bc/sigcache.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
// Bitcoin protocol consensus library.
//
// SPDX-License-Identifier: Apache-2.0
//
// Written in 2019-2024 by
// Dr Maxim Orlovsky <orlovsky@lnp-bp.org>
//
// Copyright (C) 2019-2024 LNP/BP Standards Association. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::borrow::Borrow;
use amplify::{Bytes32, IoError};
use commit_verify::{Digest, DigestExt, Sha256};
use crate::{
Annex, ConsensusEncode, Sats, ScriptCode, ScriptPubkey, SeqNo, SigScript, Sighash, SighashFlag,
SighashType, TapLeafHash, TapSighash, Tx as Transaction, TxIn, TxOut, Txid, VarIntArray,
};
/// Used for signature hash for invalid use of SIGHASH_SINGLE.
const UINT256_ONE: [u8; 32] = [
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
];
#[derive(Copy, Clone, Eq, PartialEq, Debug, Display, Error)]
#[display(
"number of inputs ({inputs}) doesn't match to the number of provided prevouts ({prevouts}) \
for signature hasher on tx {txid}."
)]
pub struct PrevoutMismatch {
txid: Txid,
inputs: usize,
prevouts: usize,
}
#[derive(Copy, Clone, Eq, PartialEq, Debug, Display, Error)]
#[display(doc_comments)]
pub enum SighashError {
/// invalid input index {index} in {txid} which has only {inputs} inputs.
InvalidInputIndex {
txid: Txid,
index: usize,
inputs: usize,
},
/// transaction {txid} input {index} uses SIGHASH_SINGLE, but the total
/// number of outputs is {outputs} and thus no signature can be produced.
NoSingleOutputMatch {
txid: Txid,
index: usize,
outputs: usize,
},
}
impl From<IoError> for SighashError {
fn from(_: IoError) -> Self { unreachable!("in-memory I/O doesn't error in Rust") }
}
/// Efficiently calculates signature hash message for legacy, segwit and taproot
/// inputs.
#[derive(Debug)]
pub struct SighashCache<Prevout: Borrow<TxOut> = TxOut, Tx: Borrow<Transaction> = Transaction> {
/// Access to transaction required for transaction introspection.
tx: Tx,
prevouts: Vec<Prevout>,
/// Common cache for taproot and segwit inputs, `None` for legacy inputs.
common_cache: Option<CommonCache>,
/// Cache for segwit v0 inputs (the result of another round of sha256 on
/// `common_cache`).
segwit_cache: Option<SegwitCache>,
/// Cache for taproot v1 inputs.
taproot_cache: Option<TaprootCache>,
}
/// Common values cached between segwit and taproot inputs.
#[derive(Copy, Clone, Debug)]
struct CommonCache {
prevouts: Bytes32,
sequences: Bytes32,
/// In theory `outputs` could be an `Option` since `SIGHASH_NONE` and
/// `SIGHASH_SINGLE` do not need it, but since `SIGHASH_ALL` is by far
/// the most used variant we don't bother.
outputs: Bytes32,
}
/// Values cached for segwit inputs, equivalent to [`CommonCache`] plus another
/// round of `sha256`.
#[derive(Copy, Clone, Debug)]
struct SegwitCache {
prevouts: Bytes32,
sequences: Bytes32,
outputs: Bytes32,
}
/// Values cached for taproot inputs.
#[derive(Copy, Clone, Debug)]
struct TaprootCache {
amounts: Bytes32,
script_pubkeys: Bytes32,
}
impl<Prevout: Borrow<TxOut>, Tx: Borrow<Transaction>> SighashCache<Prevout, Tx> {
/// Constructs a new `SighashCache` from an unsigned transaction.
///
/// The sighash components are computed in a lazy manner when required. For
/// the generated sighashes to be valid, no fields in the transaction
/// may change except for script_sig and witness.
pub fn new(tx: Tx, prevouts: Vec<Prevout>) -> Result<Self, PrevoutMismatch> {
if tx.borrow().inputs.len() != prevouts.len() {
return Err(PrevoutMismatch {
txid: tx.borrow().txid(),
inputs: tx.borrow().inputs.len(),
prevouts: prevouts.len(),
});
}
Ok(SighashCache {
tx,
prevouts,
common_cache: None,
taproot_cache: None,
segwit_cache: None,
})
}
/// Computes the BIP341 sighash for any type with a fine-grained control
/// over annex and code separator.
pub fn tap_sighash_custom(
&mut self,
input_index: usize,
annex: Option<Annex>,
leaf_hash_code_separator: Option<(TapLeafHash, u32)>,
sighash_type: Option<SighashType>,
) -> Result<TapSighash, SighashError> {
let mut hasher = TapSighash::engine();
let SighashType {
flag: sighash_flag,
anyone_can_pay,
} = sighash_type.unwrap_or_default();
// epoch
0u8.consensus_encode(&mut hasher)?;
// * Control:
// hash_type (1).
match sighash_type {
None => 0u8.consensus_encode(&mut hasher)?,
Some(sighash_type) => sighash_type.to_consensus_u8().consensus_encode(&mut hasher)?,
};
{
let tx = self.tx.borrow();
// * Transaction Data:
// nVersion (4): the nVersion of the transaction.
tx.version.consensus_encode(&mut hasher)?;
// nLockTime (4): the nLockTime of the transaction.
tx.lock_time.consensus_encode(&mut hasher)?;
}
// If the hash_type & 0x80 does not equal SIGHASH_ANYONECANPAY:
// sha_prevouts (32): the SHA256 of the serialization of all input
// outpoints. sha_amounts (32): the SHA256 of the serialization of
// all spent output amounts. sha_scriptpubkeys (32): the SHA256 of
// the serialization of all spent output scriptPubKeys.
// sha_sequences (32): the SHA256 of the serialization of all
// input nSequence.
if !anyone_can_pay {
self.common_cache().prevouts.consensus_encode(&mut hasher)?;
self.taproot_cache().amounts.consensus_encode(&mut hasher)?;
self.taproot_cache().script_pubkeys.consensus_encode(&mut hasher)?;
self.common_cache().sequences.consensus_encode(&mut hasher)?;
}
// If hash_type & 3 does not equal SIGHASH_NONE or SIGHASH_SINGLE:
// sha_outputs (32): the SHA256 of the serialization of all outputs in
// CTxOut format.
if sighash_flag != SighashFlag::None && sighash_flag != SighashFlag::Single {
self.common_cache().outputs.consensus_encode(&mut hasher)?;
}
// * Data about this input:
// spend_type (1): equal to (ext_flag * 2) + annex_present, where annex_present
// is 0 if no annex is present, or 1 otherwise
let mut spend_type = 0u8;
if annex.is_some() {
spend_type |= 1u8;
}
if leaf_hash_code_separator.is_some() {
spend_type |= 2u8;
}
spend_type.consensus_encode(&mut hasher)?;
let tx = self.tx.borrow();
// If hash_type & 0x80 equals SIGHASH_ANYONECANPAY:
// outpoint (36): the COutPoint of this input (32-byte hash + 4-byte
// little-endian). amount (8): value of the previous output spent
// by this input. scriptPubKey (35): scriptPubKey of the previous
// output spent by this input, serialized as script inside CTxOut. Its
// size is always 35 bytes. nSequence (4): nSequence of this input.
if anyone_can_pay {
let txin = tx.inputs.get(input_index).ok_or(SighashError::InvalidInputIndex {
txid: tx.txid(),
index: input_index,
inputs: tx.inputs.len(),
})?;
let previous_output = self.prevouts[input_index].borrow();
txin.prev_output.consensus_encode(&mut hasher)?;
previous_output.value.consensus_encode(&mut hasher)?;
previous_output.script_pubkey.consensus_encode(&mut hasher)?;
txin.sequence.consensus_encode(&mut hasher)?;
} else {
(input_index as u32).consensus_encode(&mut hasher)?;
}
// If an annex is present (the lowest bit of spend_type is set):
// sha_annex (32): the SHA256 of (compact_size(size of annex) || annex),
// where annex includes the mandatory 0x50 prefix.
if let Some(annex) = annex {
let mut enc = Sha256::default();
annex.consensus_encode(&mut enc)?;
let hash = enc.finish();
hash.consensus_encode(&mut hasher)?;
}
// * Data about this output:
// If hash_type & 3 equals SIGHASH_SINGLE:
// sha_single_output (32): the SHA256 of the corresponding output in CTxOut
// format.
if sighash_flag == SighashFlag::Single {
let mut enc = Sha256::default();
tx.outputs
.get(input_index)
.ok_or(SighashError::NoSingleOutputMatch {
txid: tx.txid(),
index: input_index,
outputs: tx.outputs.len(),
})?
.consensus_encode(&mut enc)?;
let hash = enc.finish();
hash.consensus_encode(&mut hasher)?;
}
// if (scriptpath):
// ss += TaggedHash("TapLeaf", bytes([leaf_ver]) + ser_string(script))
// ss += bytes([0])
// ss += struct.pack("<i", codeseparator_pos)
if let Some((hash, code_separator_pos)) = leaf_hash_code_separator {
hash.consensus_encode(&mut hasher)?;
0u8.consensus_encode(&mut hasher)?;
code_separator_pos.consensus_encode(&mut hasher)?;
}
Ok(TapSighash::from_engine(hasher))
}
/// Computes the BIP341 sighash for a key spend.
pub fn tap_sighash_key(
&mut self,
input_index: usize,
sighash_type: Option<SighashType>,
) -> Result<TapSighash, SighashError> {
self.tap_sighash_custom(input_index, None, None, sighash_type)
}
/// Computes the BIP341 sighash for a script spend.
///
/// Assumes the default `OP_CODESEPARATOR` position of `0xFFFFFFFF`.
pub fn tap_sighash_script(
&mut self,
input_index: usize,
leaf_hash: impl Into<TapLeafHash>,
sighash_type: Option<SighashType>,
) -> Result<TapSighash, SighashError> {
self.tap_sighash_custom(
input_index,
None,
Some((leaf_hash.into(), 0xFFFFFFFF)),
sighash_type,
)
}
/// Computes the BIP143 sighash for any flag type.
pub fn segwit_sighash(
&mut self,
input_index: usize,
script_code: &ScriptCode,
value: Sats,
sighash_type: SighashType,
) -> Result<Sighash, SighashError> {
let mut hasher = Sighash::engine();
let zero_hash = [0u8; 32];
let SighashType {
flag: sighash_flag,
anyone_can_pay,
} = sighash_type;
self.tx.borrow().version.consensus_encode(&mut hasher)?;
if !anyone_can_pay {
self.segwit_cache().prevouts.consensus_encode(&mut hasher)?;
} else {
zero_hash.consensus_encode(&mut hasher)?;
}
if !anyone_can_pay
&& sighash_flag != SighashFlag::Single
&& sighash_flag != SighashFlag::None
{
self.segwit_cache().sequences.consensus_encode(&mut hasher)?;
} else {
zero_hash.consensus_encode(&mut hasher)?;
}
{
let tx = self.tx.borrow();
let txin = tx.inputs.get(input_index).ok_or(SighashError::InvalidInputIndex {
txid: tx.txid(),
index: input_index,
inputs: tx.inputs.len(),
})?;
txin.prev_output.consensus_encode(&mut hasher)?;
script_code.consensus_encode(&mut hasher)?;
value.consensus_encode(&mut hasher)?;
txin.sequence.consensus_encode(&mut hasher)?;
}
if sighash_flag != SighashFlag::Single && sighash_flag != SighashFlag::None {
self.segwit_cache().outputs.consensus_encode(&mut hasher)?;
} else if sighash_flag == SighashFlag::Single
&& input_index < self.tx.borrow().outputs.len()
{
let mut single_enc = Sighash::engine();
self.tx.borrow().outputs[input_index].consensus_encode(&mut single_enc)?;
Sighash::from_engine(single_enc).consensus_encode(&mut hasher)?;
} else {
zero_hash.consensus_encode(&mut hasher)?;
}
self.tx.borrow().lock_time.consensus_encode(&mut hasher)?;
sighash_type.to_consensus_u32().consensus_encode(&mut hasher)?;
Ok(Sighash::from_engine(hasher))
}
/// Computes the legacy sighash for any `sighash_type`.
pub fn legacy_sighash(
&self,
input_index: usize,
script_pubkey: &ScriptPubkey,
sighash_type: u32,
) -> Result<Sighash, SighashError> {
let tx_src = self.tx.borrow();
let mut hasher = Sighash::engine();
if input_index >= tx_src.inputs.len() {
return Err(SighashError::InvalidInputIndex {
txid: tx_src.txid(),
index: input_index,
inputs: tx_src.inputs.len(),
});
}
let SighashType {
flag: sighash_flag,
anyone_can_pay,
} = SighashType::from_consensus_u32(sighash_type);
if sighash_flag == SighashFlag::Single && input_index >= tx_src.outputs.len() {
return Ok(Sighash::from(UINT256_ONE));
}
// Build tx to sign
let mut tx = Transaction {
version: tx_src.version,
lock_time: tx_src.lock_time,
inputs: none!(),
outputs: none!(),
};
// Add all necessary inputs...
let sig_script = script_pubkey.as_script_bytes().clone().into();
if anyone_can_pay {
tx.inputs = VarIntArray::from_checked(vec![TxIn {
prev_output: tx_src.inputs[input_index].prev_output,
sig_script,
sequence: tx_src.inputs[input_index].sequence,
witness: none!(),
}]);
} else {
let inputs = tx_src.inputs.iter().enumerate().map(|(n, input)| TxIn {
prev_output: input.prev_output,
sig_script: if n == input_index { sig_script.clone() } else { SigScript::new() },
sequence: if n != input_index
&& (sighash_flag == SighashFlag::Single || sighash_flag == SighashFlag::None)
{
SeqNo::ZERO
} else {
input.sequence
},
witness: none!(),
});
tx.inputs = VarIntArray::from_iter_checked(inputs);
}
// ...then all outputs
tx.outputs = match sighash_flag {
SighashFlag::All => tx_src.outputs.clone(),
SighashFlag::Single => {
let outputs = tx_src.outputs.iter()
.take(input_index + 1) // sign all outputs up to and including this one, but erase
.enumerate() // all of them except for this one
.map(|(n, out)| if n == input_index { out.clone() } else { TxOut::default() });
VarIntArray::from_iter_checked(outputs)
}
SighashFlag::None => none!(),
};
// hash the result
tx.consensus_encode(&mut hasher)?;
sighash_type.consensus_encode(&mut hasher)?;
Ok(Sighash::from_engine(hasher))
}
fn common_cache(&mut self) -> &CommonCache {
let tx = self.tx.borrow();
self.common_cache.get_or_insert_with(|| {
let mut enc_prevouts = Sha256::default();
let mut enc_sequences = Sha256::default();
for txin in &tx.inputs {
let _ = txin.prev_output.consensus_encode(&mut enc_prevouts);
let _ = txin.sequence.consensus_encode(&mut enc_sequences);
}
let mut enc_outputs = Sha256::default();
for txout in &tx.outputs {
let _ = txout.consensus_encode(&mut enc_outputs);
}
CommonCache {
prevouts: enc_prevouts.finish().into(),
sequences: enc_sequences.finish().into(),
outputs: enc_outputs.finish().into(),
}
})
}
fn segwit_cache(&mut self) -> &SegwitCache {
let common_cache = *self.common_cache();
self.segwit_cache.get_or_insert_with(|| SegwitCache {
prevouts: <[u8; 32]>::from(Sha256::digest(common_cache.prevouts)).into(),
sequences: <[u8; 32]>::from(Sha256::digest(common_cache.sequences)).into(),
outputs: <[u8; 32]>::from(Sha256::digest(common_cache.outputs)).into(),
})
}
fn taproot_cache(&mut self) -> &TaprootCache {
self.taproot_cache.get_or_insert_with(|| {
let mut enc_amounts = Sha256::default();
let mut enc_script_pubkeys = Sha256::default();
for prevout in &self.prevouts {
let _ = prevout.borrow().value.consensus_encode(&mut enc_amounts);
let _ = prevout.borrow().script_pubkey.consensus_encode(&mut enc_script_pubkeys);
}
TaprootCache {
amounts: enc_amounts.finish().into(),
script_pubkeys: enc_script_pubkeys.finish().into(),
}
})
}
}