cairo_lang_lowering/optimizations/
match_optimizer.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
#[cfg(test)]
#[path = "match_optimizer_test.rs"]
mod test;

use cairo_lang_semantic::MatchArmSelector;
use cairo_lang_utils::ordered_hash_map::OrderedHashMap;
use itertools::{zip_eq, Itertools};

use crate::borrow_check::analysis::{Analyzer, BackAnalysis, StatementLocation};
use crate::borrow_check::demand::DemandReporter;
use crate::borrow_check::Demand;
use crate::{
    BlockId, FlatBlock, FlatBlockEnd, FlatLowered, MatchArm, MatchEnumInfo, MatchInfo, Statement,
    StatementEnumConstruct, VarRemapping, VarUsage, VariableId,
};

pub type MatchOptimizerDemand = Demand<VariableId, (), ()>;

/// Optimizes Statement::EnumConstruct that is followed by a match to jump to the target of the
/// relevant match arm.
pub fn optimize_matches(lowered: &mut FlatLowered) {
    if lowered.blocks.is_empty() {
        return;
    }
    let ctx = MatchOptimizerContext { fixes: vec![] };
    let mut analysis = BackAnalysis::new(lowered, ctx);
    analysis.get_root_info();
    let ctx = analysis.analyzer;

    let mut new_blocks = vec![];
    let mut next_block_id = BlockId(lowered.blocks.len());

    // Fixes were added in reverse order, so we apply them in reverse.
    // Either order is will result in correct code, but this way variables with smaller ids appear
    // earlier.
    for FixInfo { statement_location, match_block, arm_idx, target_block, remapping } in
        ctx.fixes.into_iter().rev()
    {
        let block = &mut lowered.blocks[statement_location.0];
        assert_eq!(
            block.statements.len() - 1,
            statement_location.1,
            "The optimization can only be applied to the last statement in the block."
        );
        block.statements.pop();
        block.end = FlatBlockEnd::Goto(target_block, remapping);

        if statement_location.0 == match_block {
            // The match was removed, no need to fix it.
            continue;
        }

        let block = &mut lowered.blocks[match_block];
        let FlatBlockEnd::Match { info: MatchInfo::Enum(MatchEnumInfo { arms, location, .. }) } =
            &mut block.end
        else {
            unreachable!("match block should end with a match.");
        };

        let arm = arms.get_mut(arm_idx).unwrap();
        if target_block != arm.block_id {
            // The match arm was already fixed, no need to fix it again.
            continue;
        }

        // Fix match arm not to jump directly to a block that has an incoming gotos and add
        // remapping that matches the goto above.
        let arm_var = arm.var_ids.get_mut(0).unwrap();
        let orig_var = *arm_var;
        *arm_var = lowered.variables.alloc(lowered.variables[orig_var].clone());
        new_blocks.push(FlatBlock {
            statements: vec![],
            end: FlatBlockEnd::Goto(
                arm.block_id,
                VarRemapping {
                    remapping: OrderedHashMap::from_iter([(
                        orig_var,
                        VarUsage { var_id: *arm_var, location: *location },
                    )]),
                },
            ),
        });
        arm.block_id = next_block_id;
        next_block_id = next_block_id.next_block_id();
    }

    for block in new_blocks.into_iter() {
        lowered.blocks.push(block);
    }
}

pub struct MatchOptimizerContext {
    fixes: Vec<FixInfo>,
}

impl MatchOptimizerContext {
    /// Returns true if the statement can be optimized out and false otherwise.
    /// If the statement can be optimized a fix info is added to `self.fixes`.
    fn statement_can_be_optimized_out(
        &mut self,
        stmt: &Statement,
        info: &mut AnalysisInfo<'_>,
        statement_location: (BlockId, usize),
    ) -> bool {
        let Statement::EnumConstruct(StatementEnumConstruct { variant, input, output }) = stmt
        else {
            return false;
        };
        let Some(ref mut candidate) = &mut info.candidate else {
            return false;
        };
        if *output != candidate.match_variable {
            return false;
        }
        let (arm_idx, arm) = candidate
            .match_arms
            .iter()
            .find_position(|arm| {
                arm.arm_selector == MatchArmSelector::VariantId((*variant).clone())
            })
            .expect("arm not found.");

        let [var_id] = arm.var_ids.as_slice() else {
            panic!("An arm of an EnumMatch should produce a single variable.");
        };

        let mut demand = candidate.arm_demands[arm_idx].clone();

        let mut remapping = VarRemapping::default();
        // The input to EnumConstruct should be available as `var_id`
        // in `arm.block_id`
        remapping.insert(*var_id, *input);

        demand.apply_remapping(
            self,
            remapping.iter().map(|(dst, src_var_usage)| (dst, (&src_var_usage.var_id, ()))),
        );
        info.demand = demand;

        self.fixes.push(FixInfo {
            statement_location,
            match_block: candidate.match_block,
            arm_idx,
            target_block: arm.block_id,
            remapping,
        });
        true
    }
}

impl DemandReporter<VariableId> for MatchOptimizerContext {
    type IntroducePosition = ();
    type UsePosition = ();
}

pub struct FixInfo {
    /// The location that needs to be fixed,
    statement_location: (BlockId, usize),
    /// The block with the match statement that we want to jump over.
    match_block: BlockId,
    /// The index of the arm that we want to jump to.
    arm_idx: usize,
    /// The target block to jump to.
    target_block: BlockId,
    /// The variable remapping that should be applied.
    remapping: VarRemapping,
}

#[derive(Clone)]
struct OptimizationCandidate<'a> {
    /// The variable that is match.
    match_variable: VariableId,

    /// The match arms of the extern match that we are optimizing.
    match_arms: &'a [MatchArm],

    /// The block that the match is in.
    match_block: BlockId,

    /// The demands at the arms.
    arm_demands: Vec<MatchOptimizerDemand>,
}

#[derive(Clone)]
pub struct AnalysisInfo<'a> {
    candidate: Option<OptimizationCandidate<'a>>,
    demand: MatchOptimizerDemand,
}
impl<'a> Analyzer<'a> for MatchOptimizerContext {
    type Info = AnalysisInfo<'a>;

    fn visit_stmt(
        &mut self,
        info: &mut Self::Info,
        statement_location: StatementLocation,
        stmt: &Statement,
    ) {
        if !self.statement_can_be_optimized_out(stmt, info, statement_location) {
            info.demand.variables_introduced(self, stmt.outputs(), ());
            info.demand.variables_used(
                self,
                stmt.inputs().iter().map(|VarUsage { var_id, .. }| (var_id, ())),
            );
        }

        info.candidate = None;
    }

    fn visit_goto(
        &mut self,
        info: &mut Self::Info,
        _statement_location: StatementLocation,
        _target_block_id: BlockId,
        remapping: &VarRemapping,
    ) {
        if !remapping.is_empty() {
            info.demand
                .apply_remapping(self, remapping.iter().map(|(dst, src)| (dst, (&src.var_id, ()))));

            if let Some(ref mut candidate) = &mut info.candidate {
                let expected_remappings =
                    if let Some(var_usage) = remapping.get(&candidate.match_variable) {
                        candidate.match_variable = var_usage.var_id;
                        1
                    } else {
                        0
                    };

                if remapping.len() != expected_remappings {
                    // Remapping is currently not supported as it breaks SSA when we use the same
                    // remapping with different destination blocks.

                    // TODO(ilya): Support multiple remappings.
                    info.candidate = None;
                }
            }
        }
    }

    fn merge_match(
        &mut self,
        (block_id, _statement_idx): StatementLocation,
        match_info: &'a MatchInfo,
        infos: impl Iterator<Item = Self::Info>,
    ) -> Self::Info {
        let infos: Vec<_> = infos.collect();
        let arm_demands = zip_eq(match_info.arms(), &infos)
            .map(|(arm, info)| {
                let mut demand = info.demand.clone();
                demand.variables_introduced(self, &arm.var_ids, ());

                (demand, ())
            })
            .collect_vec();
        let mut demand = MatchOptimizerDemand::merge_demands(&arm_demands, self);

        let candidate = match match_info {
            // A match is a candidate for the optimization if it is a match on an Enum
            // and its input is unused after the match.
            MatchInfo::Enum(MatchEnumInfo { input, arms, .. })
                if !demand.vars.contains_key(&input.var_id) =>
            {
                Some(OptimizationCandidate {
                    match_variable: input.var_id,
                    match_arms: arms,
                    match_block: block_id,
                    arm_demands: infos.into_iter().map(|info| info.demand).collect(),
                })
            }

            _ => None,
        };

        demand.variables_used(
            self,
            match_info.inputs().iter().map(|VarUsage { var_id, .. }| (var_id, ())),
        );

        Self::Info { candidate, demand }
    }

    fn info_from_return(
        &mut self,
        _statement_location: StatementLocation,
        vars: &[VarUsage],
    ) -> Self::Info {
        let mut demand = MatchOptimizerDemand::default();
        demand.variables_used(self, vars.iter().map(|VarUsage { var_id, .. }| (var_id, ())));
        Self::Info { candidate: None, demand }
    }
}