broker_tokio/time/delay_queue.rs
1//! A queue of delayed elements.
2//!
3//! See [`DelayQueue`] for more details.
4//!
5//! [`DelayQueue`]: struct.DelayQueue.html
6
7use crate::time::wheel::{self, Wheel};
8use crate::time::{delay_until, Delay, Duration, Error, Instant};
9
10use slab::Slab;
11use std::cmp;
12use std::future::Future;
13use std::marker::PhantomData;
14use std::pin::Pin;
15use std::task::{self, Poll};
16
17/// A queue of delayed elements.
18///
19/// Once an element is inserted into the `DelayQueue`, it is yielded once the
20/// specified deadline has been reached.
21///
22/// # Usage
23///
24/// Elements are inserted into `DelayQueue` using the [`insert`] or
25/// [`insert_at`] methods. A deadline is provided with the item and a [`Key`] is
26/// returned. The key is used to remove the entry or to change the deadline at
27/// which it should be yielded back.
28///
29/// Once delays have been configured, the `DelayQueue` is used via its
30/// [`Stream`] implementation. [`poll`] is called. If an entry has reached its
31/// deadline, it is returned. If not, `Async::NotReady` indicating that the
32/// current task will be notified once the deadline has been reached.
33///
34/// # `Stream` implementation
35///
36/// Items are retrieved from the queue via [`Stream::poll`]. If no delays have
37/// expired, no items are returned. In this case, `NotReady` is returned and the
38/// current task is registered to be notified once the next item's delay has
39/// expired.
40///
41/// If no items are in the queue, i.e. `is_empty()` returns `true`, then `poll`
42/// returns `Ready(None)`. This indicates that the stream has reached an end.
43/// However, if a new item is inserted *after*, `poll` will once again start
44/// returning items or `NotReady.
45///
46/// Items are returned ordered by their expirations. Items that are configured
47/// to expire first will be returned first. There are no ordering guarantees
48/// for items configured to expire the same instant. Also note that delays are
49/// rounded to the closest millisecond.
50///
51/// # Implementation
52///
53/// The `DelayQueue` is backed by the same hashed timing wheel implementation as
54/// [`Timer`] as such, it offers the same performance benefits. See [`Timer`]
55/// for further implementation notes.
56///
57/// State associated with each entry is stored in a [`slab`]. This allows
58/// amortizing the cost of allocation. Space created for expired entries is
59/// reused when inserting new entries.
60///
61/// Capacity can be checked using [`capacity`] and allocated preemptively by using
62/// the [`reserve`] method.
63///
64/// # Usage
65///
66/// Using `DelayQueue` to manage cache entries.
67///
68/// ```rust,no_run
69/// use tokio::time::{delay_queue, DelayQueue, Error};
70///
71/// use futures::ready;
72/// use std::collections::HashMap;
73/// use std::task::{Context, Poll};
74/// use std::time::Duration;
75/// # type CacheKey = String;
76/// # type Value = String;
77///
78/// struct Cache {
79/// entries: HashMap<CacheKey, (Value, delay_queue::Key)>,
80/// expirations: DelayQueue<CacheKey>,
81/// }
82///
83/// const TTL_SECS: u64 = 30;
84///
85/// impl Cache {
86/// fn insert(&mut self, key: CacheKey, value: Value) {
87/// let delay = self.expirations
88/// .insert(key.clone(), Duration::from_secs(TTL_SECS));
89///
90/// self.entries.insert(key, (value, delay));
91/// }
92///
93/// fn get(&self, key: &CacheKey) -> Option<&Value> {
94/// self.entries.get(key)
95/// .map(|&(ref v, _)| v)
96/// }
97///
98/// fn remove(&mut self, key: &CacheKey) {
99/// if let Some((_, cache_key)) = self.entries.remove(key) {
100/// self.expirations.remove(&cache_key);
101/// }
102/// }
103///
104/// fn poll_purge(&mut self, cx: &mut Context<'_>) -> Poll<Result<(), Error>> {
105/// while let Some(res) = ready!(self.expirations.poll_expired(cx)) {
106/// let entry = res?;
107/// self.entries.remove(entry.get_ref());
108/// }
109///
110/// Poll::Ready(Ok(()))
111/// }
112/// }
113/// ```
114///
115/// [`insert`]: #method.insert
116/// [`insert_at`]: #method.insert_at
117/// [`Key`]: struct.Key.html
118/// [`Stream`]: https://docs.rs/futures/0.1/futures/stream/trait.Stream.html
119/// [`poll`]: #method.poll
120/// [`Stream::poll`]: #method.poll
121/// [`Timer`]: ../struct.Timer.html
122/// [`slab`]: https://docs.rs/slab
123/// [`capacity`]: #method.capacity
124/// [`reserve`]: #method.reserve
125#[derive(Debug)]
126pub struct DelayQueue<T> {
127 /// Stores data associated with entries
128 slab: Slab<Data<T>>,
129
130 /// Lookup structure tracking all delays in the queue
131 wheel: Wheel<Stack<T>>,
132
133 /// Delays that were inserted when already expired. These cannot be stored
134 /// in the wheel
135 expired: Stack<T>,
136
137 /// Delay expiring when the *first* item in the queue expires
138 delay: Option<Delay>,
139
140 /// Wheel polling state
141 poll: wheel::Poll,
142
143 /// Instant at which the timer starts
144 start: Instant,
145}
146
147/// An entry in `DelayQueue` that has expired and removed.
148///
149/// Values are returned by [`DelayQueue::poll`].
150///
151/// [`DelayQueue::poll`]: struct.DelayQueue.html#method.poll
152#[derive(Debug)]
153pub struct Expired<T> {
154 /// The data stored in the queue
155 data: T,
156
157 /// The expiration time
158 deadline: Instant,
159
160 /// The key associated with the entry
161 key: Key,
162}
163
164/// Token to a value stored in a `DelayQueue`.
165///
166/// Instances of `Key` are returned by [`DelayQueue::insert`]. See [`DelayQueue`]
167/// documentation for more details.
168///
169/// [`DelayQueue`]: struct.DelayQueue.html
170/// [`DelayQueue::insert`]: struct.DelayQueue.html#method.insert
171#[derive(Debug, Clone)]
172pub struct Key {
173 index: usize,
174}
175
176#[derive(Debug)]
177struct Stack<T> {
178 /// Head of the stack
179 head: Option<usize>,
180 _p: PhantomData<fn() -> T>,
181}
182
183#[derive(Debug)]
184struct Data<T> {
185 /// The data being stored in the queue and will be returned at the requested
186 /// instant.
187 inner: T,
188
189 /// The instant at which the item is returned.
190 when: u64,
191
192 /// Set to true when stored in the `expired` queue
193 expired: bool,
194
195 /// Next entry in the stack
196 next: Option<usize>,
197
198 /// Previous entry in the stack
199 prev: Option<usize>,
200}
201
202/// Maximum number of entries the queue can handle
203const MAX_ENTRIES: usize = (1 << 30) - 1;
204
205impl<T> DelayQueue<T> {
206 /// Create a new, empty, `DelayQueue`
207 ///
208 /// The queue will not allocate storage until items are inserted into it.
209 ///
210 /// # Examples
211 ///
212 /// ```rust
213 /// # use tokio::time::DelayQueue;
214 /// let delay_queue: DelayQueue<u32> = DelayQueue::new();
215 /// ```
216 pub fn new() -> DelayQueue<T> {
217 DelayQueue::with_capacity(0)
218 }
219
220 /// Create a new, empty, `DelayQueue` with the specified capacity.
221 ///
222 /// The queue will be able to hold at least `capacity` elements without
223 /// reallocating. If `capacity` is 0, the queue will not allocate for
224 /// storage.
225 ///
226 /// # Examples
227 ///
228 /// ```rust
229 /// # use tokio::time::DelayQueue;
230 /// # use std::time::Duration;
231 ///
232 /// # #[tokio::main]
233 /// # async fn main() {
234 /// let mut delay_queue = DelayQueue::with_capacity(10);
235 ///
236 /// // These insertions are done without further allocation
237 /// for i in 0..10 {
238 /// delay_queue.insert(i, Duration::from_secs(i));
239 /// }
240 ///
241 /// // This will make the queue allocate additional storage
242 /// delay_queue.insert(11, Duration::from_secs(11));
243 /// # }
244 /// ```
245 pub fn with_capacity(capacity: usize) -> DelayQueue<T> {
246 DelayQueue {
247 wheel: Wheel::new(),
248 slab: Slab::with_capacity(capacity),
249 expired: Stack::default(),
250 delay: None,
251 poll: wheel::Poll::new(0),
252 start: Instant::now(),
253 }
254 }
255
256 /// Insert `value` into the queue set to expire at a specific instant in
257 /// time.
258 ///
259 /// This function is identical to `insert`, but takes an `Instant` instead
260 /// of a `Duration`.
261 ///
262 /// `value` is stored in the queue until `when` is reached. At which point,
263 /// `value` will be returned from [`poll`]. If `when` has already been
264 /// reached, then `value` is immediately made available to poll.
265 ///
266 /// The return value represents the insertion and is used at an argument to
267 /// [`remove`] and [`reset`]. Note that [`Key`] is token and is reused once
268 /// `value` is removed from the queue either by calling [`poll`] after
269 /// `when` is reached or by calling [`remove`]. At this point, the caller
270 /// must take care to not use the returned [`Key`] again as it may reference
271 /// a different item in the queue.
272 ///
273 /// See [type] level documentation for more details.
274 ///
275 /// # Panics
276 ///
277 /// This function panics if `when` is too far in the future.
278 ///
279 /// # Examples
280 ///
281 /// Basic usage
282 ///
283 /// ```rust
284 /// use tokio::time::{DelayQueue, Duration, Instant};
285 ///
286 /// # #[tokio::main]
287 /// # async fn main() {
288 /// let mut delay_queue = DelayQueue::new();
289 /// let key = delay_queue.insert_at(
290 /// "foo", Instant::now() + Duration::from_secs(5));
291 ///
292 /// // Remove the entry
293 /// let item = delay_queue.remove(&key);
294 /// assert_eq!(*item.get_ref(), "foo");
295 /// # }
296 /// ```
297 ///
298 /// [`poll`]: #method.poll
299 /// [`remove`]: #method.remove
300 /// [`reset`]: #method.reset
301 /// [`Key`]: struct.Key.html
302 /// [type]: #
303 pub fn insert_at(&mut self, value: T, when: Instant) -> Key {
304 assert!(self.slab.len() < MAX_ENTRIES, "max entries exceeded");
305
306 // Normalize the deadline. Values cannot be set to expire in the past.
307 let when = self.normalize_deadline(when);
308
309 // Insert the value in the store
310 let key = self.slab.insert(Data {
311 inner: value,
312 when,
313 expired: false,
314 next: None,
315 prev: None,
316 });
317
318 self.insert_idx(when, key);
319
320 // Set a new delay if the current's deadline is later than the one of the new item
321 let should_set_delay = if let Some(ref delay) = self.delay {
322 let current_exp = self.normalize_deadline(delay.deadline());
323 current_exp > when
324 } else {
325 true
326 };
327
328 if should_set_delay {
329 self.delay = Some(delay_until(self.start + Duration::from_millis(when)));
330 }
331
332 Key::new(key)
333 }
334
335 /// Attempt to pull out the next value of the delay queue, registering the
336 /// current task for wakeup if the value is not yet available, and returning
337 /// None if the queue is exhausted.
338 pub fn poll_expired(
339 &mut self,
340 cx: &mut task::Context<'_>,
341 ) -> Poll<Option<Result<Expired<T>, Error>>> {
342 let item = ready!(self.poll_idx(cx));
343 Poll::Ready(item.map(|result| {
344 result.map(|idx| {
345 let data = self.slab.remove(idx);
346 debug_assert!(data.next.is_none());
347 debug_assert!(data.prev.is_none());
348
349 Expired {
350 key: Key::new(idx),
351 data: data.inner,
352 deadline: self.start + Duration::from_millis(data.when),
353 }
354 })
355 }))
356 }
357
358 /// Insert `value` into the queue set to expire after the requested duration
359 /// elapses.
360 ///
361 /// This function is identical to `insert_at`, but takes a `Duration`
362 /// instead of an `Instant`.
363 ///
364 /// `value` is stored in the queue until `when` is reached. At which point,
365 /// `value` will be returned from [`poll`]. If `when` has already been
366 /// reached, then `value` is immediately made available to poll.
367 ///
368 /// The return value represents the insertion and is used at an argument to
369 /// [`remove`] and [`reset`]. Note that [`Key`] is token and is reused once
370 /// `value` is removed from the queue either by calling [`poll`] after
371 /// `when` is reached or by calling [`remove`]. At this point, the caller
372 /// must take care to not use the returned [`Key`] again as it may reference
373 /// a different item in the queue.
374 ///
375 /// See [type] level documentation for more details.
376 ///
377 /// # Panics
378 ///
379 /// This function panics if `timeout` is greater than the maximum supported
380 /// duration.
381 ///
382 /// # Examples
383 ///
384 /// Basic usage
385 ///
386 /// ```rust
387 /// use tokio::time::DelayQueue;
388 /// use std::time::Duration;
389 ///
390 /// # #[tokio::main]
391 /// # async fn main() {
392 /// let mut delay_queue = DelayQueue::new();
393 /// let key = delay_queue.insert("foo", Duration::from_secs(5));
394 ///
395 /// // Remove the entry
396 /// let item = delay_queue.remove(&key);
397 /// assert_eq!(*item.get_ref(), "foo");
398 /// # }
399 /// ```
400 ///
401 /// [`poll`]: #method.poll
402 /// [`remove`]: #method.remove
403 /// [`reset`]: #method.reset
404 /// [`Key`]: struct.Key.html
405 /// [type]: #
406 pub fn insert(&mut self, value: T, timeout: Duration) -> Key {
407 self.insert_at(value, Instant::now() + timeout)
408 }
409
410 fn insert_idx(&mut self, when: u64, key: usize) {
411 use self::wheel::{InsertError, Stack};
412
413 // Register the deadline with the timer wheel
414 match self.wheel.insert(when, key, &mut self.slab) {
415 Ok(_) => {}
416 Err((_, InsertError::Elapsed)) => {
417 self.slab[key].expired = true;
418 // The delay is already expired, store it in the expired queue
419 self.expired.push(key, &mut self.slab);
420 }
421 Err((_, err)) => panic!("invalid deadline; err={:?}", err),
422 }
423 }
424
425 /// Remove the item associated with `key` from the queue.
426 ///
427 /// There must be an item associated with `key`. The function returns the
428 /// removed item as well as the `Instant` at which it will the delay will
429 /// have expired.
430 ///
431 /// # Panics
432 ///
433 /// The function panics if `key` is not contained by the queue.
434 ///
435 /// # Examples
436 ///
437 /// Basic usage
438 ///
439 /// ```rust
440 /// use tokio::time::DelayQueue;
441 /// use std::time::Duration;
442 ///
443 /// # #[tokio::main]
444 /// # async fn main() {
445 /// let mut delay_queue = DelayQueue::new();
446 /// let key = delay_queue.insert("foo", Duration::from_secs(5));
447 ///
448 /// // Remove the entry
449 /// let item = delay_queue.remove(&key);
450 /// assert_eq!(*item.get_ref(), "foo");
451 /// # }
452 /// ```
453 pub fn remove(&mut self, key: &Key) -> Expired<T> {
454 use crate::time::wheel::Stack;
455
456 // Special case the `expired` queue
457 if self.slab[key.index].expired {
458 self.expired.remove(&key.index, &mut self.slab);
459 } else {
460 self.wheel.remove(&key.index, &mut self.slab);
461 }
462
463 let data = self.slab.remove(key.index);
464
465 Expired {
466 key: Key::new(key.index),
467 data: data.inner,
468 deadline: self.start + Duration::from_millis(data.when),
469 }
470 }
471
472 /// Sets the delay of the item associated with `key` to expire at `when`.
473 ///
474 /// This function is identical to `reset` but takes an `Instant` instead of
475 /// a `Duration`.
476 ///
477 /// The item remains in the queue but the delay is set to expire at `when`.
478 /// If `when` is in the past, then the item is immediately made available to
479 /// the caller.
480 ///
481 /// # Panics
482 ///
483 /// This function panics if `when` is too far in the future or if `key` is
484 /// not contained by the queue.
485 ///
486 /// # Examples
487 ///
488 /// Basic usage
489 ///
490 /// ```rust
491 /// use tokio::time::{DelayQueue, Duration, Instant};
492 ///
493 /// # #[tokio::main]
494 /// # async fn main() {
495 /// let mut delay_queue = DelayQueue::new();
496 /// let key = delay_queue.insert("foo", Duration::from_secs(5));
497 ///
498 /// // "foo" is scheduled to be returned in 5 seconds
499 ///
500 /// delay_queue.reset_at(&key, Instant::now() + Duration::from_secs(10));
501 ///
502 /// // "foo"is now scheduled to be returned in 10 seconds
503 /// # }
504 /// ```
505 pub fn reset_at(&mut self, key: &Key, when: Instant) {
506 self.wheel.remove(&key.index, &mut self.slab);
507
508 // Normalize the deadline. Values cannot be set to expire in the past.
509 let when = self.normalize_deadline(when);
510
511 self.slab[key.index].when = when;
512 self.insert_idx(when, key.index);
513
514 let next_deadline = self.next_deadline();
515 if let (Some(ref mut delay), Some(deadline)) = (&mut self.delay, next_deadline) {
516 delay.reset(deadline);
517 }
518 }
519
520 /// Returns the next time poll as determined by the wheel
521 fn next_deadline(&mut self) -> Option<Instant> {
522 self.wheel
523 .poll_at()
524 .map(|poll_at| self.start + Duration::from_millis(poll_at))
525 }
526
527 /// Sets the delay of the item associated with `key` to expire after
528 /// `timeout`.
529 ///
530 /// This function is identical to `reset_at` but takes a `Duration` instead
531 /// of an `Instant`.
532 ///
533 /// The item remains in the queue but the delay is set to expire after
534 /// `timeout`. If `timeout` is zero, then the item is immediately made
535 /// available to the caller.
536 ///
537 /// # Panics
538 ///
539 /// This function panics if `timeout` is greater than the maximum supported
540 /// duration or if `key` is not contained by the queue.
541 ///
542 /// # Examples
543 ///
544 /// Basic usage
545 ///
546 /// ```rust
547 /// use tokio::time::DelayQueue;
548 /// use std::time::Duration;
549 ///
550 /// # #[tokio::main]
551 /// # async fn main() {
552 /// let mut delay_queue = DelayQueue::new();
553 /// let key = delay_queue.insert("foo", Duration::from_secs(5));
554 ///
555 /// // "foo" is scheduled to be returned in 5 seconds
556 ///
557 /// delay_queue.reset(&key, Duration::from_secs(10));
558 ///
559 /// // "foo"is now scheduled to be returned in 10 seconds
560 /// # }
561 /// ```
562 pub fn reset(&mut self, key: &Key, timeout: Duration) {
563 self.reset_at(key, Instant::now() + timeout);
564 }
565
566 /// Clears the queue, removing all items.
567 ///
568 /// After calling `clear`, [`poll`] will return `Ok(Ready(None))`.
569 ///
570 /// Note that this method has no effect on the allocated capacity.
571 ///
572 /// [`poll`]: #method.poll
573 ///
574 /// # Examples
575 ///
576 /// ```rust
577 /// use tokio::time::DelayQueue;
578 /// use std::time::Duration;
579 ///
580 /// # #[tokio::main]
581 /// # async fn main() {
582 /// let mut delay_queue = DelayQueue::new();
583 ///
584 /// delay_queue.insert("foo", Duration::from_secs(5));
585 ///
586 /// assert!(!delay_queue.is_empty());
587 ///
588 /// delay_queue.clear();
589 ///
590 /// assert!(delay_queue.is_empty());
591 /// # }
592 /// ```
593 pub fn clear(&mut self) {
594 self.slab.clear();
595 self.expired = Stack::default();
596 self.wheel = Wheel::new();
597 self.delay = None;
598 }
599
600 /// Returns the number of elements the queue can hold without reallocating.
601 ///
602 /// # Examples
603 ///
604 /// ```rust
605 /// use tokio::time::DelayQueue;
606 ///
607 /// let delay_queue: DelayQueue<i32> = DelayQueue::with_capacity(10);
608 /// assert_eq!(delay_queue.capacity(), 10);
609 /// ```
610 pub fn capacity(&self) -> usize {
611 self.slab.capacity()
612 }
613
614 /// Returns the number of elements currently in the queue.
615 ///
616 /// # Examples
617 ///
618 /// ```rust
619 /// use tokio::time::DelayQueue;
620 /// use std::time::Duration;
621 ///
622 /// # #[tokio::main]
623 /// # async fn main() {
624 /// let mut delay_queue: DelayQueue<i32> = DelayQueue::with_capacity(10);
625 /// assert_eq!(delay_queue.len(), 0);
626 /// delay_queue.insert(3, Duration::from_secs(5));
627 /// assert_eq!(delay_queue.len(), 1);
628 /// # }
629 /// ```
630 pub fn len(&self) -> usize {
631 self.slab.len()
632 }
633
634 /// Reserve capacity for at least `additional` more items to be queued
635 /// without allocating.
636 ///
637 /// `reserve` does nothing if the queue already has sufficient capacity for
638 /// `additional` more values. If more capacity is required, a new segment of
639 /// memory will be allocated and all existing values will be copied into it.
640 /// As such, if the queue is already very large, a call to `reserve` can end
641 /// up being expensive.
642 ///
643 /// The queue may reserve more than `additional` extra space in order to
644 /// avoid frequent reallocations.
645 ///
646 /// # Panics
647 ///
648 /// Panics if the new capacity exceeds the maximum number of entries the
649 /// queue can contain.
650 ///
651 /// # Examples
652 ///
653 /// ```
654 /// use tokio::time::DelayQueue;
655 /// use std::time::Duration;
656 ///
657 /// # #[tokio::main]
658 /// # async fn main() {
659 /// let mut delay_queue = DelayQueue::new();
660 ///
661 /// delay_queue.insert("hello", Duration::from_secs(10));
662 /// delay_queue.reserve(10);
663 ///
664 /// assert!(delay_queue.capacity() >= 11);
665 /// # }
666 /// ```
667 pub fn reserve(&mut self, additional: usize) {
668 self.slab.reserve(additional);
669 }
670
671 /// Returns `true` if there are no items in the queue.
672 ///
673 /// Note that this function returns `false` even if all items have not yet
674 /// expired and a call to `poll` will return `NotReady`.
675 ///
676 /// # Examples
677 ///
678 /// ```
679 /// use tokio::time::DelayQueue;
680 /// use std::time::Duration;
681 ///
682 /// # #[tokio::main]
683 /// # async fn main() {
684 /// let mut delay_queue = DelayQueue::new();
685 /// assert!(delay_queue.is_empty());
686 ///
687 /// delay_queue.insert("hello", Duration::from_secs(5));
688 /// assert!(!delay_queue.is_empty());
689 /// # }
690 /// ```
691 pub fn is_empty(&self) -> bool {
692 self.slab.is_empty()
693 }
694
695 /// Polls the queue, returning the index of the next slot in the slab that
696 /// should be returned.
697 ///
698 /// A slot should be returned when the associated deadline has been reached.
699 fn poll_idx(&mut self, cx: &mut task::Context<'_>) -> Poll<Option<Result<usize, Error>>> {
700 use self::wheel::Stack;
701
702 let expired = self.expired.pop(&mut self.slab);
703
704 if expired.is_some() {
705 return Poll::Ready(expired.map(Ok));
706 }
707
708 loop {
709 if let Some(ref mut delay) = self.delay {
710 if !delay.is_elapsed() {
711 ready!(Pin::new(&mut *delay).poll(cx));
712 }
713
714 let now = crate::time::ms(delay.deadline() - self.start, crate::time::Round::Down);
715
716 self.poll = wheel::Poll::new(now);
717 }
718
719 self.delay = None;
720
721 if let Some(idx) = self.wheel.poll(&mut self.poll, &mut self.slab) {
722 return Poll::Ready(Some(Ok(idx)));
723 }
724
725 if let Some(deadline) = self.next_deadline() {
726 self.delay = Some(delay_until(deadline));
727 } else {
728 return Poll::Ready(None);
729 }
730 }
731 }
732
733 fn normalize_deadline(&self, when: Instant) -> u64 {
734 let when = if when < self.start {
735 0
736 } else {
737 crate::time::ms(when - self.start, crate::time::Round::Up)
738 };
739
740 cmp::max(when, self.wheel.elapsed())
741 }
742}
743
744// We never put `T` in a `Pin`...
745impl<T> Unpin for DelayQueue<T> {}
746
747impl<T> Default for DelayQueue<T> {
748 fn default() -> DelayQueue<T> {
749 DelayQueue::new()
750 }
751}
752
753#[cfg(feature = "stream")]
754impl<T> futures_core::Stream for DelayQueue<T> {
755 // DelayQueue seems much more specific, where a user may care that it
756 // has reached capacity, so return those errors instead of panicking.
757 type Item = Result<Expired<T>, Error>;
758
759 fn poll_next(self: Pin<&mut Self>, cx: &mut task::Context<'_>) -> Poll<Option<Self::Item>> {
760 DelayQueue::poll_expired(self.get_mut(), cx)
761 }
762}
763
764impl<T> wheel::Stack for Stack<T> {
765 type Owned = usize;
766 type Borrowed = usize;
767 type Store = Slab<Data<T>>;
768
769 fn is_empty(&self) -> bool {
770 self.head.is_none()
771 }
772
773 fn push(&mut self, item: Self::Owned, store: &mut Self::Store) {
774 // Ensure the entry is not already in a stack.
775 debug_assert!(store[item].next.is_none());
776 debug_assert!(store[item].prev.is_none());
777
778 // Remove the old head entry
779 let old = self.head.take();
780
781 if let Some(idx) = old {
782 store[idx].prev = Some(item);
783 }
784
785 store[item].next = old;
786 self.head = Some(item)
787 }
788
789 fn pop(&mut self, store: &mut Self::Store) -> Option<Self::Owned> {
790 if let Some(idx) = self.head {
791 self.head = store[idx].next;
792
793 if let Some(idx) = self.head {
794 store[idx].prev = None;
795 }
796
797 store[idx].next = None;
798 debug_assert!(store[idx].prev.is_none());
799
800 Some(idx)
801 } else {
802 None
803 }
804 }
805
806 fn remove(&mut self, item: &Self::Borrowed, store: &mut Self::Store) {
807 assert!(store.contains(*item));
808
809 // Ensure that the entry is in fact contained by the stack
810 debug_assert!({
811 // This walks the full linked list even if an entry is found.
812 let mut next = self.head;
813 let mut contains = false;
814
815 while let Some(idx) = next {
816 if idx == *item {
817 debug_assert!(!contains);
818 contains = true;
819 }
820
821 next = store[idx].next;
822 }
823
824 contains
825 });
826
827 if let Some(next) = store[*item].next {
828 store[next].prev = store[*item].prev;
829 }
830
831 if let Some(prev) = store[*item].prev {
832 store[prev].next = store[*item].next;
833 } else {
834 self.head = store[*item].next;
835 }
836
837 store[*item].next = None;
838 store[*item].prev = None;
839 }
840
841 fn when(item: &Self::Borrowed, store: &Self::Store) -> u64 {
842 store[*item].when
843 }
844}
845
846impl<T> Default for Stack<T> {
847 fn default() -> Stack<T> {
848 Stack {
849 head: None,
850 _p: PhantomData,
851 }
852 }
853}
854
855impl Key {
856 pub(crate) fn new(index: usize) -> Key {
857 Key { index }
858 }
859}
860
861impl<T> Expired<T> {
862 /// Returns a reference to the inner value.
863 pub fn get_ref(&self) -> &T {
864 &self.data
865 }
866
867 /// Returns a mutable reference to the inner value.
868 pub fn get_mut(&mut self) -> &mut T {
869 &mut self.data
870 }
871
872 /// Consumes `self` and returns the inner value.
873 pub fn into_inner(self) -> T {
874 self.data
875 }
876}