use cairo_lang_debug::DebugWithDb;
use cairo_lang_defs::ids::LanguageElementId;
use cairo_lang_proc_macros::SemanticObject;
use itertools::Itertools;
use super::canonic::{CanonicalImpl, CanonicalMapping, CanonicalTrait, MapperError, ResultNoErrEx};
use super::infers::InferenceEmbeddings;
use super::{InferenceData, InferenceError, InferenceResult, InferenceVar, LocalImplVarId};
use crate::db::SemanticGroup;
use crate::items::imp::{find_candidates_at_context, ImplId, ImplLookupContext, UninferredImpl};
use crate::substitution::SemanticRewriter;
use crate::{ConcreteTraitId, GenericArgumentId, TypeLongId};
#[derive(Clone, PartialEq, Eq, Debug)]
pub enum SolutionSet<T> {
None,
Unique(T),
Ambiguous(Ambiguity),
}
#[derive(Clone, Debug, Eq, Hash, PartialEq, SemanticObject)]
pub enum Ambiguity {
MultipleImplsFound {
concrete_trait_id: ConcreteTraitId,
impls: Vec<ImplId>,
},
FreeVariable {
impl_id: ImplId,
#[dont_rewrite]
var: InferenceVar,
},
WillNotInfer {
concrete_trait_id: ConcreteTraitId,
},
}
impl Ambiguity {
pub fn format(&self, db: &(dyn SemanticGroup + 'static)) -> String {
match self {
Ambiguity::MultipleImplsFound { concrete_trait_id, impls } => {
let impls_str =
impls.iter().map(|imp| format!("{:?}", imp.debug(db.upcast()))).join(", ");
format!(
"Trait `{:?}` has multiple implementations, in: {impls_str}",
concrete_trait_id.debug(db)
)
}
Ambiguity::FreeVariable { impl_id, var: _ } => {
format!("Candidate impl {:?} has an unused generic parameter.", impl_id.debug(db),)
}
Ambiguity::WillNotInfer { concrete_trait_id } => {
format!(
"Cannot infer trait {:?}. First generic argument must be known.",
concrete_trait_id.debug(db)
)
}
}
}
}
pub fn canonic_trait_solutions(
db: &dyn SemanticGroup,
canonical_trait: CanonicalTrait,
lookup_context: ImplLookupContext,
) -> InferenceResult<SolutionSet<CanonicalImpl>> {
let mut solver = Solver::new(db, canonical_trait, lookup_context);
solver.solution_set(db)
}
pub fn canonic_trait_solutions_cycle(
_db: &dyn SemanticGroup,
_cycle: &[String],
_canonical_trait: &CanonicalTrait,
_lookup_context: &ImplLookupContext,
) -> InferenceResult<SolutionSet<CanonicalImpl>> {
Err(InferenceError::Cycle { var: InferenceVar::Impl(LocalImplVarId(0)) })
}
pub fn enrich_lookup_context(
db: &dyn SemanticGroup,
concrete_trait_id: ConcreteTraitId,
lookup_context: &mut ImplLookupContext,
) {
lookup_context.insert_module(concrete_trait_id.trait_id(db).module_file_id(db.upcast()).0);
let generic_args = concrete_trait_id.generic_args(db);
for generic_arg in &generic_args {
if let GenericArgumentId::Type(ty) = generic_arg {
if let TypeLongId::Concrete(concrete) = db.lookup_intern_type(*ty) {
lookup_context
.insert_module(concrete.generic_type(db).module_file_id(db.upcast()).0);
}
}
}
}
#[derive(Debug)]
pub struct Solver {
pub canonical_trait: CanonicalTrait,
pub lookup_context: ImplLookupContext,
candidate_solvers: Vec<CandidateSolver>,
}
impl Solver {
fn new(
db: &dyn SemanticGroup,
canonical_trait: CanonicalTrait,
lookup_context: ImplLookupContext,
) -> Self {
let filter = canonical_trait.0.filter(db);
let candidates =
find_candidates_at_context(db, &lookup_context, filter).unwrap_or_default();
let candidate_solvers = candidates
.into_iter()
.filter_map(|candidate| {
CandidateSolver::new(db, canonical_trait, candidate, &lookup_context).ok()
})
.collect();
Self { canonical_trait, lookup_context, candidate_solvers }
}
pub fn solution_set(
&mut self,
db: &dyn SemanticGroup,
) -> InferenceResult<SolutionSet<CanonicalImpl>> {
let mut unique_solution: Option<CanonicalImpl> = None;
for candidate_solver in &mut self.candidate_solvers {
let candidate_solution_set = candidate_solver.solution_set(db)?;
let candidate_solution = match candidate_solution_set {
SolutionSet::None => continue,
SolutionSet::Unique(candidate_solution) => candidate_solution,
SolutionSet::Ambiguous(ambiguity) => return Ok(SolutionSet::Ambiguous(ambiguity)),
};
if let Some(unique_solution) = unique_solution {
return Ok(SolutionSet::Ambiguous(Ambiguity::MultipleImplsFound {
concrete_trait_id: self.canonical_trait.0,
impls: vec![unique_solution.0, candidate_solution.0],
}));
}
unique_solution = Some(candidate_solution);
}
Ok(unique_solution.map(SolutionSet::Unique).unwrap_or(SolutionSet::None))
}
}
#[derive(Debug)]
pub struct CandidateSolver {
pub candidate: UninferredImpl,
inference_data: InferenceData,
canonical_embedding: CanonicalMapping,
candidate_impl: ImplId,
pub lookup_context: ImplLookupContext,
}
impl CandidateSolver {
fn new(
db: &dyn SemanticGroup,
canonical_trait: CanonicalTrait,
candidate: UninferredImpl,
lookup_context: &ImplLookupContext,
) -> InferenceResult<CandidateSolver> {
let mut inference_data = InferenceData::new();
let mut inference = inference_data.inference(db);
let (concrete_trait_id, canonical_embedding) = canonical_trait.embed(&mut inference);
let mut lookup_context = lookup_context.clone();
lookup_context.insert_module(candidate.module_id(db.upcast()));
let candidate_impl =
inference.infer_impl(candidate, concrete_trait_id, &lookup_context, None)?;
Ok(CandidateSolver {
candidate,
inference_data,
canonical_embedding,
candidate_impl,
lookup_context,
})
}
fn solution_set(
&mut self,
db: &dyn SemanticGroup,
) -> InferenceResult<SolutionSet<CanonicalImpl>> {
let mut inference = self.inference_data.inference(db);
let solution_set = inference.solution_set()?;
Ok(match solution_set {
SolutionSet::None => SolutionSet::None,
SolutionSet::Unique(_) => {
let candidate_impl = inference.rewrite(self.candidate_impl).no_err();
let canonical_impl =
CanonicalImpl::canonicalize(db, candidate_impl, &self.canonical_embedding);
match canonical_impl {
Ok(canonical_impl) => SolutionSet::Unique(canonical_impl),
Err(MapperError(var)) => {
SolutionSet::Ambiguous(Ambiguity::FreeVariable {
impl_id: self.candidate_impl,
var,
})
}
}
}
SolutionSet::Ambiguous(ambiguity) => SolutionSet::Ambiguous(ambiguity),
})
}
}