1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
#![deny(missing_docs)]
//! This code is used to generate literal expressions of various kinds.
//! These include integer, floating, array, struct, union, enum literals.

use super::*;

impl<'c> Translation<'c> {
    /// Generate an integer literal corresponding to the given type, value, and base.
    pub fn mk_int_lit(&self, ty: CQualTypeId, val: u64, base: IntBase) -> P<Expr> {
        // Note that C doesn't have anything smaller than integer literals
        let (intty, suffix) = match self.ast_context.resolve_type(ty.ctype).kind {
            CTypeKind::Int => (LitIntType::Signed(IntTy::I32), "i32"),
            CTypeKind::Long => (LitIntType::Signed(IntTy::I64), "i64"),
            CTypeKind::LongLong => (LitIntType::Signed(IntTy::I64), "i64"),
            CTypeKind::UInt => (LitIntType::Unsigned(UintTy::U32), "u32"),
            CTypeKind::ULong => (LitIntType::Unsigned(UintTy::U64), "u64"),
            CTypeKind::ULongLong => (LitIntType::Unsigned(UintTy::U64), "u64"),
            _ => (LitIntType::Unsuffixed, ""),
        };

        let lit = match base {
            IntBase::Dec => mk().int_lit(val.into(), intty),
            IntBase::Hex => mk().float_unsuffixed_lit(format!("0x{:x}{}", val, suffix)),
            IntBase::Oct => mk().float_unsuffixed_lit(format!("0o{:o}{}", val, suffix)),
        };

        mk().lit_expr(lit)
    }

    /// Given an integer value this attempts to either generate the corresponding enum
    /// variant directly, otherwise it transmutes a number to the enum type.
    pub fn enum_for_i64(&self, enum_type_id: CTypeId, value: i64) -> P<Expr> {
        let def_id = match self.ast_context.resolve_type(enum_type_id).kind {
            CTypeKind::Enum(def_id) => def_id,
            _ => panic!("{:?} does not point to an `enum` type"),
        };

        let (variants, underlying_type_id) = match self.ast_context[def_id].kind {
            CDeclKind::Enum {
                ref variants,
                integral_type,
                ..
            } => (variants, integral_type),
            _ => panic!("{:?} does not point to an `enum` declaration"),
        };

        for &variant_id in variants {
            match self.ast_context[variant_id].kind {
                CDeclKind::EnumConstant { value: v, .. } => {
                    if v == ConstIntExpr::I(value) || v == ConstIntExpr::U(value as u64) {
                        let name = self.renamer.borrow().get(&variant_id).unwrap();
                        return mk().path_expr(vec![name]);
                    }
                }
                _ => panic!("{:?} does not point to an enum variant", variant_id),
            }
        }

        let underlying_type_id =
            underlying_type_id.expect("Attempt to construct value of forward declared enum");
        let value = match self.ast_context.resolve_type(underlying_type_id.ctype).kind {
            CTypeKind::UInt => {
                mk().lit_expr(mk().int_lit((value as u32) as u128, LitIntType::Unsuffixed))
            }
            CTypeKind::ULong => {
                mk().lit_expr(mk().int_lit((value as u64) as u128, LitIntType::Unsuffixed))
            }
            _ => signed_int_expr(value),
        };

        let target_ty = self.convert_type(enum_type_id).unwrap();

        mk().cast_expr(value, target_ty)
    }

    /// Convert a C literal expression to a Rust expression
    pub fn convert_literal(
        &self,
        is_static: bool,
        ty: CQualTypeId,
        kind: &CLiteral,
    ) -> Result<WithStmts<P<Expr>>, TranslationError> {
        match *kind {
            CLiteral::Integer(val, base) => Ok(WithStmts::new(self.mk_int_lit(ty, val, base))),

            CLiteral::Character(val) => {
                let expr = match char::from_u32(val as u32) {
                    Some(c) => {
                        let lit = mk().char_lit(c);
                        let expr = mk().lit_expr(lit);
                        let i32_type = mk().path_ty(vec!["i32"]);
                        mk().cast_expr(expr, i32_type)
                    }
                    None => {
                        // Fallback for characters outside of the valid Unicode range
                        let lit = mk().int_lit(val as u128, LitIntType::Signed(IntTy::I32));
                        mk().lit_expr(lit)
                    }
                };
                Ok(WithStmts::new(expr))
            }

            CLiteral::Floating(val, ref c_str) => {
                let mut bytes: Vec<u8> = vec![];
                let str = if c_str.is_empty() {
                    dtoa::write(&mut bytes, val).unwrap();
                    String::from_utf8(bytes).unwrap()
                } else {
                    c_str.to_owned()
                };
                let val = match self.ast_context.resolve_type(ty.ctype).kind {
                    CTypeKind::LongDouble => {
                        self.extern_crates.borrow_mut().insert("f128");

                        let fn_path = mk().path_expr(vec!["f128", "f128", "new"]);
                        let args = vec![mk().ident_expr(str)];

                        mk().call_expr(fn_path, args)
                    }
                    CTypeKind::Double => mk().lit_expr(mk().float_lit(str, FloatTy::F64)),
                    CTypeKind::Float => mk().lit_expr(mk().float_lit(str, FloatTy::F32)),
                    ref k => panic!("Unsupported floating point literal type {:?}", k),
                };
                Ok(WithStmts::new(val))
            }

            CLiteral::String(ref val, width) => {
                let mut val = val.to_owned();

                match self.ast_context.resolve_type(ty.ctype).kind {
                    // Match the literal size to the expected size padding with zeros as needed
                    CTypeKind::ConstantArray(_, size) => val.resize(size * (width as usize), 0),

                    // Add zero terminator
                    _ => {
                        for _ in 0..width {
                            val.push(0);
                        }
                    }
                };
                if is_static {
                    let mut vals: Vec<P<Expr>> = vec![];
                    for c in val {
                        vals.push(mk().lit_expr(mk().int_lit(c as u128, LitIntType::Unsuffixed)));
                    }
                    let array = mk().array_expr(vals);
                    Ok(WithStmts::new(array))
                } else {
                    let u8_ty = mk().path_ty(vec!["u8"]);
                    let width_lit =
                        mk().lit_expr(mk().int_lit(val.len() as u128, LitIntType::Unsuffixed));
                    let array_ty = mk().array_ty(u8_ty, width_lit);
                    let source_ty = mk().ref_ty(array_ty);
                    let mutbl = if ty.qualifiers.is_const {
                        Mutability::Immutable
                    } else {
                        Mutability::Mutable
                    };
                    let target_ty = mk().set_mutbl(mutbl).ref_ty(self.convert_type(ty.ctype)?);
                    let byte_literal = mk().lit_expr(mk().bytestr_lit(val));
                    let pointer =
                        transmute_expr(source_ty, target_ty, byte_literal, self.tcfg.emit_no_std);
                    let array = mk().unary_expr(ast::UnOp::Deref, pointer);
                    Ok(WithStmts::new(array))
                }
            }
        }
    }

    /// Convert an initialization list into an expresion. These initialization lists can be
    /// used as array literals, struct literals, and union literals in code.
    pub fn convert_init_list(
        &self,
        ctx: ExprContext,
        ty: CQualTypeId,
        ids: &[CExprId],
        opt_union_field_id: Option<CFieldId>,
    ) -> Result<WithStmts<P<Expr>>, TranslationError> {
        match self.ast_context.resolve_type(ty.ctype).kind {
            CTypeKind::ConstantArray(ty, n) => {
                // Convert all of the provided initializer values

                // Need to check to see if the next item is a string literal,
                // if it is need to treat it as a declaration, rather than
                // an init list. https://github.com/GaloisInc/C2Rust/issues/40
                let mut is_string = false;

                if ids.len() == 1 {
                    let v = ids.first().unwrap();
                    if let CExprKind::Literal(_, CLiteral::String { .. }) =
                        self.ast_context.index(*v).kind
                    {
                        is_string = true;
                    }
                }

                let mut stmts: Vec<Stmt> = vec![];
                let val: P<Expr> = if is_string {
                    let v = ids.first().unwrap();
                    let mut x = self.convert_expr(ctx.used(), *v)?;
                    stmts.append(&mut x.stmts);
                    x.val
                } else {
                    let mut vals: Vec<P<Expr>> = vec![];
                    for &v in ids {
                        let mut x = self.convert_expr(ctx.used(), v)?;

                        // Array literals require all of their elements to be the correct type; they
                        // will not use implicit casts to change mut to const. This becomes a problem
                        // when an array literal is used in a position where there is no type information
                        // available to force its type to the correct const or mut variation. To avoid
                        // this issue we manually insert the otherwise elided casts in this particular context.
                        if let CExprKind::ImplicitCast(ty, _, CastKind::ConstCast, _, _) =
                            self.ast_context[v].kind
                        {
                            let t = self.convert_type(ty.ctype)?;
                            x.val = mk().cast_expr(x.val, t)
                        }

                        stmts.append(&mut x.stmts);
                        vals.push(x.val);
                    }
                    // Pad out the array literal with default values to the desired size
                    for _i in ids.len()..n {
                        vals.push(self.implicit_default_expr(ty, ctx.is_static)?)
                    }
                    mk().array_expr(vals)
                };

                Ok(WithStmts { stmts, val })
            }
            CTypeKind::Struct(struct_id) => {
                self.convert_struct_literal(ctx, struct_id, ids.as_ref())
            }
            CTypeKind::Union(union_id) => {
                self.convert_union_literal(ctx, union_id, ids.as_ref(), ty, opt_union_field_id)
            }
            CTypeKind::Pointer(_) => {
                let id = ids.first().unwrap();
                let mut x = self.convert_expr(ctx.used(), *id);
                Ok(x.unwrap())
            }
            CTypeKind::Vector(CQualTypeId { ctype, .. }, len) => {
                self.vector_list_initializer(ctx, ids, ctype, len)
            }
            ref t => Err(format_err!("Init list not implemented for {:?}", t).into()),
        }
    }

    fn convert_union_literal(
        &self,
        ctx: ExprContext,
        union_id: CRecordId,
        ids: &[CExprId],
        _ty: CQualTypeId,
        opt_union_field_id: Option<CFieldId>,
    ) -> Result<WithStmts<P<Expr>>, TranslationError> {
        let union_field_id = opt_union_field_id.expect("union field ID");

        match self.ast_context.index(union_id).kind {
            CDeclKind::Union { .. } => {
                let union_name = self
                    .type_converter
                    .borrow()
                    .resolve_decl_name(union_id)
                    .unwrap();
                match self.ast_context.index(union_field_id).kind {
                    CDeclKind::Field { typ: field_ty, .. } => {
                        let val = if ids.is_empty() {
                            WithStmts {
                                stmts: vec![],
                                val: self.implicit_default_expr(field_ty.ctype, ctx.is_static)?,
                            }
                        } else {
                            self.convert_expr(ctx.used(), ids[0])?
                        };

                        Ok(val.map(|v| {
                            let name = vec![mk().path_segment(union_name)];
                            let field_name = self
                                .type_converter
                                .borrow()
                                .resolve_field_name(Some(union_id), union_field_id)
                                .unwrap();
                            let fields = vec![mk().field(field_name, v)];
                            mk().struct_expr(name, fields)
                        }))
                    }
                    _ => panic!("Union field decl mismatch"),
                }
            }
            _ => panic!("Expected union decl"),
        }
    }

    fn convert_struct_literal(
        &self,
        ctx: ExprContext,
        struct_id: CRecordId,
        ids: &[CExprId],
    ) -> Result<WithStmts<P<Expr>>, TranslationError> {
        let mut has_bitfields = false;
        let (field_decls, platform_byte_size) = match self.ast_context.index(struct_id).kind {
            CDeclKind::Struct {
                ref fields,
                platform_byte_size,
                ..
            } => {
                let mut fieldnames = vec![];

                let fields = match fields {
                    &Some(ref fields) => fields,
                    &None => {
                        return Err(TranslationError::generic(
                            "Attempted to construct forward-declared struct",
                        ))
                    }
                };

                for &x in fields {
                    let name = self
                        .type_converter
                        .borrow()
                        .resolve_field_name(Some(struct_id), x)
                        .unwrap();
                    if let CDeclKind::Field {
                        typ,
                        bitfield_width,
                        platform_type_bitwidth,
                        platform_bit_offset,
                        ..
                    } = self.ast_context.index(x).kind
                    {
                        has_bitfields |= bitfield_width.is_some();

                        fieldnames.push((
                            name,
                            typ,
                            bitfield_width,
                            platform_bit_offset,
                            platform_type_bitwidth,
                        ));
                    } else {
                        panic!("Struct field decl type mismatch")
                    }
                }

                (fieldnames, platform_byte_size)
            }
            _ => panic!("Struct literal declaration mismatch"),
        };

        let struct_name = self
            .type_converter
            .borrow()
            .resolve_decl_name(struct_id)
            .unwrap();

        if has_bitfields {
            return self.convert_bitfield_struct_literal(
                struct_name,
                platform_byte_size,
                ids,
                field_decls,
                ctx,
            );
        }

        let mut stmts: Vec<Stmt> = vec![];
        let mut fields: Vec<Field> = vec![];

        // Add specified record fields
        for i in 0usize..ids.len() {
            let v = ids[i];
            let &(ref field_name, _, _, _, _) = &field_decls[i];

            let mut x = self.convert_expr(ctx.used(), v)?;
            stmts.append(&mut x.stmts);
            fields.push(mk().field(field_name, x.val));
        }

        // Pad out remaining omitted record fields
        for i in ids.len()..fields.len() {
            let &(ref field_name, ty, _, _, _) = &field_decls[i];
            fields.push(mk().field(
                field_name,
                self.implicit_default_expr(ty.ctype, ctx.is_static)?,
            ));
        }

        Ok(WithStmts {
            stmts,
            val: mk().struct_expr(vec![mk().path_segment(struct_name)], fields),
        })
    }
}