broker_tokio/task/local.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
//! Runs `!Send` futures on the current thread.
use crate::sync::AtomicWaker;
use crate::task::{self, queue::MpscQueues, JoinHandle, Schedule, Task};
use std::cell::Cell;
use std::future::Future;
use std::pin::Pin;
use std::ptr::{self, NonNull};
use std::rc::Rc;
use std::task::{Context, Poll};
use pin_project_lite::pin_project;
cfg_rt_util! {
/// A set of tasks which are executed on the same thread.
///
/// In some cases, it is necessary to run one or more futures that do not
/// implement [`Send`] and thus are unsafe to send between threads. In these
/// cases, a [local task set] may be used to schedule one or more `!Send`
/// futures to run together on the same thread.
///
/// For example, the following code will not compile:
///
/// ```rust,compile_fail
/// use std::rc::Rc;
///
/// #[tokio::main]
/// async fn main() {
/// // `Rc` does not implement `Send`, and thus may not be sent between
/// // threads safely.
/// let unsend_data = Rc::new("my unsend data...");
///
/// let unsend_data = unsend_data.clone();
/// // Because the `async` block here moves `unsend_data`, the future is `!Send`.
/// // Since `tokio::spawn` requires the spawned future to implement `Send`, this
/// // will not compile.
/// tokio::spawn(async move {
/// println!("{}", unsend_data);
/// // ...
/// }).await.unwrap();
/// }
/// ```
/// In order to spawn `!Send` futures, we can use a local task set to
/// schedule them on the thread calling [`Runtime::block_on`]. When running
/// inside of the local task set, we can use [`task::spawn_local`], which can
/// spawn `!Send` futures. For example:
///
/// ```rust
/// use std::rc::Rc;
/// use tokio::task;
///
/// #[tokio::main]
/// async fn main() {
/// let unsend_data = Rc::new("my unsend data...");
///
/// // Construct a local task set that can run `!Send` futures.
/// let local = task::LocalSet::new();
///
/// // Run the local task set.
/// local.run_until(async move {
/// let unsend_data = unsend_data.clone();
/// // `spawn_local` ensures that the future is spawned on the local
/// // task set.
/// task::spawn_local(async move {
/// println!("{}", unsend_data);
/// // ...
/// }).await.unwrap();
/// }).await;
/// }
/// ```
///
/// ## Awaiting a `LocalSet`
///
/// Additionally, a `LocalSet` itself implements `Future`, completing when
/// *all* tasks spawned on the `LocalSet` complete. This can be used to run
/// several futures on a `LocalSet` and drive the whole set until they
/// complete. For example,
///
/// ```rust
/// use tokio::{task, time};
/// use std::rc::Rc;
///
/// #[tokio::main]
/// async fn main() {
/// let unsend_data = Rc::new("world");
/// let local = task::LocalSet::new();
///
/// let unsend_data2 = unsend_data.clone();
/// local.spawn_local(async move {
/// // ...
/// println!("hello {}", unsend_data2)
/// });
///
/// local.spawn_local(async move {
/// time::delay_for(time::Duration::from_millis(100)).await;
/// println!("goodbye {}", unsend_data)
/// });
///
/// // ...
///
/// local.await;
/// }
/// ```
///
/// [`Send`]: https://doc.rust-lang.org/std/marker/trait.Send.html
/// [local task set]: struct.LocalSet.html
/// [`Runtime::block_on`]: ../struct.Runtime.html#method.block_on
/// [`task::spawn_local`]: fn.spawn.html
#[derive(Debug)]
pub struct LocalSet {
scheduler: Rc<Scheduler>,
}
}
#[derive(Debug)]
struct Scheduler {
tick: Cell<u8>,
queues: MpscQueues<Self>,
/// Used to notify the `LocalFuture` when a task in the local task set is
/// notified.
waker: AtomicWaker,
}
pin_project! {
#[derive(Debug)]
struct LocalFuture<F> {
scheduler: Rc<Scheduler>,
#[pin]
future: F,
}
}
thread_local! {
static CURRENT_TASK_SET: Cell<Option<NonNull<Scheduler>>> = Cell::new(None);
}
cfg_rt_util! {
/// Spawns a `!Send` future on the local task set.
///
/// The spawned future will be run on the same thread that called `spawn_local.`
/// This may only be called from the context of a local task set.
///
/// # Panics
///
/// - This function panics if called outside of a local task set.
///
/// # Examples
///
/// ```rust
/// use std::rc::Rc;
/// use tokio::task;
///
/// #[tokio::main]
/// async fn main() {
/// let unsend_data = Rc::new("my unsend data...");
///
/// let local = task::LocalSet::new();
///
/// // Run the local task set.
/// local.run_until(async move {
/// let unsend_data = unsend_data.clone();
/// task::spawn_local(async move {
/// println!("{}", unsend_data);
/// // ...
/// }).await.unwrap();
/// }).await;
/// }
/// ```
pub fn spawn_local<F>(future: F) -> JoinHandle<F::Output>
where
F: Future + 'static,
F::Output: 'static,
{
CURRENT_TASK_SET.with(|current| {
let current = current
.get()
.expect("`spawn_local` called from outside of a task::LocalSet!");
let (task, handle) = task::joinable_local(future);
unsafe {
// safety: this function is unsafe to call outside of the local
// thread. Since the call above to get the current task set
// would not succeed if we were outside of a local set, this is
// safe.
current.as_ref().queues.push_local(task);
}
handle
})
}
}
/// Max number of tasks to poll per tick.
const MAX_TASKS_PER_TICK: usize = 61;
impl LocalSet {
/// Returns a new local task set.
pub fn new() -> Self {
Self {
scheduler: Rc::new(Scheduler::new()),
}
}
/// Spawns a `!Send` task onto the local task set.
///
/// This task is guaranteed to be run on the current thread.
///
/// Unlike the free function [`spawn_local`], this method may be used to
/// spawn local tasks when the task set is _not_ running. For example:
/// ```rust
/// use tokio::task;
///
/// #[tokio::main]
/// async fn main() {
/// let local = task::LocalSet::new();
///
/// // Spawn a future on the local set. This future will be run when
/// // we call `run_until` to drive the task set.
/// local.spawn_local(async {
/// // ...
/// });
///
/// // Run the local task set.
/// local.run_until(async move {
/// // ...
/// }).await;
///
/// // When `run` finishes, we can spawn _more_ futures, which will
/// // run in subsequent calls to `run_until`.
/// local.spawn_local(async {
/// // ...
/// });
///
/// local.run_until(async move {
/// // ...
/// }).await;
/// }
/// ```
/// [`spawn_local`]: fn.spawn_local.html
pub fn spawn_local<F>(&self, future: F) -> JoinHandle<F::Output>
where
F: Future + 'static,
F::Output: 'static,
{
let (task, handle) = task::joinable_local(future);
unsafe {
// safety: since `LocalSet` is not Send or Sync, this is
// always being called from the local thread.
self.scheduler.queues.push_local(task);
}
handle
}
/// Run a future to completion on the provided runtime, driving any local
/// futures spawned on this task set on the current thread.
///
/// This runs the given future on the runtime, blocking until it is
/// complete, and yielding its resolved result. Any tasks or timers which
/// the future spawns internally will be executed on the runtime. The future
/// may also call [`spawn_local`] to spawn_local additional local futures on the
/// current thread.
///
/// This method should not be called from an asynchronous context.
///
/// # Panics
///
/// This function panics if the executor is at capacity, if the provided
/// future panics, or if called within an asynchronous execution context.
///
/// # Notes
///
/// Since this function internally calls [`Runtime::block_on`], and drives
/// futures in the local task set inside that call to `block_on`, the local
/// futures may not use [in-place blocking]. If a blocking call needs to be
/// issued from a local task, the [`spawn_blocking`] API may be used instead.
///
/// For example, this will panic:
/// ```should_panic
/// use tokio::runtime::Runtime;
/// use tokio::task;
///
/// let mut rt = Runtime::new().unwrap();
/// let local = task::LocalSet::new();
/// local.block_on(&mut rt, async {
/// let join = task::spawn_local(async {
/// let blocking_result = task::block_in_place(|| {
/// // ...
/// });
/// // ...
/// });
/// join.await.unwrap();
/// })
/// ```
/// This, however, will not panic:
/// ```
/// use tokio::runtime::Runtime;
/// use tokio::task;
///
/// let mut rt = Runtime::new().unwrap();
/// let local = task::LocalSet::new();
/// local.block_on(&mut rt, async {
/// let join = task::spawn_local(async {
/// let blocking_result = task::spawn_blocking(|| {
/// // ...
/// }).await;
/// // ...
/// });
/// join.await.unwrap();
/// })
/// ```
///
/// [`spawn_local`]: fn.spawn_local.html
/// [`Runtime::block_on`]: ../struct.Runtime.html#method.block_on
/// [in-place blocking]: ../blocking/fn.in_place.html
/// [`spawn_blocking`]: ../blocking/fn.spawn_blocking.html
pub fn block_on<F>(&self, rt: &mut crate::runtime::Runtime, future: F) -> F::Output
where
F: Future,
{
rt.block_on(self.run_until(future))
}
/// Run a future to completion on the local set, returning its output.
///
/// This returns a future that runs the given future with a local set,
/// allowing it to call [`spawn_local`] to spawn additional `!Send` futures.
/// Any local futures spawned on the local set will be driven in the
/// background until the future passed to `run_until` completes. When the future
/// passed to `run` finishes, any local futures which have not completed
/// will remain on the local set, and will be driven on subsequent calls to
/// `run_until` or when [awaiting the local set] itself.
///
/// # Examples
///
/// ```rust
/// use tokio::task;
///
/// #[tokio::main]
/// async fn main() {
/// task::LocalSet::new().run_until(async {
/// task::spawn_local(async move {
/// // ...
/// }).await.unwrap();
/// // ...
/// }).await;
/// }
/// ```
///
/// [`spawn_local`]: fn.spawn_local.html
/// [awaiting the local set]: #awaiting-a-localset
pub async fn run_until<F>(&self, future: F) -> F::Output
where
F: Future,
{
let scheduler = self.scheduler.clone();
let future = LocalFuture { scheduler, future };
future.await
}
}
impl Future for LocalSet {
type Output = ();
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let scheduler = self.as_ref().scheduler.clone();
scheduler.waker.register_by_ref(cx.waker());
if scheduler.with(|| scheduler.tick()) {
// If `tick` returns true, we need to notify the local future again:
// there are still tasks remaining in the run queue.
cx.waker().wake_by_ref();
Poll::Pending
} else if scheduler.is_empty() {
// If the scheduler has no remaining futures, we're done!
Poll::Ready(())
} else {
// There are still futures in the local set, but we've polled all the
// futures in the run queue. Therefore, we can just return Pending
// since the remaining futures will be woken from somewhere else.
Poll::Pending
}
}
}
impl Default for LocalSet {
fn default() -> Self {
Self::new()
}
}
// === impl LocalFuture ===
impl<F: Future> Future for LocalFuture<F> {
type Output = F::Output;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
let this = self.project();
let scheduler = this.scheduler;
let mut future = this.future;
scheduler.waker.register_by_ref(cx.waker());
scheduler.with(|| {
if let Poll::Ready(output) = future.as_mut().poll(cx) {
return Poll::Ready(output);
}
if scheduler.tick() {
// If `tick` returns true, we need to notify the local future again:
// there are still tasks remaining in the run queue.
cx.waker().wake_by_ref();
}
Poll::Pending
})
}
}
// === impl Scheduler ===
impl Schedule for Scheduler {
fn bind(&self, task: &Task<Self>) {
assert!(self.is_current());
unsafe {
self.queues.add_task(task);
}
}
fn release(&self, task: Task<Self>) {
// This will be called when dropping the local runtime.
self.queues.release_remote(task);
}
fn release_local(&self, task: &Task<Self>) {
debug_assert!(self.is_current());
unsafe {
self.queues.release_local(task);
}
}
fn schedule(&self, task: Task<Self>) {
if self.is_current() {
unsafe { self.queues.push_local(task) };
} else {
let mut lock = self.queues.remote();
lock.schedule(task, false);
self.waker.wake();
drop(lock);
}
}
}
impl Scheduler {
fn new() -> Self {
Self {
tick: Cell::new(0),
queues: MpscQueues::new(),
waker: AtomicWaker::new(),
}
}
fn with<F>(&self, f: impl FnOnce() -> F) -> F {
struct Entered<'a> {
current: &'a Cell<Option<NonNull<Scheduler>>>,
}
impl<'a> Drop for Entered<'a> {
fn drop(&mut self) {
self.current.set(None);
}
}
CURRENT_TASK_SET.with(|current| {
let prev = current.replace(Some(NonNull::from(self)));
assert!(prev.is_none(), "nested call to local::Scheduler::with");
let _entered = Entered { current };
f()
})
}
fn is_current(&self) -> bool {
CURRENT_TASK_SET
.try_with(|current| {
current
.get()
.iter()
.any(|current| ptr::eq(current.as_ptr(), self as *const _))
})
.unwrap_or(false)
}
/// Tick the scheduler, returning whether the local future needs to be
/// notified again.
fn tick(&self) -> bool {
assert!(self.is_current());
for _ in 0..MAX_TASKS_PER_TICK {
let tick = self.tick.get().wrapping_add(1);
self.tick.set(tick);
let task = match unsafe {
// safety: we must be on the local thread to call this. The assertion
// the top of this method ensures that `tick` is only called locally.
self.queues.next_task(tick)
} {
Some(task) => task,
// We have fully drained the queue of notified tasks, so the
// local future doesn't need to be notified again — it can wait
// until something else wakes a task in the local set.
None => return false,
};
if let Some(task) = task.run(&mut || Some(self.into())) {
unsafe {
// safety: we must be on the local thread to call this. The
// the top of this method ensures that `tick` is only called locally.
self.queues.push_local(task);
}
}
}
true
}
fn is_empty(&self) -> bool {
unsafe {
// safety: this method may not be called from threads other than the
// thread that owns the `Queues`. since `Scheduler` is not `Send` or
// `Sync`, that shouldn't happen.
!self.queues.has_tasks_remaining()
}
}
}
impl Drop for Scheduler {
fn drop(&mut self) {
unsafe {
// safety: these functions are unsafe to call outside of the local
// thread. Since the `Scheduler` type is not `Send` or `Sync`, we
// know it will be dropped only from the local thread.
self.queues.shutdown();
// Wait until all tasks have been released.
// XXX: this is a busy loop, but we don't really have any way to park
// the thread here?
loop {
self.queues.drain_pending_drop();
self.queues.drain_queues();
if !self.queues.has_tasks_remaining() {
break;
}
std::thread::yield_now();
}
}
}
}