cairo_lang_lowering/optimizations/
reorder_statements.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
#[cfg(test)]
#[path = "reorder_statements_test.rs"]
mod test;

use std::cmp::Reverse;

use cairo_lang_utils::ordered_hash_map::OrderedHashMap;
use cairo_lang_utils::unordered_hash_map::{Entry, UnorderedHashMap};
use cairo_lang_utils::unordered_hash_set::UnorderedHashSet;
use itertools::{zip_eq, Itertools};

use crate::borrow_check::analysis::{Analyzer, BackAnalysis, StatementLocation};
use crate::db::LoweringGroup;
use crate::ids::FunctionId;
use crate::{
    BlockId, FlatLowered, MatchInfo, Statement, StatementCall, VarRemapping, VarUsage, VariableId,
};

/// Reorder the statements in the lowering in order to move variable definitions closer to their
/// usage. Statement with no side effects and unused outputs are removed.
///
/// The list of call statements that can be moved is currently hardcoded.
///
/// Removing unnecessary remapping before this optimization will result in better code.
pub fn reorder_statements(db: &dyn LoweringGroup, lowered: &mut FlatLowered) {
    if lowered.blocks.is_empty() {
        return;
    }
    let ctx = ReorderStatementsContext {
        lowered: &*lowered,
        moveable_functions: &db.priv_movable_function_ids(),
        statement_to_move: vec![],
    };
    let mut analysis = BackAnalysis::new(lowered, ctx);
    analysis.get_root_info();
    let ctx = analysis.analyzer;

    let mut changes_by_block =
        OrderedHashMap::<BlockId, Vec<(usize, Option<Statement>)>>::default();

    for (src, opt_dst) in ctx.statement_to_move.into_iter() {
        changes_by_block.entry(src.0).or_insert_with(Vec::new).push((src.1, None));

        if let Some(dst) = opt_dst {
            let statement = lowered.blocks[src.0].statements[src.1].clone();
            changes_by_block.entry(dst.0).or_insert_with(Vec::new).push((dst.1, Some(statement)));
        }
    }

    for (block_id, block_changes) in changes_by_block.into_iter() {
        let statements = &mut lowered.blocks[block_id].statements;

        // Apply block changes in reverse order to prevent a change from invalidating the
        // indices of the other changes.
        for (index, opt_statement) in
            block_changes.into_iter().sorted_by_key(|(index, _)| Reverse(*index))
        {
            match opt_statement {
                Some(stmt) => statements.insert(index, stmt),
                None => {
                    statements.remove(index);
                }
            }
        }
    }
}

#[derive(Clone, Default)]
pub struct ReorderStatementsInfo {
    // A mapping from var_id to a candidate location that it can be moved to.
    // If the variable is used in multiple match arms we define the next use to be
    // the match.
    next_use: UnorderedHashMap<VariableId, StatementLocation>,
}

pub struct ReorderStatementsContext<'a> {
    lowered: &'a FlatLowered,
    // A list of function that can be moved.
    moveable_functions: &'a UnorderedHashSet<FunctionId>,
    statement_to_move: Vec<(StatementLocation, Option<StatementLocation>)>,
}
impl ReorderStatementsContext<'_> {
    fn call_can_be_moved(&mut self, stmt: &StatementCall) -> bool {
        self.moveable_functions.contains(&stmt.function)
    }
}
impl Analyzer<'_> for ReorderStatementsContext<'_> {
    type Info = ReorderStatementsInfo;

    fn visit_stmt(
        &mut self,
        info: &mut Self::Info,
        statement_location: StatementLocation,
        stmt: &Statement,
    ) {
        let mut immovable = matches!(stmt, Statement::Call(stmt) if !self.call_can_be_moved(stmt));
        let mut optional_target_location = None;
        for var_to_move in stmt.outputs() {
            let Some((block_id, index)) = info.next_use.remove(var_to_move) else { continue };
            if let Some((target_block_id, target_index)) = &mut optional_target_location {
                *target_index = std::cmp::min(*target_index, index);
                // If the output is used in multiple places we can't move their creation point.
                immovable |= target_block_id != &block_id;
            } else {
                optional_target_location = Some((block_id, index));
            }
        }
        if immovable {
            for var_usage in stmt.inputs() {
                info.next_use.insert(var_usage.var_id, statement_location);
            }
            return;
        }

        if let Some(target_location) = optional_target_location {
            // If the statement is not removed add demand for its inputs.
            for var_usage in stmt.inputs() {
                match info.next_use.entry(var_usage.var_id) {
                    Entry::Occupied(mut e) => {
                        // Since we don't know where `e.get()` and `target_location` converge
                        // we use `statement_location` as a conservative estimate.
                        &e.insert(statement_location)
                    }
                    Entry::Vacant(e) => e.insert(target_location),
                };
            }

            self.statement_to_move.push((statement_location, Some(target_location)))
        } else if stmt.inputs().iter().all(|v| self.lowered.variables[v.var_id].droppable.is_ok()) {
            // If a movable statement is unused, and all its inputs are droppable removing it is
            // valid.
            self.statement_to_move.push((statement_location, None))
        } else {
            // Statement is unused but can't be removed.
            for var_usage in stmt.inputs() {
                info.next_use.insert(var_usage.var_id, statement_location);
            }
        }
    }

    fn visit_goto(
        &mut self,
        info: &mut Self::Info,
        statement_location: StatementLocation,
        _target_block_id: BlockId,
        remapping: &VarRemapping,
    ) {
        for VarUsage { var_id, .. } in remapping.values() {
            info.next_use.insert(*var_id, statement_location);
        }
    }

    fn merge_match(
        &mut self,
        statement_location: StatementLocation,
        match_info: &MatchInfo,
        infos: impl Iterator<Item = Self::Info>,
    ) -> Self::Info {
        let mut infos = zip_eq(infos, match_info.arms()).map(|(mut info, arm)| {
            for var_id in &arm.var_ids {
                info.next_use.remove(var_id);
            }
            info
        });
        let mut info = infos.next().unwrap_or_default();
        for arm_info in infos {
            info.next_use.merge(&arm_info.next_use, |e, _| {
                *e.into_mut() = statement_location;
            });
        }

        for var_usage in match_info.inputs() {
            info.next_use.insert(var_usage.var_id, statement_location);
        }

        info
    }

    fn info_from_return(
        &mut self,
        statement_location: StatementLocation,
        vars: &[VarUsage],
    ) -> Self::Info {
        let mut info = Self::Info::default();
        for var_usage in vars {
            info.next_use.insert(var_usage.var_id, statement_location);
        }
        info
    }
}