1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
//! A `BufferedReader` is a super-powered `Read`er. //! //! Like the [`BufRead`] trait, the `BufferedReader` trait has an //! internal buffer that is directly exposed to the user. This design //! enables two performance optimizations. First, the use of an //! internal buffer amortizes system calls. Second, exposing the //! internal buffer allows the user to work with data in place, which //! avoids another copy. //! //! The [`BufRead`] trait, however, has a significant limitation for //! parsers: the user of a [`BufRead`] object can't control the amount //! of buffering. This is essential for being able to conveniently //! work with data in place, and being able to lookahead without //! consuming data. The result is that either the sizing has to be //! handled by the instantiator of the [`BufRead`] object---assuming //! the [`BufRead`] object provides such a mechanism---which is a //! layering violation, or the parser has to fallback to buffering if //! the internal buffer is too small, which eliminates most of the //! advantages of the [`BufRead`] abstraction. The `BufferedReader` //! trait addresses this shortcoming by allowing the user to control //! the size of the internal buffer. //! //! The `BufferedReader` trait also has some functionality, //! specifically, a generic interface to work with a stack of //! `BufferedReader` objects, that simplifies using multiple parsers //! simultaneously. This is helpful when one parser deals with //! framing (e.g., something like [HTTP's chunk transfer encoding]), //! and another decodes the actual objects. It is also useful when //! objects are nested. //! //! # Details //! //! Because the [`BufRead`] trait doesn't provide a mechanism for the //! user to size the interal buffer, a parser can't generally be sure //! that the internal buffer will be large enough to allow it to work //! with all data in place. //! //! Using the standard [`BufRead`] implementation, [`BufReader`], the //! instantiator can set the size of the internal buffer at creation //! time. Unfortunately, this mechanism is ugly, and not always //! adequate. First, the parser is typically not the instantiator. //! Thus, the instantiator needs to know about the implementation //! details of all of the parsers, which turns an implementation //! detail into a cross-cutting concern. Second, when working with //! dynamically sized data, the maximum amount of the data that needs //! to be worked with in place may not be known apriori, or the //! maximum amount may be significantly larger than the typical //! amount. This leads to poorly sized buffers. //! //! Alternatively, the code that uses, but does not instantiate a //! [`BufRead`] object, can be changed to stream the data, or to //! fallback to reading the data into a local buffer if the internal //! buffer is too small. Both of these approaches increase code //! complexity, and the latter approach is contrary to the //! [`BufRead`]'s goal of reducing unnecessary copying. //! //! The `BufferedReader` trait solves this problem by allowing the //! user to dynamically (i.e., at read time, not open time) ensure //! that the internal buffer has a certain amount of data. //! //! The ability to control the size of the internal buffer is also //! essential to straightforward support for speculative lookahead. //! The reason that speculative lookahead with a [`BufRead`] object is //! difficult is that speculative lookahead is /speculative/, i.e., if //! the parser backtracks, the data that was read must not be //! consumed. Using a [`BufRead`] object, this is not possible if the //! amount of lookahead is larger than the internal buffer. That is, //! if the amount of lookahead data is larger than the [`BufRead`]'s //! internal buffer, the parser first has to `BufRead::consume`() some //! data to be able to examine more data. But, if the parser then //! decides to backtrack, it has no way to return the unused data to //! the [`BufRead`] object. This forces the parser to manage a buffer //! of read, but unconsumed data, which significantly complicates the //! code. //! //! The `BufferedReader` trait also simplifies working with a stack of //! `BufferedReader`s in two ways. First, the `BufferedReader` trait //! provides *generic* methods to access the underlying //! `BufferedReader`. Thus, even when dealing with a trait object, it //! is still possible to recover the underlying `BufferedReader`. //! Second, the `BufferedReader` provides a mechanism to associate //! generic state with each `BufferedReader` via a cookie. Although //! it is possible to realize this functionality using a custom trait //! that extends the `BufferedReader` trait and wraps existing //! `BufferedReader` implementations, this approach eliminates a lot //! of error-prone, boilerplate code. //! //! # Examples //! //! The following examples show not only how to use a //! `BufferedReader`, but also better illustrate the aforementioned //! limitations of a [`BufRead`]er. //! //! Consider a file consisting of a sequence of objects, which are //! laid out as follows. Each object has a two byte header that //! indicates the object's size in bytes. The object immediately //! follows the header. Thus, if we had two objects: "foobar" and //! "xyzzy", in that order, the file would look like this: //! //! ```text //! 0 6 f o o b a r 0 5 x y z z y //! ``` //! //! Here's how we might parse this type of file using a //! `BufferedReader`: //! //! ``` //! use buffered_reader; //! use buffered_reader::BufferedReader; //! //! fn parse_object(content: &[u8]) { //! // Parse the object. //! # let _ = content; //! } //! //! # f(); fn f() -> Result<(), std::io::Error> { //! # const FILENAME : &str = "/dev/null"; //! let mut br = buffered_reader::File::open(FILENAME)?; //! //! // While we haven't reached EOF (i.e., we can read at //! // least one byte). //! while br.data(1)?.len() > 0 { //! // Get the object's length. //! let len = br.read_be_u16()? as usize; //! // Get the object's content. //! let content = br.data_consume_hard(len)?; //! //! // Parse the actual object using a real parser. Recall: //! // `data_hard`() may return more than the requested amount (but //! // it will never return less). //! parse_object(&content[..len]); //! } //! # Ok(()) } //! ``` //! //! Note that `content` is actually a pointer to the //! `BufferedReader`'s internal buffer. Thus, getting some data //! doesn't require copying the data into a local buffer, which is //! often discarded immediately after the data is parsed. //! //! Further, `data`() (and the other related functions) are guaranteed //! to return at least the requested amount of data. There are two //! exceptions: if an error occurs, or the end of the file is reached. //! Thus, only the cases that actually need to be handled by the user //! are actually exposed; there is no need to call something like //! `read`() in a loop to ensure the whole object is available. //! //! Because reading is separate from consuming data, it is possible to //! get a chunk of data, inspect it, and then consume only what is //! needed. As mentioned above, this is only possible with a //! [`BufRead`] object if the internal buffer happens to be large //! enough. Using a `BufferedReader`, this is always possible, //! assuming the data fits in memory. //! //! In our example, we actually have two parsers: one that deals with //! the framing, and one for the actual objects. The above code //! buffers the objects in their entirety, and then passes a slice //! containing the object to the object parser. If the object parser //! also worked with a `BufferedReader` object, then less buffering //! will usually be needed, and the two parsers could run //! simultaneously. This is particularly useful when the framing is //! more complicated like [HTTP's chunk transfer encoding]. Then, //! when the object parser reads data, the frame parser is invoked //! lazily. This is done by implementing the `BufferedReader` trait //! for the framing parser, and stacking the `BufferedReader`s. //! //! For our next example, we rewrite the previous code asssuming that //! the object parser reads from a `BufferedReader` object. Since the //! framing parser is really just a limit on the object's size, we //! don't need to implement a special `BufferedReader`, but can use a //! `Limitor` to impose an upper limit on the amount //! that it can read. After the object parser has finished, we drain //! the object reader. This pattern is particularly helpful when //! individual objects that contain errors should be skipped. //! //! ``` //! use buffered_reader; //! use buffered_reader::BufferedReader; //! //! fn parse_object<R: BufferedReader<()>>(br: &mut R) { //! // Parse the object. //! # let _ = br; //! } //! //! # f(); fn f() -> Result<(), std::io::Error> { //! # const FILENAME : &str = "/dev/null"; //! let mut br : Box<BufferedReader<()>> //! = Box::new(buffered_reader::File::open(FILENAME)?); //! //! // While we haven't reached EOF (i.e., we can read at //! // least one byte). //! while br.data(1)?.len() > 0 { //! // Get the object's length. //! let len = br.read_be_u16()? as u64; //! //! // Set up a limit. //! br = Box::new(buffered_reader::Limitor::new(br, len)); //! //! // Parse the actual object using a real parser. //! parse_object(&mut br); //! //! // If the parser didn't consume the whole object, e.g., due to //! // a parse error, drop the rest. //! br.drop_eof(); //! //! // Recover the framing parser's `BufferedReader`. //! br = br.into_inner().unwrap(); //! } //! # Ok(()) } //! ``` //! //! Of particular note is the generic functionality for dealing with //! stacked `BufferedReader`s: the `into_inner`() method is not bound //! to the implementation, which is often not be available due to type //! erasure, but is provided by the trait. //! //! In addition to utility `BufferedReader`s like the //! `Limitor`, this crate also includes a few //! general-purpose parsers, like the `Zip` //! decompressor. //! //! [`BufRead`]: https://doc.rust-lang.org/stable/std/io/trait.BufRead.html //! [`BufReader`]: https://doc.rust-lang.org/stable/std/io/struct.BufReader.html //! [HTTP's chunk transfer encoding]: https://en.wikipedia.org/wiki/Chunked_transfer_encoding #[cfg(feature = "compression-deflate")] extern crate flate2; #[cfg(feature = "compression-bzip2")] extern crate bzip2; extern crate libc; use std::io; use std::io::{Error, ErrorKind}; use std::cmp; use std::fmt; mod generic; mod memory; mod limitor; mod reserve; mod dup; mod eof; #[cfg(feature = "compression-deflate")] mod decompress_deflate; #[cfg(feature = "compression-bzip2")] mod decompress_bzip2; pub use self::generic::Generic; pub use self::memory::Memory; pub use self::limitor::Limitor; pub use self::reserve::Reserve; pub use self::dup::Dup; pub use self::eof::EOF; #[cfg(feature = "compression-deflate")] pub use self::decompress_deflate::Deflate; #[cfg(feature = "compression-deflate")] pub use self::decompress_deflate::Zlib; #[cfg(feature = "compression-bzip2")] pub use self::decompress_bzip2::Bzip; // These are the different File implementations. We // include the modules unconditionally, so that we catch bitrot early. #[allow(dead_code)] mod file_generic; #[allow(dead_code)] #[cfg(unix)] mod file_unix; // Then, we select the appropriate version to re-export. #[cfg(not(unix))] pub use self::file_generic::File; #[cfg(unix)] pub use self::file_unix::File; // The default buffer size. const DEFAULT_BUF_SIZE: usize = 8 * 1024; /// The generic `BufferReader` interface. pub trait BufferedReader<C> : io::Read + fmt::Debug + fmt::Display { /// Returns a reference to the internal buffer. /// /// Note: this returns the same data as `self.data(0)`, but it /// does so without mutably borrowing self: /// /// ``` /// # f(); fn f() -> Result<(), std::io::Error> { /// use buffered_reader; /// use buffered_reader::BufferedReader; /// /// let mut br = buffered_reader::Memory::new(&b"0123456789"[..]); /// /// let first = br.data(10)?.len(); /// let second = br.buffer().len(); /// // `buffer` must return exactly what `data` returned. /// assert_eq!(first, second); /// # Ok(()) } /// ``` fn buffer(&self) -> &[u8]; /// Ensures that the internal buffer has at least `amount` bytes /// of data, and returns it. /// /// If the internal buffer contains less than `amount` bytes of /// data, the internal buffer is first filled. /// /// The returned slice will have *at least* `amount` bytes unless /// EOF has been reached or an error occurs, in which case the /// returned slice will contain the rest of the file. /// /// If an error occurs, it is not discarded, but saved. It is /// returned when `data` (or a related function) is called and the /// internal buffer is empty. /// /// This function does not advance the cursor. To advance the /// cursor, use `consume()`. /// /// Note: If the internal buffer already contains at least /// `amount` bytes of data, then `BufferedReader` implementations /// are guaranteed to simply return the internal buffer. As such, /// multiple calls to `data` for the same `amount` will return the /// same slice. /// /// Further, `BufferedReader` implementations are guaranteed to /// not shrink the internal buffer. Thus, once some data has been /// returned, it will always be returned until it is consumed. /// As such, the following must hold: /// /// If `BufferedReader` receives `EINTR` when `read`ing, it will /// automatically retry reading. /// /// ``` /// # f(); fn f() -> Result<(), std::io::Error> { /// use buffered_reader; /// use buffered_reader::BufferedReader; /// /// let mut br = buffered_reader::Memory::new(&b"0123456789"[..]); /// /// let first = br.data(10)?.len(); /// let second = br.data(5)?.len(); /// // Even though less data is requested, the second call must /// // return the same slice as the first call. /// assert_eq!(first, second); /// # Ok(()) } /// ``` fn data(&mut self, amount: usize) -> Result<&[u8], io::Error>; /// Like `data()`, but returns an error if there is not at least /// `amount` bytes available. /// /// `data_hard()` is a variant of `data()` that returns at least /// `amount` bytes of data or an error. Thus, unlike `data()`, /// which will return less than `amount` bytes of data if EOF is /// encountered, `data_hard()` returns an error, specifically, /// `io::ErrorKind::UnexpectedEof`. /// /// # Examples /// /// ``` /// # f(); fn f() -> Result<(), std::io::Error> { /// use buffered_reader; /// use buffered_reader::BufferedReader; /// /// let mut br = buffered_reader::Memory::new(&b"0123456789"[..]); /// /// // Trying to read more than there is available results in an error. /// assert!(br.data_hard(20).is_err()); /// // Whereas with data(), everything through EOF is returned. /// assert_eq!(br.data(20)?.len(), 10); /// # Ok(()) } /// ``` fn data_hard(&mut self, amount: usize) -> Result<&[u8], io::Error> { let result = self.data(amount); if let Ok(buffer) = result { if buffer.len() < amount { return Err(Error::new(ErrorKind::UnexpectedEof, "unexpected EOF")); } } return result; } /// Returns all of the data until EOF. Like `data()`, this does not /// actually consume the data that is read. /// /// In general, you shouldn't use this function as it can cause an /// enormous amount of buffering. But, if you know that the /// amount of data is limited, this is acceptable. /// /// # Examples /// /// ``` /// # f(); fn f() -> Result<(), std::io::Error> { /// use buffered_reader; /// use buffered_reader::BufferedReader; /// /// const AMOUNT : usize = 100 * 1024 * 1024; /// let buffer = vec![0u8; AMOUNT]; /// let mut br = buffered_reader::Generic::new(&buffer[..], None); /// /// // Normally, only a small amount will be buffered. /// assert!(br.data(10)?.len() <= AMOUNT); /// /// // `data_eof` buffers everything. /// assert_eq!(br.data_eof()?.len(), AMOUNT); /// /// // Now that everything is buffered, buffer(), data(), and /// // data_hard() will also return everything. /// assert_eq!(br.buffer().len(), AMOUNT); /// assert_eq!(br.data(10)?.len(), AMOUNT); /// assert_eq!(br.data_hard(10)?.len(), AMOUNT); /// # Ok(()) } /// ``` fn data_eof(&mut self) -> Result<&[u8], io::Error> { // Don't just read std::usize::MAX bytes at once. The // implementation might try to actually allocate a buffer that // large! Instead, try with increasingly larger buffers until // the read is (strictly) shorter than the specified size. let mut s = DEFAULT_BUF_SIZE; // We will break the loop eventually, because self.data(s) // must return a slice shorter than std::usize::MAX. loop { match self.data(s) { Ok(ref buffer) => { if buffer.len() < s { // We really want to do // // return Ok(buffer); // // But, the borrower checker won't let us: // // error[E0499]: cannot borrow `*self` as // mutable more than once at a time. // // Instead, we break out of the loop, and then // call self.buffer(). s = buffer.len(); break; } else { s *= 2; } } Err(err) => return Err(err), } } let buffer = self.buffer(); assert_eq!(buffer.len(), s); return Ok(buffer); } /// Consumes some of the data. /// /// This advances the internal cursor by `amount`. It is an error /// to call this function to consume data that hasn't been /// returned by `data()` or a related function. /// /// Note: It is safe to call this function to consume more data /// than requested in a previous call to `data()`, but only if /// `data()` also returned that data. /// /// This function returns the internal buffer *including* the /// consumed data. Thus, the `BufferedReader` implementation must /// continue to buffer the consumed data until the reference goes /// out of scope. /// /// # Examples /// /// ``` /// # f(); fn f() -> Result<(), std::io::Error> { /// use buffered_reader; /// use buffered_reader::BufferedReader; /// /// const AMOUNT : usize = 100 * 1024 * 1024; /// let buffer = vec![0u8; AMOUNT]; /// let mut br = buffered_reader::Generic::new(&buffer[..], None); /// /// let amount = { /// // We want at least 1024 bytes, but we'll be happy with /// // more or less. /// let buffer = br.data(1024)?; /// // Parse the data or something. /// let used = buffer.len(); /// used /// }; /// let buffer = br.consume(amount); /// # Ok(()) } /// ``` fn consume(&mut self, amount: usize) -> &[u8]; /// A convenience function that combines `data()` and `consume()`. /// /// If less than `amount` bytes are available, this function /// consumes what is available. /// /// Note: Due to lifetime issues, it is not possible to call /// `data()`, work with the returned buffer, and then call /// `consume()` in the same scope, because both `data()` and /// `consume()` take a mutable reference to the `BufferedReader`. /// This function makes this common pattern easier. /// /// # Examples /// /// ``` /// # f(); fn f() -> Result<(), std::io::Error> { /// use buffered_reader; /// use buffered_reader::BufferedReader; /// /// let orig = b"0123456789"; /// let mut br = buffered_reader::Memory::new(&orig[..]); /// /// // We need a new scope for each call to `data_consume()`, because /// // the `buffer` reference locks `br`. /// { /// let buffer = br.data_consume(3)?; /// assert_eq!(buffer, &orig[..buffer.len()]); /// } /// /// // Note that the cursor has advanced. /// { /// let buffer = br.data_consume(3)?; /// assert_eq!(buffer, &orig[3..3 + buffer.len()]); /// } /// /// // Like `data()`, `data_consume()` may return and consume less /// // than request if there is no more data available. /// { /// let buffer = br.data_consume(10)?; /// assert_eq!(buffer, &orig[6..6 + buffer.len()]); /// } /// /// { /// let buffer = br.data_consume(10)?; /// assert_eq!(buffer.len(), 0); /// } /// # Ok(()) } /// ``` fn data_consume(&mut self, amount: usize) -> Result<&[u8], std::io::Error> { let amount = cmp::min(amount, self.data(amount)?.len()); let buffer = self.consume(amount); assert!(buffer.len() >= amount); Ok(buffer) } /// A convenience function that effectively combines `data_hard()` /// and `consume()`. /// /// This function is identical to `data_consume()`, but internally /// uses `data_hard()` instead of `data()`. fn data_consume_hard(&mut self, amount: usize) -> Result<&[u8], io::Error> { let len = self.data_hard(amount)?.len(); assert!(len >= amount); let buffer = self.consume(amount); assert!(buffer.len() >= amount); Ok(buffer) } /// Checks whether the end of the stream is reached. fn eof(&mut self) -> bool { self.data_hard(1).is_err() } /// Checks whether this reader is consummated. /// /// For most readers, this function will return true once the end /// of the stream is reached. However, some readers are concerned /// with packet framing (e.g. the [`Limitor`]). Those readers /// consider themselves consummated if the amount of data /// indicated by the packet frame is consumed. /// /// This allows us to detect truncation. A packet is truncated, /// iff the end of the stream is reached, but the reader is not /// consummated. /// /// [`Limitor`]: struct.Limitor.html fn consummated(&mut self) -> bool { self.eof() } /// A convenience function for reading a 16-bit unsigned integer /// in big endian format. fn read_be_u16(&mut self) -> Result<u16, std::io::Error> { let input = self.data_consume_hard(2)?; return Ok(((input[0] as u16) << 8) + (input[1] as u16)); } /// A convenience function for reading a 32-bit unsigned integer /// in big endian format. fn read_be_u32(&mut self) -> Result<u32, std::io::Error> { let input = self.data_consume_hard(4)?; return Ok(((input[0] as u32) << 24) + ((input[1] as u32) << 16) + ((input[2] as u32) << 8) + (input[3] as u32)); } /// Reads until either `terminal` is encountered or EOF. /// /// Returns either a `&[u8]` terminating in `terminal` or the rest /// of the data, if EOF was encountered. /// /// Note: this function does *not* consume the data. /// /// # Examples /// /// ``` /// # f(); fn f() -> Result<(), std::io::Error> { /// use buffered_reader; /// use buffered_reader::BufferedReader; /// /// let orig = b"0123456789"; /// let mut br = buffered_reader::Memory::new(&orig[..]); /// /// { /// let s = br.read_to(b'3')?; /// assert_eq!(s, b"0123"); /// } /// /// // `read_to()` doesn't consume the data. /// { /// let s = br.read_to(b'5')?; /// assert_eq!(s, b"012345"); /// } /// /// // Even if there is more data in the internal buffer, only /// // the data through the match is returned. /// { /// let s = br.read_to(b'1')?; /// assert_eq!(s, b"01"); /// } /// /// // If the terminal is not found, everything is returned... /// { /// let s = br.read_to(b'A')?; /// assert_eq!(s, orig); /// } /// /// // If we consume some data, the search starts at the cursor, /// // not the beginning of the file. /// br.consume(3); /// /// { /// let s = br.read_to(b'5')?; /// assert_eq!(s, b"345"); /// } /// # Ok(()) } /// ``` fn read_to(&mut self, terminal: u8) -> Result<&[u8], std::io::Error> { let mut n = 128; let len; loop { let data = self.data(n)?; if let Some(newline) = data.iter().position(|c| *c == terminal) { len = newline + 1; break; } else if data.len() < n { // EOF. len = data.len(); break; } else { // Read more data. n = cmp::max(2 * n, data.len() + 1024); } } Ok(&self.buffer()[..len]) } /// Discards the input until one of the bytes in terminals is /// encountered. /// /// The matching byte is not discarded. /// /// Returns the number of bytes discarded. /// /// The end of file is considered a match. /// /// `terminals` must be sorted. fn drop_until(&mut self, terminals: &[u8]) -> Result<usize, std::io::Error> { // Make sure terminals is sorted. for t in terminals.windows(2) { assert!(t[0] <= t[1]); } let mut total = 0; let position = 'outer: loop { let len = { let buffer = self.data(DEFAULT_BUF_SIZE)?; if buffer.len() == 0 { break 'outer 0; } if let Some(position) = buffer.iter().position( |c| terminals.binary_search(c).is_ok()) { break 'outer position; } buffer.len() }; self.consume(len); total += len; }; self.consume(position); return Ok(total + position); } /// Discards the input until one of the bytes in `terminals` is /// encountered. /// /// The matching byte is also discarded. /// /// Returns the terminal byte and the number of bytes discarded. /// /// Unlike `drop_until`, The end of file is *not* considered a /// match. /// /// `terminals` must be sorted. fn drop_through(&mut self, terminals: &[u8]) -> Result<(u8, usize), std::io::Error> { let dropped = self.drop_until(terminals)?; let terminal = self.data_consume_hard(1)?[0]; Ok((terminal, dropped + 1)) } /// Like `data_consume_hard()`, but returns the data in a /// caller-owned buffer. /// /// `BufferedReader` implementations may optimize this to avoid a /// copy by directly returning the internal buffer. fn steal(&mut self, amount: usize) -> Result<Vec<u8>, std::io::Error> { let mut data = self.data_consume_hard(amount)?; assert!(data.len() >= amount); if data.len() > amount { data = &data[..amount]; } return Ok(data.to_vec()); } /// Like `steal()`, but instead of stealing a fixed number of /// bytes, steals all of the data until the end of file. fn steal_eof(&mut self) -> Result<Vec<u8>, std::io::Error> { let len = self.data_eof()?.len(); let data = self.steal(len)?; return Ok(data); } /// Like `steal_eof()`, but instead of returning the data, the /// data is discarded. /// /// On success, returns whether any data (i.e., at least one byte) /// was discarded. /// /// Note: whereas `steal_eof()` needs to buffer all of the data, /// this function reads the data a chunk at a time, and then /// discards it. A consequence of this is that an error may occur /// after we have consumed some of the data. fn drop_eof(&mut self) -> Result<bool, std::io::Error> { let mut at_least_one_byte = false; loop { match self.data_consume(DEFAULT_BUF_SIZE) { Ok(ref buffer) => { if buffer.len() > 0 { at_least_one_byte = true; } if buffer.len() < DEFAULT_BUF_SIZE { // EOF. break; } } Err(err) => return Err(err), } } Ok(at_least_one_byte) } /// Returns the underlying reader, if any. /// /// To allow this to work with `BufferedReader` traits, it is /// necessary for `Self` to be boxed. /// /// This can lead to the following unusual code: /// /// ```text /// let inner = Box::new(br).into_inner(); /// ``` fn into_inner<'a>(self: Box<Self>) -> Option<Box<BufferedReader<C> + 'a>> where Self: 'a; /// Returns a mutable reference to the inner `BufferedReader`, if /// any. /// /// It is a very bad idea to read any data from the inner /// `BufferedReader`, because this `BufferedReader` may have some /// data buffered. However, this function can be useful to get /// the cookie. fn get_mut(&mut self) -> Option<&mut BufferedReader<C>>; /// Returns a reference to the inner `BufferedReader`, if any. fn get_ref(&self) -> Option<&BufferedReader<C>>; /// Sets the `BufferedReader`'s cookie and returns the old value. fn cookie_set(&mut self, cookie: C) -> C; /// Returns a reference to the `BufferedReader`'s cookie. fn cookie_ref(&self) -> &C; /// Returns a mutable reference to the `BufferedReader`'s cookie. fn cookie_mut(&mut self) -> &mut C; } /// A generic implementation of `std::io::Read::read` appropriate for /// any `BufferedReader` implementation. /// /// This function implements the `std::io::Read::read` method in terms /// of the `data_consume` method. We can't use the `io::std::Read` /// interface, because the `BufferedReader` may have buffered some /// data internally (in which case a read will not return the buffered /// data, but the following data). /// /// This implementation is generic. When deriving a `BufferedReader`, /// you can include the following: /// /// ```text /// impl<'a, T: BufferedReader> std::io::Read for XXX<'a, T> { /// fn read(&mut self, buf: &mut [u8]) -> Result<usize, std::io::Error> { /// return buffered_reader_generic_read_impl(self, buf); /// } /// } /// ``` /// /// It would be nice if we could do: /// /// ```text /// impl <T: BufferedReader> std::io::Read for T { ... } /// ``` /// /// but, alas, Rust doesn't like that ("error[E0119]: conflicting /// implementations of trait `std::io::Read` for type `&mut _`"). pub fn buffered_reader_generic_read_impl<T: BufferedReader<C>, C> (bio: &mut T, buf: &mut [u8]) -> Result<usize, io::Error> { match bio.data_consume(buf.len()) { Ok(inner) => { let amount = cmp::min(buf.len(), inner.len()); buf[0..amount].copy_from_slice(&inner[0..amount]); return Ok(amount); }, Err(err) => return Err(err), } } /// Make a `Box<BufferedReader>` look like a BufferedReader. impl <'a, C> BufferedReader<C> for Box<BufferedReader<C> + 'a> { fn buffer(&self) -> &[u8] { return self.as_ref().buffer(); } fn data(&mut self, amount: usize) -> Result<&[u8], io::Error> { return self.as_mut().data(amount); } fn data_hard(&mut self, amount: usize) -> Result<&[u8], io::Error> { return self.as_mut().data_hard(amount); } fn data_eof(&mut self) -> Result<&[u8], io::Error> { return self.as_mut().data_eof(); } fn consume(&mut self, amount: usize) -> &[u8] { return self.as_mut().consume(amount); } fn data_consume(&mut self, amount: usize) -> Result<&[u8], std::io::Error> { return self.as_mut().data_consume(amount); } fn data_consume_hard(&mut self, amount: usize) -> Result<&[u8], io::Error> { return self.as_mut().data_consume_hard(amount); } fn consummated(&mut self) -> bool { self.as_mut().consummated() } fn read_be_u16(&mut self) -> Result<u16, std::io::Error> { return self.as_mut().read_be_u16(); } fn read_be_u32(&mut self) -> Result<u32, std::io::Error> { return self.as_mut().read_be_u32(); } fn read_to(&mut self, terminal: u8) -> Result<&[u8], std::io::Error> { return self.as_mut().read_to(terminal); } fn steal(&mut self, amount: usize) -> Result<Vec<u8>, std::io::Error> { return self.as_mut().steal(amount); } fn steal_eof(&mut self) -> Result<Vec<u8>, std::io::Error> { return self.as_mut().steal_eof(); } fn drop_eof(&mut self) -> Result<bool, std::io::Error> { return self.as_mut().drop_eof(); } fn get_mut(&mut self) -> Option<&mut BufferedReader<C>> { // Strip the outer box. self.as_mut().get_mut() } fn get_ref(&self) -> Option<&BufferedReader<C>> { // Strip the outer box. self.as_ref().get_ref() } fn into_inner<'b>(self: Box<Self>) -> Option<Box<BufferedReader<C> + 'b>> where Self: 'b { // Strip the outer box. (*self).into_inner() } fn cookie_set(&mut self, cookie: C) -> C { self.as_mut().cookie_set(cookie) } fn cookie_ref(&self) -> &C { self.as_ref().cookie_ref() } fn cookie_mut(&mut self) -> &mut C { self.as_mut().cookie_mut() } } // The file was created as follows: // // for i in $(seq 0 9999); do printf "%04d\n" $i; done > buffered-reader-test.txt #[cfg(test)] fn buffered_reader_test_data_check<'a, T: BufferedReader<C> + 'a, C>(bio: &mut T) { use std::str; for i in 0 .. 10000 { let consumed = { // Each number is 4 bytes plus a newline character. let d = bio.data_hard(5); if d.is_err() { println!("Error for i == {}: {:?}", i, d); } let d = d.unwrap(); assert!(d.len() >= 5); assert_eq!(format!("{:04}\n", i), str::from_utf8(&d[0..5]).unwrap()); 5 }; bio.consume(consumed); } } #[cfg(test)] mod test { use super::*; #[test] fn buffered_reader_eof_test() { let data : &[u8] = include_bytes!("buffered-reader-test.txt"); // Make sure data_eof works. { let mut bio = Memory::new(data); let amount = { bio.data_eof().unwrap().len() }; bio.consume(amount); assert_eq!(bio.data(1).unwrap().len(), 0); } // Try it again with a limitor. { let bio = Box::new(Memory::new(data)); let mut bio2 = Limitor::new( bio, (data.len() / 2) as u64); let amount = { bio2.data_eof().unwrap().len() }; assert_eq!(amount, data.len() / 2); bio2.consume(amount); assert_eq!(bio2.data(1).unwrap().len(), 0); } } #[cfg(test)] fn buffered_reader_read_test_aux<'a, T: BufferedReader<C> + 'a, C> (mut bio: T, data: &[u8]) { let mut buffer = [0; 99]; // Make sure the test file has more than buffer.len() bytes // worth of data. assert!(buffer.len() < data.len()); // The number of reads we'll have to perform. let iters = (data.len() + buffer.len() - 1) / buffer.len(); // Iterate more than the number of required reads to check // what happens when we try to read beyond the end of the // file. for i in 1..iters + 2 { let data_start = (i - 1) * buffer.len(); // We don't want to just check that read works in // isolation. We want to be able to mix .read and .data // calls. { let result = bio.data(buffer.len()); let buffer = result.unwrap(); if buffer.len() > 0 { assert_eq!(buffer, &data[data_start..data_start + buffer.len()]); } } // Now do the actual read. let result = bio.read(&mut buffer[..]); let got = result.unwrap(); if got > 0 { assert_eq!(&buffer[0..got], &data[data_start..data_start + got]); } if i > iters { // We should have read everything. assert!(got == 0); } else if i == iters { // The last read. This may be less than buffer.len(). // But it should include at least one byte. assert!(0 < got); assert!(got <= buffer.len()); } else { assert_eq!(got, buffer.len()); } } } #[test] fn buffered_reader_read_test() { let data : &[u8] = include_bytes!("buffered-reader-test.txt"); { let bio = Memory::new(data); buffered_reader_read_test_aux (bio, data); } { use std::path::PathBuf; use std::fs::File; let path : PathBuf = [env!("CARGO_MANIFEST_DIR"), "src", "buffered-reader-test.txt"] .iter().collect(); let mut f = File::open(&path).expect(&path.to_string_lossy()); let bio = Generic::new(&mut f, None); buffered_reader_read_test_aux (bio, data); } } #[test] fn drop_until() { let data : &[u8] = &b"abcd"[..]; let mut reader = Memory::new(data); // Matches the 'a' at 0 and consumes 0 bytes. assert_eq!(reader.drop_until(b"ab").unwrap(), 0); // Matches the 'b' at 1 and consumes 1 byte. assert_eq!(reader.drop_until(b"bc").unwrap(), 1); // Matches the 'b' at 1 and consumes 0 bytes. assert_eq!(reader.drop_until(b"ab").unwrap(), 0); // Matches the 'd' at 4 and consumes 2 bytes. assert_eq!(reader.drop_until(b"de").unwrap(), 2); // Matches nothing, consuming the last 1 byte. assert_eq!(reader.drop_until(b"e").unwrap(), 1); // Matches nothing, consuming nothing. assert_eq!(reader.drop_until(b"e").unwrap(), 0); } #[test] fn drop_through() { let data : &[u8] = &b"abcd"[..]; let mut reader = Memory::new(data); // Matches the 'a' at 0 and consumes 1 byte. assert_eq!(reader.drop_through(b"ab").unwrap(), (b'a', 1)); // Matches the 'b' at 1 and consumes 1 byte. assert_eq!(reader.drop_through(b"ab").unwrap(), (b'b', 1)); // Matches the 'd' at 4 and consumes 2 byte. assert_eq!(reader.drop_through(b"def").unwrap(), (b'd', 2)); // Doesn't match (eof). assert!(reader.drop_through(b"def").is_err()) } }