c2pa_crypto/cose/sign.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
// Copyright 2022 Adobe. All rights reserved.
// This file is licensed to you under the Apache License,
// Version 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
// or the MIT license (http://opensource.org/licenses/MIT),
// at your option.
// Unless required by applicable law or agreed to in writing,
// this software is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR REPRESENTATIONS OF ANY KIND, either express or
// implied. See the LICENSE-MIT and LICENSE-APACHE files for the
// specific language governing permissions and limitations under
// each license.
use async_generic::async_generic;
use ciborium::value::Value;
use coset::{
iana::{self, EnumI64},
CoseSign1, CoseSign1Builder, Header, HeaderBuilder, Label, ProtectedHeader,
TaggedCborSerializable,
};
use serde_bytes::ByteBuf;
use super::cert_chain_from_sign1;
use crate::{
cose::{add_sigtst_header, add_sigtst_header_async, CoseError, TimeStampStorage},
ec_utils::{der_to_p1363, ec_curve_from_public_key_der, parse_ec_der_sig},
raw_signature::{AsyncRawSigner, RawSigner, SigningAlg},
};
/// Given an arbitrary block of data and a [`RawSigner`] or [`AsyncRawSigner`]
/// instance, generate a COSE signature for that block of data.
///
/// Returns a byte vector that is a `Cose_Sign1` data structure.
///
/// From [§14.5, X.509 Certificates] of the C2PA Technical Specification:
///
/// > X.509 Certificates are stored as defined by [RFC 9360] (CBOR Object
/// > Signing and Encryption (COSE): Header Parameters for Carrying and
/// > Referencing X.509 Certificates). For convenience, the definition of
/// > `x5chain` is copied below.
/// >
/// > ...
/// >
/// > `x5chain`: This header parameter contains an ordered array of X.509
/// > certificates. The certificates are to be ordered starting with the
/// > certificate containing the end-entity key followed by the certificate that
/// > signed it, and so on. There is no requirement for the entire chain to be
/// > present in the element if there is reason to believe that the relying
/// > party already has, or can locate, the missing certificates. This means
/// > that the relying party is still required to do path building but that a
/// > candidate path is proposed in this header parameter.
/// >
/// > The trust mechanism MUST process any certificates in this parameter as
/// > untrusted input. The presence of a self-signed certificate in the
/// > parameter MUST NOT cause the update of the set of trust anchors without
/// > some out-of-band confirmation. As the contents of this header parameter
/// > are untrusted input, the header parameter can be in either the protected
/// > or unprotected header bucket. Sending the header parameter in the
/// > unprotected header bucket allows an intermediary to remove or add
/// > certificates.
/// >
/// > The end-entity certificate MUST be integrity protected by COSE. This can,
/// > for example, be done by sending the header parameter in the protected
/// > header, sending an `x5chain` in the unprotected header combined with an
/// > `x5t` in the protected header, or including the end-entity certificate in
/// > the `external_aad`.
/// >
/// > This header parameter allows for a single X.509 certificate or a chain of
/// > X.509 certificates to be carried in the message.
/// >
/// > * If a single certificate is conveyed, it is placed in a CBOR byte string.
/// > * If multiple certificates are conveyed, a CBOR array of byte strings is
/// > used, with each certificate being in its own byte string.
///
/// [§14.5, X.509 Certificates]: https://c2pa.org/specifications/specifications/2.1/specs/C2PA_Specification.html#x509_certificates
/// [RFC 9360]: https://datatracker.ietf.org/doc/html/rfc9360
#[async_generic(async_signature(
signer: &dyn AsyncRawSigner,
data: &[u8],
box_size: Option<usize>,
tss: TimeStampStorage
))]
pub fn sign(
signer: &dyn RawSigner,
data: &[u8],
box_size: Option<usize>,
tss: TimeStampStorage,
) -> Result<Vec<u8>, CoseError> {
if _sync {
match tss {
TimeStampStorage::V1_sigTst => sign_v1(signer, data, box_size, tss),
TimeStampStorage::V2_sigTst2_CTT => sign_v2(signer, data, box_size, tss),
}
} else {
match tss {
TimeStampStorage::V1_sigTst => sign_v1_async(signer, data, box_size, tss).await,
TimeStampStorage::V2_sigTst2_CTT => sign_v2_async(signer, data, box_size, tss).await,
}
}
}
#[async_generic(async_signature(
signer: &dyn AsyncRawSigner,
data: &[u8],
box_size: Option<usize>,
tss: TimeStampStorage
))]
pub fn sign_v1(
signer: &dyn RawSigner,
data: &[u8],
box_size: Option<usize>,
tss: TimeStampStorage,
) -> Result<Vec<u8>, CoseError> {
let alg = signer.alg();
let protected_header = if _sync {
build_protected_header(signer, alg)?
} else {
build_protected_header_async(signer, alg).await?
};
// We don't use the additional data header.
let aad: &[u8; 0] = b"";
// V1: Generate time stamp then sign.
let unprotected_header = if _sync {
build_unprotected_header(signer, data, &protected_header, tss)?
} else {
build_unprotected_header_async(signer, data, &protected_header, tss).await?
};
let sign1_builder = CoseSign1Builder::new()
.protected(protected_header.header.clone())
.unprotected(unprotected_header)
.payload(data.to_vec());
let mut sign1 = sign1_builder.build();
let tbs = coset::sig_structure_data(
coset::SignatureContext::CoseSign1,
sign1.protected.clone(),
None,
aad,
sign1.payload.as_ref().unwrap_or(&vec![]),
);
let signature = if _sync {
signer.sign(&tbs)?
} else {
signer.sign(tbs).await?
};
// Fix up signatures that may be in the wrong format.
sign1.signature = match alg {
SigningAlg::Es256 | SigningAlg::Es384 | SigningAlg::Es512 => {
if parse_ec_der_sig(&signature).is_ok() {
// Fix up DER signature to be in P1363 format.
let certs = cert_chain_from_sign1(&sign1)?;
let signing_cert = certs.first().ok_or(CoseError::CborGenerationError(
"bad certificate chain".to_string(),
))?;
let curve = ec_curve_from_public_key_der(signing_cert).ok_or(
CoseError::CborGenerationError("incorrect EC signature format".to_string()),
)?;
der_to_p1363(&signature, curve.p1363_sig_len())?
} else {
signature
}
}
_ => signature,
};
// The payload is provided elsewhere, so we don't need to repeat it in the
// `Cose_Sign1` structure.
sign1.payload = None;
pad_cose_sig(&mut sign1, box_size)
}
#[async_generic(async_signature(
signer: &dyn AsyncRawSigner,
data: &[u8],
box_size: Option<usize>,
tss: TimeStampStorage
))]
pub fn sign_v2(
signer: &dyn RawSigner,
data: &[u8],
box_size: Option<usize>,
tss: TimeStampStorage,
) -> Result<Vec<u8>, CoseError> {
let alg = signer.alg();
let protected_header = if _sync {
build_protected_header(signer, alg)?
} else {
build_protected_header_async(signer, alg).await?
};
// We don't use the additional data header.
let aad: &[u8; 0] = b"";
// V2: Sign then generate time stamp.
let sign1_builder = CoseSign1Builder::new()
.protected(protected_header.header.clone())
.payload(data.to_vec());
let mut sign1 = sign1_builder.build();
let tbs = coset::sig_structure_data(
coset::SignatureContext::CoseSign1,
sign1.protected.clone(),
None,
aad,
sign1.payload.as_ref().unwrap_or(&vec![]),
);
let signature = if _sync {
signer.sign(&tbs)?
} else {
signer.sign(tbs).await?
};
// Fix up signatures that may be in the wrong format.
sign1.signature = match alg {
SigningAlg::Es256 | SigningAlg::Es384 | SigningAlg::Es512 => {
if parse_ec_der_sig(&signature).is_ok() {
// Fix up DER signature to be in P1363 format.
let certs = cert_chain_from_sign1(&sign1)?;
let signing_cert = certs.first().ok_or(CoseError::CborGenerationError(
"bad certificate chain".to_string(),
))?;
let curve = ec_curve_from_public_key_der(signing_cert).ok_or(
CoseError::CborGenerationError("incorrect EC signature format".to_string()),
)?;
der_to_p1363(&signature, curve.p1363_sig_len())?
} else {
signature
}
}
_ => signature,
};
// The payload is provided elsewhere, so we don't need to repeat it in the
// `Cose_Sign1` structure.
sign1.payload = None;
let sig_data = ByteBuf::from(sign1.signature.clone());
let mut sig_data_cbor: Vec<u8> = vec![];
ciborium::into_writer(&sig_data, &mut sig_data_cbor)
.map_err(|e| CoseError::CborGenerationError(e.to_string()))?;
// Fill in the unprotected header with time stamp data.
let unprotected_header = if _sync {
build_unprotected_header(signer, &sig_data_cbor, &protected_header, tss)?
} else {
build_unprotected_header_async(signer, &sig_data_cbor, &protected_header, tss).await?
};
sign1.unprotected = unprotected_header;
pad_cose_sig(&mut sign1, box_size)
}
#[async_generic(async_signature(signer: &dyn AsyncRawSigner, alg: SigningAlg))]
fn build_protected_header(
signer: &dyn RawSigner,
alg: SigningAlg,
) -> Result<ProtectedHeader, CoseError> {
let mut protected_h = match alg {
SigningAlg::Ps256 => HeaderBuilder::new().algorithm(iana::Algorithm::PS256),
SigningAlg::Ps384 => HeaderBuilder::new().algorithm(iana::Algorithm::PS384),
SigningAlg::Ps512 => HeaderBuilder::new().algorithm(iana::Algorithm::PS512),
SigningAlg::Es256 => HeaderBuilder::new().algorithm(iana::Algorithm::ES256),
SigningAlg::Es384 => HeaderBuilder::new().algorithm(iana::Algorithm::ES384),
SigningAlg::Es512 => HeaderBuilder::new().algorithm(iana::Algorithm::ES512),
SigningAlg::Ed25519 => HeaderBuilder::new().algorithm(iana::Algorithm::EdDSA),
};
let certs = signer.cert_chain()?;
let sc_der_array_or_bytes = match certs.len() {
1 => Value::Bytes(certs[0].clone()),
_ => Value::Array(certs.into_iter().map(Value::Bytes).collect()),
};
// Add certs to protected header.
protected_h = protected_h.value(
iana::HeaderParameter::X5Chain.to_i64(),
sc_der_array_or_bytes.clone(),
);
let protected_header = protected_h.build();
let ph2 = ProtectedHeader {
original_data: None,
header: protected_header.clone(),
};
Ok(ph2)
}
#[async_generic(async_signature(signer: &dyn AsyncRawSigner, data: &[u8], p_header: &ProtectedHeader, tss: TimeStampStorage,))]
fn build_unprotected_header(
signer: &dyn RawSigner,
data: &[u8],
p_header: &ProtectedHeader,
tss: TimeStampStorage,
) -> Result<Header, CoseError> {
// signed_data_from_time_stamp_response
// TO DO: Continue with diff here ... (let maybe_cts etc)
let unprotected_h = HeaderBuilder::new();
let mut unprotected_h = if _sync {
add_sigtst_header(signer, data, p_header, unprotected_h, tss)?
} else {
add_sigtst_header_async(signer, data, p_header, unprotected_h, tss).await?
};
// Set the OCSP responder response if available.
let ocsp_val = if _sync {
signer.ocsp_response()
} else {
signer.ocsp_response().await
};
if let Some(ocsp) = ocsp_val {
let mut ocsp_vec: Vec<Value> = Vec::new();
let mut r_vals: Vec<(Value, Value)> = vec![];
ocsp_vec.push(Value::Bytes(ocsp));
r_vals.push((Value::Text("ocspVals".to_string()), Value::Array(ocsp_vec)));
unprotected_h = unprotected_h.text_value("rVals".to_string(), Value::Map(r_vals));
}
// Build complete header.
Ok(unprotected_h.build())
}
const PAD: &str = "pad";
const PAD2: &str = "pad2";
const PAD_OFFSET: usize = 7;
// Pad the CoseSign1 structure with zeroes to match the reserved box size. There
// are some values lengths that are impossible to hit with a single padding so
// when that happens a second padding is added to change the remaining needed
// padding. The default initial guess works for almost all sizes, without the
// need for additional loops.
fn pad_cose_sig(sign1: &mut CoseSign1, end_size: Option<usize>) -> Result<Vec<u8>, CoseError> {
let mut sign1_clone = sign1.clone();
let cur_vec = sign1_clone
.to_tagged_vec()
.map_err(|e| CoseError::CborGenerationError(e.to_string()))?;
let Some(end_size) = end_size else {
return Ok(cur_vec);
};
let cur_size = cur_vec.len();
if cur_size == end_size {
return Ok(cur_vec);
}
// Check for box too small and matched size.
if cur_size + PAD_OFFSET > end_size {
return Err(CoseError::BoxSizeTooSmall);
}
// Start close to desired end size, accounting for label.
let mut padding_found = false;
let mut last_pad = 0;
let mut target_guess = end_size - cur_size - PAD_OFFSET;
loop {
sign1_clone = sign1.clone();
// Replace padding with new estimate.
for header_pair in &mut sign1_clone.unprotected.rest {
if header_pair.0 == Label::Text("pad".to_string()) {
if let Value::Bytes(b) = &header_pair.1 {
last_pad = b.len();
}
header_pair.1 = Value::Bytes(vec![0u8; target_guess]);
padding_found = true;
break;
}
}
// If there was no padding, add it and try again.
if !padding_found {
sign1_clone.unprotected.rest.push((
Label::Text(PAD.to_string()),
Value::Bytes(vec![0u8; target_guess]),
));
return pad_cose_sig(&mut sign1_clone, Some(end_size));
}
// Get current CBOR vec to see if we reached target size.
let new_cbor = sign1_clone
.to_tagged_vec()
.map_err(|e| CoseError::CborGenerationError(e.to_string()))?;
match new_cbor.len() < end_size {
true => target_guess += 1,
false if new_cbor.len() == end_size => return Ok(new_cbor),
false => break,
// ^^ We could not match end_size in a single pad so break and add a second.
}
}
// If we reach here, we need a new second padding object to hit exact size.
sign1.unprotected.rest.push((
Label::Text(PAD2.to_string()),
Value::Bytes(vec![0u8; last_pad - 10]),
));
pad_cose_sig(sign1, Some(end_size))
}