cairo_lang_lowering/optimizations/
match_optimizer.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
#[cfg(test)]
#[path = "match_optimizer_test.rs"]
mod test;

use cairo_lang_semantic::MatchArmSelector;
use cairo_lang_utils::ordered_hash_map::OrderedHashMap;
use cairo_lang_utils::ordered_hash_set::OrderedHashSet;
use cairo_lang_utils::unordered_hash_map::UnorderedHashMap;
use itertools::{Itertools, zip_eq};

use super::var_renamer::VarRenamer;
use crate::borrow_check::Demand;
use crate::borrow_check::analysis::{Analyzer, BackAnalysis, StatementLocation};
use crate::borrow_check::demand::EmptyDemandReporter;
use crate::utils::RebuilderEx;
use crate::{
    BlockId, FlatBlock, FlatBlockEnd, FlatLowered, MatchArm, MatchEnumInfo, MatchInfo, Statement,
    StatementEnumConstruct, VarRemapping, VarUsage, VariableId,
};

pub type MatchOptimizerDemand = Demand<VariableId, (), ()>;

/// Optimizes Statement::EnumConstruct that is followed by a match to jump to the target of the
/// relevant match arm.
///
/// For example, given:
///
/// ```plain
/// blk0:
/// Statements:
/// (v1: core::option::Option::<core::integer::u32>) <- Option::Some(v0)
/// End:
/// Goto(blk1, {v1-> v2})
///
/// blk1:
/// Statements:
/// End:
/// Match(match_enum(v2) {
///   Option::Some(v3) => blk4,
///   Option::None(v4) => blk5,
/// })
/// ```
///
/// Change `blk0` to jump directly to `blk4`.
pub fn optimize_matches(lowered: &mut FlatLowered) {
    if lowered.blocks.is_empty() {
        return;
    }
    let ctx = MatchOptimizerContext { fixes: vec![] };
    let mut analysis = BackAnalysis::new(lowered, ctx);
    analysis.get_root_info();
    let ctx = analysis.analyzer;

    let mut new_blocks = vec![];
    let mut next_block_id = BlockId(lowered.blocks.len());

    // Track variable renaming that results from applying the fixes below.
    // For each (variable_id, arm_idx) pair that is remapped (prior to the match),
    // we assign a new variable (to satisfy the SSA requirement).
    //
    // For example, consider the following blocks:
    //   blk0:
    //   Statements:
    //   (v0: test::Color) <- Color::Red(v5)
    //   End:
    //   Goto(blk1, {v1 -> v2, v0 -> v3})
    //
    //   blk1:
    //   Statements:
    //   End:
    //   Match(match_enum(v3) {
    //     Color::Red(v4) => blk2,
    //   })
    //
    // When the optimization is applied, block0 will jump directly to blk2. Since the definition of
    // v2 is at blk1, we must map v1 to a new variable.
    //
    // If there is another fix for the same match arm, the same variable will be used.
    let mut var_renaming = UnorderedHashMap::<(VariableId, usize), VariableId>::default();

    // Fixes were added in reverse order, so we apply them in reverse.
    // Either order will result in correct code, but this way variables with smaller ids appear
    // earlier.
    for FixInfo {
        statement_location,
        match_block,
        arm_idx,
        target_block,
        remapping,
        reachable_blocks,
        additional_remapping,
    } in ctx.fixes.into_iter().rev()
    {
        // Choose new variables for each destination of the additional remappings (see comment
        // above).
        let mut new_remapping = remapping.clone();
        let mut renamed_vars = OrderedHashMap::<VariableId, VariableId>::default();
        for (var, dst) in additional_remapping.iter() {
            // Allocate a new variable, if it was not allocated before.
            let new_var = *var_renaming
                .entry((*var, arm_idx))
                .or_insert_with(|| lowered.variables.alloc(lowered.variables[*var].clone()));
            new_remapping.insert(new_var, *dst);
            renamed_vars.insert(*var, new_var);
        }
        let mut var_renamer =
            VarRenamer { renamed_vars: renamed_vars.clone().into_iter().collect() };

        let block = &mut lowered.blocks[statement_location.0];
        assert_eq!(
            block.statements.len() - 1,
            statement_location.1,
            "The optimization can only be applied to the last statement in the block."
        );
        block.statements.pop();
        block.end = FlatBlockEnd::Goto(target_block, new_remapping);

        if statement_location.0 == match_block {
            // The match was removed (by the assignment of `block.end` above), no need to fix it.
            // Sanity check: there should be no additional remapping in this case.
            assert!(additional_remapping.remapping.is_empty());
            continue;
        }

        let block = &mut lowered.blocks[match_block];
        let FlatBlockEnd::Match { info: MatchInfo::Enum(MatchEnumInfo { arms, location, .. }) } =
            &mut block.end
        else {
            unreachable!("match block should end with a match.");
        };

        let arm = arms.get_mut(arm_idx).unwrap();
        if target_block != arm.block_id {
            // The match arm was already fixed, no need to fix it again.
            continue;
        }

        // Fix match arm not to jump directly to a block that has an incoming gotos and add
        // remapping that matches the goto above.
        let arm_var = arm.var_ids.get_mut(0).unwrap();
        let orig_var = *arm_var;
        *arm_var = lowered.variables.alloc(lowered.variables[orig_var].clone());
        let mut new_block_remapping: VarRemapping = Default::default();
        new_block_remapping.insert(orig_var, VarUsage { var_id: *arm_var, location: *location });
        for (var, new_var) in renamed_vars.iter() {
            new_block_remapping.insert(*new_var, VarUsage { var_id: *var, location: *location });
        }
        new_blocks.push(FlatBlock {
            statements: vec![],
            end: FlatBlockEnd::Goto(arm.block_id, new_block_remapping),
        });
        arm.block_id = next_block_id;
        next_block_id = next_block_id.next_block_id();

        // Apply the variable renaming to the reachable blocks.
        for block_id in reachable_blocks {
            let block = &mut lowered.blocks[block_id];
            *block = var_renamer.rebuild_block(block);
        }
    }

    for block in new_blocks.into_iter() {
        lowered.blocks.push(block);
    }
}

/// Returns true if the statement can be optimized out and false otherwise.
/// If the statement can be optimized, returns a [FixInfo] object.
fn statement_can_be_optimized_out(
    stmt: &Statement,
    info: &mut AnalysisInfo<'_>,
    statement_location: (BlockId, usize),
) -> Option<FixInfo> {
    let Statement::EnumConstruct(StatementEnumConstruct { variant, input, output }) = stmt else {
        return None;
    };
    let candidate = info.candidate.as_mut()?;
    if *output != candidate.match_variable {
        return None;
    }
    let (arm_idx, arm) = candidate
        .match_arms
        .iter()
        .find_position(
            |arm| matches!(&arm.arm_selector, MatchArmSelector::VariantId(v) if v == variant),
        )
        .expect("arm not found.");

    let [var_id] = arm.var_ids.as_slice() else {
        panic!("An arm of an EnumMatch should produce a single variable.");
    };

    // Prepare a remapping object for the input of the EnumConstruct, which will be used as `var_id`
    // in `arm.block_id`.
    let mut remapping = VarRemapping::default();
    remapping.insert(*var_id, *input);

    // Compute the demand based on the demand of the specific arm, rather than the current demand
    // (which contains the union of the demands from all the arms).
    // Apply the remapping of the input variable and the additional remappings if exist.
    let mut demand = candidate.arm_demands[arm_idx].clone();
    demand
        .apply_remapping(&mut EmptyDemandReporter {}, [(var_id, (&input.var_id, ()))].into_iter());

    if let Some(additional_remappings) = &candidate.additional_remappings {
        demand.apply_remapping(
            &mut EmptyDemandReporter {},
            additional_remappings
                .iter()
                .map(|(dst, src_var_usage)| (dst, (&src_var_usage.var_id, ()))),
        );
    }
    info.demand = demand;

    Some(FixInfo {
        statement_location,
        match_block: candidate.match_block,
        arm_idx,
        target_block: arm.block_id,
        remapping,
        reachable_blocks: candidate.arm_reachable_blocks[arm_idx].clone(),
        additional_remapping: candidate.additional_remappings.clone().unwrap_or_default(),
    })
}

pub struct FixInfo {
    /// The location that needs to be fixed,
    statement_location: (BlockId, usize),
    /// The block with the match statement that we want to jump over.
    match_block: BlockId,
    /// The index of the arm that we want to jump to.
    arm_idx: usize,
    /// The target block to jump to.
    target_block: BlockId,
    /// The variable remapping that should be applied.
    remapping: VarRemapping,
    /// The blocks that can be reached from the relevant arm of the match.
    reachable_blocks: OrderedHashSet<BlockId>,
    /// Additional remappings that appeared in a `Goto` leading to the match.
    additional_remapping: VarRemapping,
}

#[derive(Clone)]
struct OptimizationCandidate<'a> {
    /// The variable that is match.
    match_variable: VariableId,

    /// The match arms of the extern match that we are optimizing.
    match_arms: &'a [MatchArm],

    /// The block that the match is in.
    match_block: BlockId,

    /// The demands at the arms.
    arm_demands: Vec<MatchOptimizerDemand>,

    /// Whether there is a future merge between the match arms.
    future_merge: bool,

    /// The blocks that can be reached from each of the arms.
    arm_reachable_blocks: Vec<OrderedHashSet<BlockId>>,

    /// Additional remappings that appeared in a `Goto` leading to the match.
    additional_remappings: Option<VarRemapping>,
}

pub struct MatchOptimizerContext {
    fixes: Vec<FixInfo>,
}

#[derive(Clone)]
pub struct AnalysisInfo<'a> {
    candidate: Option<OptimizationCandidate<'a>>,
    demand: MatchOptimizerDemand,
    /// Blocks that can be reach from the current block.
    reachable_blocks: OrderedHashSet<BlockId>,
}
impl<'a> Analyzer<'a> for MatchOptimizerContext {
    type Info = AnalysisInfo<'a>;

    fn visit_block_start(&mut self, info: &mut Self::Info, block_id: BlockId, _block: &FlatBlock) {
        info.reachable_blocks.insert(block_id);
    }

    fn visit_stmt(
        &mut self,
        info: &mut Self::Info,
        statement_location: StatementLocation,
        stmt: &Statement,
    ) {
        if let Some(fix_info) = statement_can_be_optimized_out(stmt, info, statement_location) {
            self.fixes.push(fix_info);
        } else {
            info.demand.variables_introduced(&mut EmptyDemandReporter {}, stmt.outputs(), ());
            info.demand.variables_used(
                &mut EmptyDemandReporter {},
                stmt.inputs().iter().map(|VarUsage { var_id, .. }| (var_id, ())),
            );
        }

        info.candidate = None;
    }

    fn visit_goto(
        &mut self,
        info: &mut Self::Info,
        _statement_location: StatementLocation,
        _target_block_id: BlockId,
        remapping: &VarRemapping,
    ) {
        if remapping.is_empty() {
            // Do nothing. Keep the candidate if exists.
            return;
        }

        info.demand.apply_remapping(
            &mut EmptyDemandReporter {},
            remapping.iter().map(|(dst, src)| (dst, (&src.var_id, ()))),
        );

        let Some(ref mut candidate) = &mut info.candidate else {
            return;
        };

        let Some(var_usage) = remapping.get(&candidate.match_variable) else {
            // Revoke the candidate.
            info.candidate = None;
            return;
        };
        let orig_match_variable = candidate.match_variable;
        candidate.match_variable = var_usage.var_id;

        if remapping.len() > 1 {
            if candidate.future_merge || candidate.additional_remappings.is_some() {
                // TODO(ilya): Support multiple remappings with future merges.

                // Revoke the candidate.
                info.candidate = None;
            } else {
                // Store the goto's remapping, except for the match variable.
                candidate.additional_remappings = Some(VarRemapping {
                    remapping: remapping
                        .iter()
                        .filter_map(|(var, dst)| {
                            if *var != orig_match_variable { Some((*var, *dst)) } else { None }
                        })
                        .collect(),
                });
            }
        }
    }

    fn merge_match(
        &mut self,
        (block_id, _statement_idx): StatementLocation,
        match_info: &'a MatchInfo,
        infos: impl Iterator<Item = Self::Info>,
    ) -> Self::Info {
        let (arm_demands, arm_reachable_blocks): (Vec<_>, Vec<_>) =
            infos.map(|info| (info.demand, info.reachable_blocks)).unzip();

        let arm_demands_without_arm_var = zip_eq(match_info.arms(), &arm_demands)
            .map(|(arm, demand)| {
                let mut demand = demand.clone();
                // Remove the variable that is introduced by the match arm.
                demand.variables_introduced(&mut EmptyDemandReporter {}, &arm.var_ids, ());

                (demand, ())
            })
            .collect_vec();
        let mut demand = MatchOptimizerDemand::merge_demands(
            &arm_demands_without_arm_var,
            &mut EmptyDemandReporter {},
        );

        // Union the reachable blocks for all the infos.
        let mut reachable_blocks = OrderedHashSet::default();
        let mut max_possible_size = 0;
        for cur_reachable_blocks in &arm_reachable_blocks {
            reachable_blocks.extend(cur_reachable_blocks.iter().cloned());
            max_possible_size += cur_reachable_blocks.len();
        }
        // If the size of `reachable_blocks` is less than the sum of the sizes of the
        // `arm_reachable_blocks`, then there was a collision.
        let found_collision = reachable_blocks.len() < max_possible_size;

        let candidate = match match_info {
            // A match is a candidate for the optimization if it is a match on an Enum
            // and its input is unused after the match.
            MatchInfo::Enum(MatchEnumInfo { input, arms, .. })
                if !demand.vars.contains_key(&input.var_id) =>
            {
                Some(OptimizationCandidate {
                    match_variable: input.var_id,
                    match_arms: arms,
                    match_block: block_id,
                    arm_demands,
                    future_merge: found_collision,
                    arm_reachable_blocks,
                    additional_remappings: None,
                })
            }
            _ => None,
        };

        demand.variables_used(
            &mut EmptyDemandReporter {},
            match_info.inputs().iter().map(|VarUsage { var_id, .. }| (var_id, ())),
        );

        Self::Info { candidate, demand, reachable_blocks }
    }

    fn info_from_return(
        &mut self,
        _statement_location: StatementLocation,
        vars: &[VarUsage],
    ) -> Self::Info {
        let mut demand = MatchOptimizerDemand::default();
        demand.variables_used(
            &mut EmptyDemandReporter {},
            vars.iter().map(|VarUsage { var_id, .. }| (var_id, ())),
        );
        Self::Info { candidate: None, demand, reachable_blocks: Default::default() }
    }
}