1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
//! Driver for the STM32 bxCAN peripheral.
//!
//! This crate provides a reusable driver for the bxCAN peripheral found in many low- to middle-end
//! STM32 microcontrollers. HALs for compatible chips can reexport this crate and implement its
//! traits to easily expose a featureful CAN driver.
//!
//! # Features
//!
//! - Supports both single- and dual-peripheral configurations (where one bxCAN instance manages the
//! filters of a secondary instance).
//! - Handles standard and extended frames, and data and remote frames.
//! - Support for interrupts emitted by the bxCAN peripheral.
//! - Transmission respects CAN IDs and protects against priority inversion (a lower-priority frame
//! may be dequeued when enqueueing a higher-priority one).
//! - Implements the [`embedded-hal`] traits for interoperability.
//! - Support for both RX FIFOs (as [`Rx0`] and [`Rx1`]).
//!
//! # Limitations
//!
//! - Support for querying error states and handling error interrupts is incomplete.
//!
//! # Cargo Features
//!
//! | Feature | Description |
//! |---------|-------------|
//! | `unstable-defmt` | Implements [`defmt`]'s `Format` trait for the types in this crate.[^1] |
//!
//! [^1]: The specific version of defmt is unspecified and may be updated in a patch release.
//!
//! [`defmt`]: https://docs.rs/defmt
//! [`embedded-hal`]: https://docs.rs/embedded-hal
#![doc(html_root_url = "https://docs.rs/bxcan/0.8.0")]
// Deny a few warnings in doctests, since rustdoc `allow`s many warnings by default
#![doc(test(attr(deny(unused_imports, unused_must_use))))]
#![no_std]
#![allow(clippy::unnecessary_operation)] // lint is bugged
mod embedded_hal;
pub mod filter;
mod frame;
mod id;
mod interrupt;
#[allow(clippy::all)] // generated code
mod pac;
pub use id::{ExtendedId, Id, StandardId};
pub use crate::frame::{Data, Frame, FramePriority};
pub use crate::interrupt::{Interrupt, Interrupts};
pub use crate::pac::can::RegisterBlock;
use crate::filter::MasterFilters;
use core::cmp::{Ord, Ordering};
use core::convert::{Infallible, TryInto};
use core::marker::PhantomData;
use core::mem;
use core::ptr::NonNull;
use self::pac::generic::*; // To make the PAC extraction build
/// A bxCAN peripheral instance.
///
/// This trait is meant to be implemented for a HAL-specific type that represent ownership of
/// the CAN peripheral (and any pins required by it, although that is entirely up to the HAL).
///
/// # Safety
///
/// It is only safe to implement this trait, when:
///
/// * The implementing type has ownership of the peripheral, preventing any other accesses to the
/// register block.
/// * `REGISTERS` is a pointer to that peripheral's register block and can be safely accessed for as
/// long as ownership or a borrow of the implementing type is present.
pub unsafe trait Instance {
/// Pointer to the instance's register block.
const REGISTERS: *mut RegisterBlock;
}
/// A bxCAN instance that owns filter banks.
///
/// In master-slave-instance setups, only the master instance owns the filter banks, and needs to
/// split some of them off for use by the slave instance. In that case, the master instance should
/// implement [`FilterOwner`] and [`MasterInstance`], while the slave instance should only implement
/// [`Instance`].
///
/// In single-instance configurations, the instance owns all filter banks and they can not be split
/// off. In that case, the instance should implement [`Instance`] and [`FilterOwner`].
///
/// # Safety
///
/// This trait must only be implemented if the instance does, in fact, own its associated filter
/// banks, and `NUM_FILTER_BANKS` must be correct.
pub unsafe trait FilterOwner: Instance {
/// The total number of filter banks available to the instance.
///
/// This is usually either 14 or 28, and should be specified in the chip's reference manual or
/// datasheet.
const NUM_FILTER_BANKS: u8;
}
/// A bxCAN master instance that shares filter banks with a slave instance.
///
/// In master-slave-instance setups, this trait should be implemented for the master instance.
///
/// # Safety
///
/// This trait must only be implemented when there is actually an associated slave instance.
pub unsafe trait MasterInstance: FilterOwner {}
// TODO: what to do with these?
/*
#[derive(Debug, Copy, Clone, Eq, PartialEq, Format)]
pub enum Error {
Stuff,
Form,
Acknowledgement,
BitRecessive,
BitDominant,
Crc,
Software,
}*/
/// Error that indicates that an incoming message has been lost due to buffer overrun.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
#[cfg_attr(feature = "unstable-defmt", derive(defmt::Format))]
pub struct OverrunError {
_priv: (),
}
/// Identifier of a CAN message.
///
/// Can be either a standard identifier (11bit, Range: 0..0x3FF) or a
/// extendended identifier (29bit , Range: 0..0x1FFFFFFF).
///
/// The `Ord` trait can be used to determine the frame’s priority this ID
/// belongs to.
/// Lower identifier values have a higher priority. Additionally standard frames
/// have a higher priority than extended frames and data frames have a higher
/// priority than remote frames.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
#[cfg_attr(feature = "unstable-defmt", derive(defmt::Format))]
struct IdReg(u32);
impl IdReg {
const STANDARD_SHIFT: u32 = 21;
const EXTENDED_SHIFT: u32 = 3;
const IDE_MASK: u32 = 0x0000_0004;
const RTR_MASK: u32 = 0x0000_0002;
/// Creates a new standard identifier (11bit, Range: 0..0x7FF)
///
/// Panics for IDs outside the allowed range.
fn new_standard(id: StandardId) -> Self {
Self(u32::from(id.as_raw()) << Self::STANDARD_SHIFT)
}
/// Creates a new extendended identifier (29bit , Range: 0..0x1FFFFFFF).
///
/// Panics for IDs outside the allowed range.
fn new_extended(id: ExtendedId) -> IdReg {
Self(id.as_raw() << Self::EXTENDED_SHIFT | Self::IDE_MASK)
}
fn from_register(reg: u32) -> IdReg {
Self(reg & 0xFFFF_FFFE)
}
/// Sets the remote transmission (RTR) flag. This marks the identifier as
/// being part of a remote frame.
#[must_use = "returns a new IdReg without modifying `self`"]
fn with_rtr(self, rtr: bool) -> IdReg {
if rtr {
Self(self.0 | Self::RTR_MASK)
} else {
Self(self.0 & !Self::RTR_MASK)
}
}
/// Returns the identifier.
fn to_id(self) -> Id {
if self.is_extended() {
Id::Extended(unsafe { ExtendedId::new_unchecked(self.0 >> Self::EXTENDED_SHIFT) })
} else {
Id::Standard(unsafe {
StandardId::new_unchecked((self.0 >> Self::STANDARD_SHIFT) as u16)
})
}
}
/// Returns `true` if the identifier is an extended identifier.
fn is_extended(self) -> bool {
self.0 & Self::IDE_MASK != 0
}
/// Returns `true` if the identifier is a standard identifier.
fn is_standard(self) -> bool {
!self.is_extended()
}
/// Returns `true` if the identifer is part of a remote frame (RTR bit set).
fn rtr(self) -> bool {
self.0 & Self::RTR_MASK != 0
}
}
/// `IdReg` is ordered by priority.
impl Ord for IdReg {
fn cmp(&self, other: &Self) -> Ordering {
// When the IDs match, data frames have priority over remote frames.
let rtr = self.rtr().cmp(&other.rtr()).reverse();
let id_a = self.to_id();
let id_b = other.to_id();
match (id_a, id_b) {
(Id::Standard(a), Id::Standard(b)) => {
// Lower IDs have priority over higher IDs.
a.as_raw().cmp(&b.as_raw()).reverse().then(rtr)
}
(Id::Extended(a), Id::Extended(b)) => a.as_raw().cmp(&b.as_raw()).reverse().then(rtr),
(Id::Standard(a), Id::Extended(b)) => {
// Standard frames have priority over extended frames if their Base IDs match.
a.as_raw()
.cmp(&b.standard_id().as_raw())
.reverse()
.then(Ordering::Greater)
}
(Id::Extended(a), Id::Standard(b)) => a
.standard_id()
.as_raw()
.cmp(&b.as_raw())
.reverse()
.then(Ordering::Less),
}
}
}
impl PartialOrd for IdReg {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
/// Configuration proxy returned by [`Can::modify_config`].
#[must_use = "`CanConfig` leaves the peripheral in uninitialized state, call `CanConfig::enable` or explicitly drop the value"]
pub struct CanConfig<'a, I: Instance> {
can: &'a mut Can<I>,
}
impl<I: Instance> CanConfig<'_, I> {
/// Configures the bit timings.
///
/// You can use <http://www.bittiming.can-wiki.info/> to calculate the `btr` parameter. Enter
/// parameters as follows:
///
/// - *Clock Rate*: The input clock speed to the CAN peripheral (*not* the CPU clock speed).
/// This is the clock rate of the peripheral bus the CAN peripheral is attached to (eg. APB1).
/// - *Sample Point*: Should normally be left at the default value of 87.5%.
/// - *SJW*: Should normally be left at the default value of 1.
///
/// Then copy the `CAN_BUS_TIME` register value from the table and pass it as the `btr`
/// parameter to this method.
pub fn set_bit_timing(self, btr: u32) -> Self {
self.can.set_bit_timing(btr);
self
}
/// Enables or disables loopback mode: Internally connects the TX and RX
/// signals together.
pub fn set_loopback(self, enabled: bool) -> Self {
let can = self.can.registers();
can.btr.modify(|_, w| w.lbkm().bit(enabled));
self
}
/// Enables or disables silent mode: Disconnects the TX signal from the pin.
pub fn set_silent(self, enabled: bool) -> Self {
let can = self.can.registers();
can.btr.modify(|_, w| w.silm().bit(enabled));
self
}
/// Enables or disables automatic retransmission of messages.
///
/// If this is enabled, the CAN peripheral will automatically try to retransmit each frame
/// until it can be sent. Otherwise, it will try only once to send each frame.
///
/// Automatic retransmission is enabled by default.
pub fn set_automatic_retransmit(self, enabled: bool) -> Self {
let can = self.can.registers();
can.mcr.modify(|_, w| w.nart().bit(!enabled));
self
}
/// Leaves initialization mode and enables the peripheral.
///
/// To sync with the CAN bus, this will block until 11 consecutive recessive bits are detected
/// on the bus.
///
/// If you want to finish configuration without enabling the peripheral, you can call
/// [`CanConfig::leave_disabled`] or [`drop`] the [`CanConfig`] instead.
pub fn enable(mut self) {
self.leave_init_mode();
match nb::block!(self.can.enable_non_blocking()) {
Ok(()) => {}
Err(void) => match void {},
}
// Don't run the destructor.
mem::forget(self);
}
/// Leaves initialization mode, but keeps the peripheral in sleep mode.
///
/// Before the [`Can`] instance can be used, you have to enable it by calling
/// [`Can::enable_non_blocking`].
pub fn leave_disabled(mut self) {
self.leave_init_mode();
}
/// Leaves initialization mode, enters sleep mode.
fn leave_init_mode(&mut self) {
let can = self.can.registers();
can.mcr
.modify(|_, w| w.sleep().set_bit().inrq().clear_bit());
loop {
let msr = can.msr.read();
if msr.slak().bit_is_set() && msr.inak().bit_is_clear() {
break;
}
}
}
}
impl<I: Instance> Drop for CanConfig<'_, I> {
#[inline]
fn drop(&mut self) {
self.leave_init_mode();
}
}
/// Builder returned by [`Can::builder`].
#[must_use = "`CanBuilder` leaves the peripheral in uninitialized state, call `CanBuilder::enable` or `CanBuilder::leave_disabled`"]
pub struct CanBuilder<I: Instance> {
can: Can<I>,
}
impl<I: Instance> CanBuilder<I> {
/// Configures the bit timings.
///
/// You can use <http://www.bittiming.can-wiki.info/> to calculate the `btr` parameter. Enter
/// parameters as follows:
///
/// - *Clock Rate*: The input clock speed to the CAN peripheral (*not* the CPU clock speed).
/// This is the clock rate of the peripheral bus the CAN peripheral is attached to (eg. APB1).
/// - *Sample Point*: Should normally be left at the default value of 87.5%.
/// - *SJW*: Should normally be left at the default value of 1.
///
/// Then copy the `CAN_BUS_TIME` register value from the table and pass it as the `btr`
/// parameter to this method.
pub fn set_bit_timing(mut self, btr: u32) -> Self {
self.can.set_bit_timing(btr);
self
}
/// Enables or disables loopback mode: Internally connects the TX and RX
/// signals together.
pub fn set_loopback(self, enabled: bool) -> Self {
let can = self.can.registers();
can.btr.modify(|_, w| w.lbkm().bit(enabled));
self
}
/// Enables or disables silent mode: Disconnects the TX signal from the pin.
pub fn set_silent(self, enabled: bool) -> Self {
let can = self.can.registers();
can.btr.modify(|_, w| w.silm().bit(enabled));
self
}
/// Enables or disables automatic retransmission of messages.
///
/// If this is enabled, the CAN peripheral will automatically try to retransmit each frame
/// until it can be sent. Otherwise, it will try only once to send each frame.
///
/// Automatic retransmission is enabled by default.
pub fn set_automatic_retransmit(self, enabled: bool) -> Self {
let can = self.can.registers();
can.mcr.modify(|_, w| w.nart().bit(!enabled));
self
}
/// Leaves initialization mode and enables the peripheral.
///
/// To sync with the CAN bus, this will block until 11 consecutive recessive bits are detected
/// on the bus.
///
/// If you want to finish configuration without enabling the peripheral, you can call
/// [`CanBuilder::leave_disabled`] instead.
pub fn enable(mut self) -> Can<I> {
self.leave_init_mode();
match nb::block!(self.can.enable_non_blocking()) {
Ok(()) => self.can,
Err(void) => match void {},
}
}
/// Returns the [`Can`] interface without enabling it.
///
/// This leaves initialization mode, but keeps the peripheral in sleep mode instead of enabling
/// it.
///
/// Before the [`Can`] instance can be used, you have to enable it by calling
/// [`Can::enable_non_blocking`].
pub fn leave_disabled(mut self) -> Can<I> {
self.leave_init_mode();
self.can
}
/// Leaves initialization mode, enters sleep mode.
fn leave_init_mode(&mut self) {
let can = self.can.registers();
can.mcr
.modify(|_, w| w.sleep().set_bit().inrq().clear_bit());
loop {
let msr = can.msr.read();
if msr.slak().bit_is_set() && msr.inak().bit_is_clear() {
break;
}
}
}
}
/// Interface to a bxCAN peripheral.
pub struct Can<I: Instance> {
instance: I,
}
impl<I> Can<I>
where
I: Instance,
{
/// Creates a [`CanBuilder`] for constructing a CAN interface.
pub fn builder(instance: I) -> CanBuilder<I> {
let can_builder = CanBuilder {
can: Can { instance },
};
let can_reg = can_builder.can.registers();
// Enter init mode.
can_reg
.mcr
.modify(|_, w| w.sleep().clear_bit().inrq().set_bit());
loop {
let msr = can_reg.msr.read();
if msr.slak().bit_is_clear() && msr.inak().bit_is_set() {
break;
}
}
can_builder
}
fn registers(&self) -> &RegisterBlock {
unsafe { &*I::REGISTERS }
}
fn set_bit_timing(&mut self, btr: u32) {
// Mask of all non-reserved BTR bits, except the mode flags.
const MASK: u32 = 0x037F_03FF;
let can = self.registers();
can.btr.modify(|r, w| unsafe {
let mode_bits = r.bits() & 0xC000_0000;
w.bits(mode_bits | (btr & MASK))
});
}
/// Returns a reference to the peripheral instance.
///
/// This allows accessing HAL-specific data stored in the instance type.
pub fn instance(&mut self) -> &mut I {
&mut self.instance
}
/// Disables the CAN interface and returns back the raw peripheral it was created from.
///
/// The peripheral is disabled by setting `RESET` in `CAN_MCR`, which causes the peripheral to
/// enter sleep mode.
pub fn free(self) -> I {
self.registers().mcr.write(|w| w.reset().set_bit());
self.instance
}
/// Configure bit timings and silent/loop-back mode.
///
/// Calling this method will enter initialization mode.
pub fn modify_config(&mut self) -> CanConfig<'_, I> {
let can = self.registers();
// Enter init mode.
can.mcr
.modify(|_, w| w.sleep().clear_bit().inrq().set_bit());
loop {
let msr = can.msr.read();
if msr.slak().bit_is_clear() && msr.inak().bit_is_set() {
break;
}
}
CanConfig { can: self }
}
/// Configures the automatic wake-up feature.
///
/// This is turned off by default.
///
/// When turned on, an incoming frame will cause the peripheral to wake up from sleep and
/// receive the frame. If enabled, [`Interrupt::Wakeup`] will also be triggered by the incoming
/// frame.
pub fn set_automatic_wakeup(&mut self, enabled: bool) {
let can = self.registers();
can.mcr.modify(|_, w| w.awum().bit(enabled));
}
/// Leaves initialization mode and enables the peripheral (non-blocking version).
///
/// Usually, it is recommended to call [`CanConfig::enable`] instead. This method is only needed
/// if you want non-blocking initialization.
///
/// If this returns [`WouldBlock`][nb::Error::WouldBlock], the peripheral will enable itself
/// in the background. The peripheral is enabled and ready to use when this method returns
/// successfully.
pub fn enable_non_blocking(&mut self) -> nb::Result<(), Infallible> {
let can = self.registers();
let msr = can.msr.read();
if msr.slak().bit_is_set() {
can.mcr
.modify(|_, w| w.abom().set_bit().sleep().clear_bit());
Err(nb::Error::WouldBlock)
} else {
Ok(())
}
}
/// Puts the peripheral in a sleep mode to save power.
///
/// While in sleep mode, an incoming CAN frame will trigger [`Interrupt::Wakeup`] if enabled.
pub fn sleep(&mut self) {
let can = self.registers();
can.mcr
.modify(|_, w| w.sleep().set_bit().inrq().clear_bit());
loop {
let msr = can.msr.read();
if msr.slak().bit_is_set() && msr.inak().bit_is_clear() {
break;
}
}
}
/// Wakes up from sleep mode.
///
/// Note that this will not trigger [`Interrupt::Wakeup`], only reception of an incoming CAN
/// frame will cause that interrupt.
pub fn wakeup(&mut self) {
let can = self.registers();
can.mcr
.modify(|_, w| w.sleep().clear_bit().inrq().clear_bit());
loop {
let msr = can.msr.read();
if msr.slak().bit_is_clear() && msr.inak().bit_is_clear() {
break;
}
}
}
/// Starts listening for a CAN interrupt.
pub fn enable_interrupt(&mut self, interrupt: Interrupt) {
self.enable_interrupts(Interrupts::from_bits_truncate(interrupt as u32))
}
/// Starts listening for a set of CAN interrupts.
pub fn enable_interrupts(&mut self, interrupts: Interrupts) {
self.registers()
.ier
.modify(|r, w| unsafe { w.bits(r.bits() | interrupts.bits()) })
}
/// Stops listening for a CAN interrupt.
pub fn disable_interrupt(&mut self, interrupt: Interrupt) {
self.disable_interrupts(Interrupts::from_bits_truncate(interrupt as u32))
}
/// Stops listening for a set of CAN interrupts.
pub fn disable_interrupts(&mut self, interrupts: Interrupts) {
self.registers()
.ier
.modify(|r, w| unsafe { w.bits(r.bits() & !interrupts.bits()) })
}
/// Clears the pending flag of [`Interrupt::Sleep`].
pub fn clear_sleep_interrupt(&self) {
let can = self.registers();
// Read-only register with write-1-to-clear, so `&self` is sufficient.
can.msr.write(|w| w.slaki().set_bit());
}
/// Clears the pending flag of [`Interrupt::Wakeup`].
pub fn clear_wakeup_interrupt(&self) {
let can = self.registers();
// Read-only register with write-1-to-clear, so `&self` is sufficient.
can.msr.write(|w| w.wkui().set_bit());
}
/// Clears the "Request Completed" (RQCP) flag of a transmit mailbox.
///
/// Returns the [`Mailbox`] whose flag was cleared. If no mailbox has the flag set, returns
/// `None`.
///
/// Once this function returns `None`, a pending [`Interrupt::TransmitMailboxEmpty`] is
/// considered acknowledged.
pub fn clear_request_completed_flag(&mut self) -> Option<Mailbox> {
let can = self.registers();
let tsr = can.tsr.read();
if tsr.rqcp0().bit_is_set() {
can.tsr.modify(|_, w| w.rqcp0().set_bit());
Some(Mailbox::Mailbox0)
} else if tsr.rqcp1().bit_is_set() {
can.tsr.modify(|_, w| w.rqcp1().set_bit());
Some(Mailbox::Mailbox1)
} else if tsr.rqcp2().bit_is_set() {
can.tsr.modify(|_, w| w.rqcp2().set_bit());
Some(Mailbox::Mailbox2)
} else {
None
}
}
/// Clears a pending TX interrupt ([`Interrupt::TransmitMailboxEmpty`]).
///
/// This does not return the mailboxes that have finished tranmission. If you need that
/// information, call [`Can::clear_request_completed_flag`] instead.
pub fn clear_tx_interrupt(&mut self) {
while self.clear_request_completed_flag().is_some() {}
}
/// Puts a CAN frame in a free transmit mailbox for transmission on the bus.
///
/// Frames are transmitted to the bus based on their priority (see [`FramePriority`]).
/// Transmit order is preserved for frames with identical priority.
///
/// If all transmit mailboxes are full, and `frame` has a higher priority than the
/// lowest-priority message in the transmit mailboxes, transmission of the enqueued frame is
/// cancelled and `frame` is enqueued instead. The frame that was replaced is returned as
/// [`TransmitStatus::dequeued_frame`].
pub fn transmit(&mut self, frame: &Frame) -> nb::Result<TransmitStatus, Infallible> {
// Safety: We have a `&mut self` and have unique access to the peripheral.
unsafe { Tx::<I>::conjure().transmit(frame) }
}
/// Returns `true` if no frame is pending for transmission.
pub fn is_transmitter_idle(&self) -> bool {
// Safety: Read-only operation.
unsafe { Tx::<I>::conjure().is_idle() }
}
/// Attempts to abort the sending of a frame that is pending in a mailbox.
///
/// If there is no frame in the provided mailbox, or its transmission succeeds before it can be
/// aborted, this function has no effect and returns `false`.
///
/// If there is a frame in the provided mailbox, and it is canceled successfully, this function
/// returns `true`.
pub fn abort(&mut self, mailbox: Mailbox) -> bool {
// Safety: We have a `&mut self` and have unique access to the peripheral.
unsafe { Tx::<I>::conjure().abort(mailbox) }
}
/// Returns a received frame if available.
///
/// This will first check FIFO 0 for a message or error. If none are available, FIFO 1 is
/// checked.
///
/// Returns `Err` when a frame was lost due to buffer overrun.
pub fn receive(&mut self) -> nb::Result<Frame, OverrunError> {
// Safety: We have a `&mut self` and have unique access to the peripheral.
let mut rx0 = unsafe { Rx0::<I>::conjure() };
let mut rx1 = unsafe { Rx1::<I>::conjure() };
match rx0.receive() {
Err(nb::Error::WouldBlock) => rx1.receive(),
result => result,
}
}
/// Returns a reference to the RX FIFO 0.
pub fn rx0(&mut self) -> &mut Rx0<I> {
// Safety: We take `&mut self` and the return value lifetimes are tied to `self`'s lifetime.
unsafe { Rx0::conjure_by_ref() }
}
/// Returns a reference to the RX FIFO 1.
pub fn rx1(&mut self) -> &mut Rx1<I> {
// Safety: We take `&mut self` and the return value lifetimes are tied to `self`'s lifetime.
unsafe { Rx1::conjure_by_ref() }
}
/// Splits this `Can` instance into transmitting and receiving halves, by reference.
pub fn split_by_ref(&mut self) -> (&mut Tx<I>, &mut Rx0<I>, &mut Rx1<I>) {
// Safety: We take `&mut self` and the return value lifetimes are tied to `self`'s lifetime.
let tx = unsafe { Tx::conjure_by_ref() };
let rx0 = unsafe { Rx0::conjure_by_ref() };
let rx1 = unsafe { Rx1::conjure_by_ref() };
(tx, rx0, rx1)
}
/// Consumes this `Can` instance and splits it into transmitting and receiving halves.
pub fn split(self) -> (Tx<I>, Rx0<I>, Rx1<I>) {
// Safety: `Self` is not `Copy` and is destroyed by moving it into this method.
unsafe { (Tx::conjure(), Rx0::conjure(), Rx1::conjure()) }
}
}
impl<I: FilterOwner> Can<I> {
/// Accesses the filter banks owned by this CAN peripheral.
///
/// To modify filters of a slave peripheral, `modify_filters` has to be called on the master
/// peripheral instead.
pub fn modify_filters(&mut self) -> MasterFilters<'_, I> {
unsafe { MasterFilters::new() }
}
}
/// Interface to the CAN transmitter part.
pub struct Tx<I> {
_can: PhantomData<I>,
}
#[inline]
const fn ok_mask(idx: usize) -> u32 {
0x02 << (8 * idx)
}
#[inline]
const fn abort_mask(idx: usize) -> u32 {
0x80 << (8 * idx)
}
impl<I> Tx<I>
where
I: Instance,
{
unsafe fn conjure() -> Self {
Self { _can: PhantomData }
}
/// Creates a `&mut Self` out of thin air.
///
/// This is only safe if it is the only way to access a `Tx<I>`.
unsafe fn conjure_by_ref<'a>() -> &'a mut Self {
// Cause out of bounds access when `Self` is not zero-sized.
[()][core::mem::size_of::<Self>()];
// Any aligned pointer is valid for ZSTs.
&mut *NonNull::dangling().as_ptr()
}
fn registers(&self) -> &RegisterBlock {
unsafe { &*I::REGISTERS }
}
/// Puts a CAN frame in a transmit mailbox for transmission on the bus.
///
/// Frames are transmitted to the bus based on their priority (see [`FramePriority`]).
/// Transmit order is preserved for frames with identical priority.
///
/// If all transmit mailboxes are full, and `frame` has a higher priority than the
/// lowest-priority message in the transmit mailboxes, transmission of the enqueued frame is
/// cancelled and `frame` is enqueued instead. The frame that was replaced is returned as
/// [`TransmitStatus::dequeued_frame`].
pub fn transmit(&mut self, frame: &Frame) -> nb::Result<TransmitStatus, Infallible> {
let can = self.registers();
// Get the index of the next free mailbox or the one with the lowest priority.
let tsr = can.tsr.read();
let idx = tsr.code().bits() as usize;
let frame_is_pending =
tsr.tme0().bit_is_clear() || tsr.tme1().bit_is_clear() || tsr.tme2().bit_is_clear();
let pending_frame = if frame_is_pending {
// High priority frames are transmitted first by the mailbox system.
// Frames with identical identifier shall be transmitted in FIFO order.
// The controller schedules pending frames of same priority based on the
// mailbox index instead. As a workaround check all pending mailboxes
// and only accept higher priority frames.
self.check_priority(0, frame.id)?;
self.check_priority(1, frame.id)?;
self.check_priority(2, frame.id)?;
let all_frames_are_pending =
tsr.tme0().bit_is_clear() && tsr.tme1().bit_is_clear() && tsr.tme2().bit_is_clear();
if all_frames_are_pending {
// No free mailbox is available. This can only happen when three frames with
// ascending priority (descending IDs) were requested for transmission and all
// of them are blocked by bus traffic with even higher priority.
// To prevent a priority inversion abort and replace the lowest priority frame.
self.read_pending_mailbox(idx)
} else {
// There was a free mailbox.
None
}
} else {
// All mailboxes are available: Send frame without performing any checks.
None
};
self.write_mailbox(idx, frame);
let mailbox = match idx {
0 => Mailbox::Mailbox0,
1 => Mailbox::Mailbox1,
2 => Mailbox::Mailbox2,
_ => unreachable!(),
};
Ok(TransmitStatus {
dequeued_frame: pending_frame,
mailbox,
})
}
/// Returns `Ok` when the mailbox is free or if it contains pending frame with a
/// lower priority (higher ID) than the identifier `id`.
fn check_priority(&self, idx: usize, id: IdReg) -> nb::Result<(), Infallible> {
let can = self.registers();
// Read the pending frame's id to check its priority.
assert!(idx < 3);
let tir = &can.tx[idx].tir.read();
// Check the priority by comparing the identifiers. But first make sure the
// frame has not finished the transmission (`TXRQ` == 0) in the meantime.
if tir.txrq().bit_is_set() && id <= IdReg::from_register(tir.bits()) {
// There's a mailbox whose priority is higher or equal
// the priority of the new frame.
return Err(nb::Error::WouldBlock);
}
Ok(())
}
fn write_mailbox(&mut self, idx: usize, frame: &Frame) {
let can = self.registers();
debug_assert!(idx < 3);
let mb = unsafe { &can.tx.get_unchecked(idx) };
mb.tdtr
.write(|w| unsafe { w.dlc().bits(frame.dlc() as u8) });
mb.tdlr.write(|w| unsafe {
w.bits(u32::from_ne_bytes(
frame.data.bytes[0..4].try_into().unwrap(),
))
});
mb.tdhr.write(|w| unsafe {
w.bits(u32::from_ne_bytes(
frame.data.bytes[4..8].try_into().unwrap(),
))
});
mb.tir
.write(|w| unsafe { w.bits(frame.id.0).txrq().set_bit() });
}
fn read_pending_mailbox(&mut self, idx: usize) -> Option<Frame> {
if self.abort_by_index(idx) {
let can = self.registers();
debug_assert!(idx < 3);
let mb = unsafe { &can.tx.get_unchecked(idx) };
// Read back the pending frame.
let mut pending_frame = Frame {
id: IdReg(mb.tir.read().bits()),
data: Data::empty(),
};
pending_frame.data.bytes[0..4].copy_from_slice(&mb.tdlr.read().bits().to_ne_bytes());
pending_frame.data.bytes[4..8].copy_from_slice(&mb.tdhr.read().bits().to_ne_bytes());
pending_frame.data.len = mb.tdtr.read().dlc().bits();
Some(pending_frame)
} else {
// Abort request failed because the frame was already sent (or being sent) on
// the bus. All mailboxes are now free. This can happen for small prescaler
// values (e.g. 1MBit/s bit timing with a source clock of 8MHz) or when an ISR
// has preempted the execution.
None
}
}
/// Tries to abort a pending frame. Returns `true` when aborted.
fn abort_by_index(&mut self, idx: usize) -> bool {
let can = self.registers();
can.tsr.write(|w| unsafe { w.bits(abort_mask(idx)) });
// Wait for the abort request to be finished.
loop {
let tsr = can.tsr.read().bits();
if tsr & abort_mask(idx) == 0 {
break tsr & ok_mask(idx) == 0;
}
}
}
/// Attempts to abort the sending of a frame that is pending in a mailbox.
///
/// If there is no frame in the provided mailbox, or its transmission succeeds before it can be
/// aborted, this function has no effect and returns `false`.
///
/// If there is a frame in the provided mailbox, and it is canceled successfully, this function
/// returns `true`.
pub fn abort(&mut self, mailbox: Mailbox) -> bool {
// If the mailbox is empty, the value of TXOKx depends on what happened with the previous
// frame in that mailbox. Only call abort_by_index() if the mailbox is not empty.
let tsr = self.registers().tsr.read();
let mailbox_empty = match mailbox {
Mailbox::Mailbox0 => tsr.tme0().bit_is_set(),
Mailbox::Mailbox1 => tsr.tme1().bit_is_set(),
Mailbox::Mailbox2 => tsr.tme2().bit_is_set(),
};
if mailbox_empty {
false
} else {
self.abort_by_index(mailbox as usize)
}
}
/// Returns `true` if no frame is pending for transmission.
pub fn is_idle(&self) -> bool {
let can = self.registers();
let tsr = can.tsr.read();
tsr.tme0().bit_is_set() && tsr.tme1().bit_is_set() && tsr.tme2().bit_is_set()
}
/// Clears the request complete flag for all mailboxes.
pub fn clear_interrupt_flags(&mut self) {
let can = self.registers();
can.tsr
.write(|w| w.rqcp2().set_bit().rqcp1().set_bit().rqcp0().set_bit());
}
}
/// Interface to receiver FIFO 0.
pub struct Rx0<I> {
_can: PhantomData<I>,
}
impl<I> Rx0<I>
where
I: Instance,
{
unsafe fn conjure() -> Self {
Self { _can: PhantomData }
}
/// Creates a `&mut Self` out of thin air.
///
/// This is only safe if it is the only way to access an `Rx<I>`.
unsafe fn conjure_by_ref<'a>() -> &'a mut Self {
// Cause out of bounds access when `Self` is not zero-sized.
[()][core::mem::size_of::<Self>()];
// Any aligned pointer is valid for ZSTs.
&mut *NonNull::dangling().as_ptr()
}
/// Returns a received frame if available.
///
/// Returns `Err` when a frame was lost due to buffer overrun.
pub fn receive(&mut self) -> nb::Result<Frame, OverrunError> {
receive_fifo(self.registers(), 0)
}
fn registers(&self) -> &RegisterBlock {
unsafe { &*I::REGISTERS }
}
}
/// Interface to receiver FIFO 1.
pub struct Rx1<I> {
_can: PhantomData<I>,
}
impl<I> Rx1<I>
where
I: Instance,
{
unsafe fn conjure() -> Self {
Self { _can: PhantomData }
}
/// Creates a `&mut Self` out of thin air.
///
/// This is only safe if it is the only way to access an `Rx<I>`.
unsafe fn conjure_by_ref<'a>() -> &'a mut Self {
// Cause out of bounds access when `Self` is not zero-sized.
[()][core::mem::size_of::<Self>()];
// Any aligned pointer is valid for ZSTs.
&mut *NonNull::dangling().as_ptr()
}
/// Returns a received frame if available.
///
/// Returns `Err` when a frame was lost due to buffer overrun.
pub fn receive(&mut self) -> nb::Result<Frame, OverrunError> {
receive_fifo(self.registers(), 1)
}
fn registers(&self) -> &RegisterBlock {
unsafe { &*I::REGISTERS }
}
}
fn receive_fifo(can: &RegisterBlock, fifo_nr: usize) -> nb::Result<Frame, OverrunError> {
assert!(fifo_nr < 2);
let rfr = &can.rfr[fifo_nr];
let rx = &can.rx[fifo_nr];
// Check if a frame is available in the mailbox.
let rfr_read = rfr.read();
if rfr_read.fmp().bits() == 0 {
return Err(nb::Error::WouldBlock);
}
// Check for RX FIFO overrun.
if rfr_read.fovr().bit_is_set() {
rfr.write(|w| w.fovr().set_bit());
return Err(nb::Error::Other(OverrunError { _priv: () }));
}
// Read the frame.
let mut frame = Frame {
id: IdReg(rx.rir.read().bits()),
data: [0; 8].into(),
};
frame.data[0..4].copy_from_slice(&rx.rdlr.read().bits().to_ne_bytes());
frame.data[4..8].copy_from_slice(&rx.rdhr.read().bits().to_ne_bytes());
frame.data.len = rx.rdtr.read().dlc().bits();
// Release the mailbox.
rfr.write(|w| w.rfom().set_bit());
Ok(frame)
}
/// Identifies one of the two receive FIFOs.
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
#[cfg_attr(feature = "unstable-defmt", derive(defmt::Format))]
pub enum Fifo {
Fifo0 = 0,
Fifo1 = 1,
}
/// Identifies one of the three transmit mailboxes.
#[derive(Debug, Copy, Clone, Ord, PartialOrd, Eq, PartialEq)]
#[cfg_attr(feature = "unstable-defmt", derive(defmt::Format))]
pub enum Mailbox {
/// Transmit mailbox 0
Mailbox0 = 0,
/// Transmit mailbox 1
Mailbox1 = 1,
/// Transmit mailbox 2
Mailbox2 = 2,
}
/// Contains information about a frame enqueued for transmission via [`Can::transmit`] or
/// [`Tx::transmit`].
pub struct TransmitStatus {
dequeued_frame: Option<Frame>,
mailbox: Mailbox,
}
impl TransmitStatus {
/// Returns the lower-priority frame that was dequeued to make space for the new frame.
#[inline]
pub fn dequeued_frame(&self) -> Option<&Frame> {
self.dequeued_frame.as_ref()
}
/// Returns the [`Mailbox`] the frame was enqueued in.
#[inline]
pub fn mailbox(&self) -> Mailbox {
self.mailbox
}
}