrary/1/arbitrary/trait.Arbitrary.html
//! [`Contiguous`]: https://docs.rs/bytemuck/1/bytemuck/trait.Contiguous.html
//! [`Zeroable`]: https://docs.rs/bytemuck/1/bytemuck/trait.Zeroable.html
//! [`Bounded`]: https://docs.rs/num-traits/0.2/num_traits/bounds/trait.Bounded.html
//! [`AsPrimitive`]: https://docs.rs/num-traits/0.2/num_traits/cast/trait.AsPrimitive.html
//! [`FromPrimitive`]: https://docs.rs/num-traits/0.2/num_traits/cast/trait.FromPrimitive.html
//! [`NumCast`]: https://docs.rs/num-traits/0.2/num_traits/cast/trait.NumCast.html
//! [`ToPrimitive`]: https://docs.rs/num-traits/0.2/num_traits/cast/trait.ToPrimitive.html
//! [`CheckedAdd`]: https://docs.rs/num-traits/0.2/num_traits/ops/checked/trait.CheckedAdd.html
//! [`CheckedDiv`]: https://docs.rs/num-traits/0.2/num_traits/ops/checked/trait.CheckedDiv.html
//! [`CheckedMul`]: https://docs.rs/num-traits/0.2/num_traits/ops/checked/trait.CheckedMul.html
//! [`CheckedNeg`]: https://docs.rs/num-traits/0.2/num_traits/ops/checked/trait.CheckedNeg.html
//! [`CheckedRem`]: https://docs.rs/num-traits/0.2/num_traits/ops/checked/trait.CheckedRem.html
//! [`CheckedSub`]: https://docs.rs/num-traits/0.2/num_traits/ops/checked/trait.CheckedSub.html
//! [`MulAdd`]: https://docs.rs/num-traits/0.2/num_traits/ops/mul_add/trait.MulAdd.html
//! [`SaturatingAdd`]: https://docs.rs/num-traits/0.2/num_traits/ops/saturating/trait.SaturatingAdd.html
//! [`SaturatingMul`]: https://docs.rs/num-traits/0.2/num_traits/ops/saturating/trait.SaturatingMul.html
//! [`SaturatingSub`]: https://docs.rs/num-traits/0.2/num_traits/ops/saturating/trait.SaturatingSub.html
//! [`Serialize`]: https://docs.rs/serde/1/serde/trait.Serialize.html
//! [`Deserialize`]: https://docs.rs/serde/1/serde/trait.Deserialize.html
//! [`AsBytes`]: https://docs.rs/zerocopy/0.6/zerocopy/trait.AsBytes.html
//! [`Unaligned`]: https://docs.rs/zerocopy/0.6/zerocopy/trait.Unaligned.html
//! [`Step`]: https://doc.rust-lang.org/nightly/core/iter/trait.Step.html
//! [`Error`]: https://doc.rust-lang.org/stable/std/error/trait.Error.html
//! [`ParseError`]: https://docs.rs/bounded-integer/*/bounded_integer/struct.ParseError.html
#![cfg_attr(feature = "step_trait", feature(step_trait))]
#![cfg_attr(doc_cfg, feature(doc_cfg))]
#![allow(clippy::single_component_path_imports)] // https://github.com/rust-lang/rust-clippy/issues/7106
#![no_std]
#[cfg(feature = "std")]
extern crate std;
#[cfg(feature = "alloc")]
extern crate alloc;
#[cfg(feature = "types")]
mod types;
#[cfg(feature = "types")]
pub use types::*;
mod parse;
pub use parse::{ParseError, ParseErrorKind};
#[doc(hidden)]
#[cfg(feature = "macro")]
pub mod __private {
#[cfg(feature = "arbitrary1")]
pub use ::arbitrary1;
#[cfg(feature = "bytemuck1")]
pub use ::bytemuck1;
#[cfg(feature = "serde1")]
pub use ::serde1;
#[cfg(feature = "zerocopy06")]
pub use ::zerocopy06;
pub use bounded_integer_macro::bounded_integer as proc_macro;
pub use crate::parse::{error_above_max, error_below_min, FromStrRadix};
}
#[cfg(feature = "__examples")]
pub mod examples;
/// Generate a bounded integer type.
///
/// It takes in single struct or enum, with the content being a bounded range expression, whose
/// upper bound can be inclusive (`x..=y`) or exclusive (`x..y`). The attributes and visibility
/// (e.g. `pub`) of the type are forwarded directly to the output type.
///
/// See the [`examples`] module for examples of what this macro generates.
///
/// # Examples
///
/// With a struct:
/// ```
#[cfg_attr(feature = "step_trait", doc = "# #![feature(step_trait)]")]
/// # mod force_item_scope {
/// # use bounded_integer::bounded_integer;
/// bounded_integer! {
/// pub struct S { -3..2 }
/// }
/// # }
/// ```
/// The generated item should look like this (i8 is chosen as it is the smallest repr):
/// ```
/// #[derive(Debug, Hash, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
/// #[repr(transparent)]
/// pub struct S(i8);
/// ```
/// And the methods will ensure that `-3 <= S.0 < 2`.
///
/// With an enum:
/// ```
#[cfg_attr(feature = "step_trait", doc = "# #![feature(step_trait)]")]
/// # mod force_item_scope {
/// # use bounded_integer::bounded_integer;
/// bounded_integer! {
/// pub enum S { 5..=7 }
/// }
/// # }
/// ```
/// The generated item should look like this (u8 is chosen as it is the smallest repr):
/// ```
/// #[derive(Debug, Hash, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
/// #[repr(u8)]
/// pub enum S {
/// P5 = 5, P6, P7
/// }
/// ```
///
/// # Custom repr
///
/// The item can have a `repr` attribute to specify how it will be represented in memory, which can
/// be a `u*` or `i*` type. In this example we override the `repr` to be a `u16`, when it would
/// have normally been a `u8`.
///
/// ```
#[cfg_attr(feature = "step_trait", doc = "# #![feature(step_trait)]")]
/// # mod force_item_scope {
/// # use bounded_integer::bounded_integer;
/// bounded_integer! {
/// #[repr(u16)]
/// pub struct S { 2..5 }
/// }
/// # }
/// ```
/// The generated item should look like this:
/// ```
/// #[derive(Debug, Hash, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
/// #[repr(transparent)]
/// pub struct S(u16);
/// ```
///
/// # Limitations
///
/// - Both bounds of ranges must be closed and a simple const expression involving only literals and
/// the following operators:
/// - Negation (`-x`)
/// - Addition (`x+y`), subtraction (`x-y`), multiplication (`x*y`), division (`x/y`) and
/// remainder (`x%y`).
/// - Bitwise not (`!x`), XOR (`x^y`), AND (`x&y`) and OR (`x|y`).
#[cfg(feature = "macro")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "macro")))]
#[macro_export]
macro_rules! bounded_integer {
($($tt:tt)*) => { $crate::__bounded_integer_inner! { $($tt)* } };
}
// `bounded_integer!` needs to generate different output depending on what feature flags are
// enabled in this crate. We can't propagate feature flags from this crate directly to
// `bounded-integer-macro` because it is an optional dependency, so we instead dynamically pass
// options into the macro depending on which feature flags are enabled here.
#[cfg(feature = "macro")]
block! {
let alloc: ident = cfg_bool!(feature = "alloc");
let arbitrary1: ident = cfg_bool!(feature = "arbitrary1");
let bytemuck1: ident = cfg_bool!(feature = "bytemuck1");
let serde1: ident = cfg_bool!(feature = "serde1");
let std: ident = cfg_bool!(feature = "std");
let zerocopy06: ident = cfg_bool!(feature = "zerocopy06");
let step_trait: ident = cfg_bool!(feature = "step_trait");
let d: tt = dollar!();
#[doc(hidden)]
#[macro_export]
macro_rules! __bounded_integer_inner2 {
($d($d tt:tt)*) => {
$crate::__private::proc_macro! {
[$crate] $alloc $arbitrary1 $bytemuck1 $serde1 $std $zerocopy06 $step_trait $d($d tt)*
}
};
}
// Workaround for `macro_expanded_macro_exports_accessed_by_absolute_paths`
#[doc(hidden)]
pub use __bounded_integer_inner2 as __bounded_integer_inner;
}
#[cfg(feature = "macro")]
macro_rules! cfg_bool {
($meta:meta) => {
#[cfg($meta)]
ret! { true }
#[cfg(not($meta))]
ret! { false }
};
}
#[cfg(feature = "macro")]
use cfg_bool;
#[cfg(feature = "macro")]
macro_rules! dollar {
() => { ret! { $ } };
}
#[cfg(feature = "macro")]
use dollar;
#[cfg(feature = "macro")]
macro_rules! block {
{ let $ident:ident: $ty:ident = $macro:ident!($($macro_args:tt)*); $($rest:tt)* } => {
macro_rules! ret {
($d:tt) => {
macro_rules! ret { ($d $ident: $ty) => { block! { $($rest)* } } }
$macro! { $($macro_args)* }
}
}
dollar! {}
};
{ $($rest:tt)* } => { $($rest)* };
}
#[cfg(feature = "macro")]
use block;