1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
use cairo_lang_debug::DebugWithDb;
use cairo_lang_defs::ids::LanguageElementId;
use cairo_lang_proc_macros::SemanticObject;
use itertools::Itertools;

use super::canonic::{CanonicalImpl, CanonicalMapping, CanonicalTrait, MapperError, ResultNoErrEx};
use super::infers::InferenceEmbeddings;
use super::{InferenceData, InferenceError, InferenceResult, InferenceVar, LocalImplVarId};
use crate::db::SemanticGroup;
use crate::items::imp::{find_candidates_at_context, ImplId, ImplLookupContext, UninferredImpl};
use crate::substitution::SemanticRewriter;
use crate::{ConcreteTraitId, GenericArgumentId, TypeLongId};

/// A generic solution set for an inference constraint system.
#[derive(Clone, PartialEq, Eq, Debug)]
pub enum SolutionSet<T> {
    None,
    Unique(T),
    Ambiguous(Ambiguity),
}

/// Describes the kinds of inference ambiguities.
#[derive(Clone, Debug, Eq, Hash, PartialEq, SemanticObject)]
pub enum Ambiguity {
    MultipleImplsFound {
        concrete_trait_id: ConcreteTraitId,
        impls: Vec<ImplId>,
    },
    FreeVariable {
        impl_id: ImplId,
        #[dont_rewrite]
        var: InferenceVar,
    },
    WillNotInfer {
        concrete_trait_id: ConcreteTraitId,
    },
}
impl Ambiguity {
    pub fn format(&self, db: &(dyn SemanticGroup + 'static)) -> String {
        match self {
            Ambiguity::MultipleImplsFound { concrete_trait_id, impls } => {
                let impls_str =
                    impls.iter().map(|imp| format!("{:?}", imp.debug(db.upcast()))).join(", ");
                format!(
                    "Trait `{:?}` has multiple implementations, in: {impls_str}",
                    concrete_trait_id.debug(db)
                )
            }
            Ambiguity::FreeVariable { impl_id, var: _ } => {
                format!("Candidate impl {:?} has an unused generic parameter.", impl_id.debug(db),)
            }
            Ambiguity::WillNotInfer { concrete_trait_id } => {
                format!(
                    "Cannot infer trait {:?}. First generic argument must be known.",
                    concrete_trait_id.debug(db)
                )
            }
        }
    }
}

/// Query implementation of [SemanticGroup::canonic_trait_solutions].
/// Assumes the lookup context is already enriched by [enrich_lookup_context].
pub fn canonic_trait_solutions(
    db: &dyn SemanticGroup,
    canonical_trait: CanonicalTrait,
    lookup_context: ImplLookupContext,
) -> InferenceResult<SolutionSet<CanonicalImpl>> {
    let mut solver = Solver::new(db, canonical_trait, lookup_context);
    solver.solution_set(db)
}

/// Cycle handling for [canonic_trait_solutions].
pub fn canonic_trait_solutions_cycle(
    _db: &dyn SemanticGroup,
    _cycle: &[String],
    _canonical_trait: &CanonicalTrait,
    _lookup_context: &ImplLookupContext,
) -> InferenceResult<SolutionSet<CanonicalImpl>> {
    Err(InferenceError::Cycle { var: InferenceVar::Impl(LocalImplVarId(0)) })
}

/// Adds the defining module of the trait and the generic arguments to the lookup context.
pub fn enrich_lookup_context(
    db: &dyn SemanticGroup,
    concrete_trait_id: ConcreteTraitId,
    lookup_context: &mut ImplLookupContext,
) {
    lookup_context.insert_module(concrete_trait_id.trait_id(db).module_file_id(db.upcast()).0);
    let generic_args = concrete_trait_id.generic_args(db);
    // Add the defining module of the generic params to the lookup.
    for generic_arg in &generic_args {
        if let GenericArgumentId::Type(ty) = generic_arg {
            if let TypeLongId::Concrete(concrete) = db.lookup_intern_type(*ty) {
                lookup_context
                    .insert_module(concrete.generic_type(db).module_file_id(db.upcast()).0);
            }
        }
    }
}

/// A canonical trait solver.
#[derive(Debug)]
pub struct Solver {
    pub canonical_trait: CanonicalTrait,
    pub lookup_context: ImplLookupContext,
    candidate_solvers: Vec<CandidateSolver>,
}
impl Solver {
    fn new(
        db: &dyn SemanticGroup,
        canonical_trait: CanonicalTrait,
        lookup_context: ImplLookupContext,
    ) -> Self {
        let filter = canonical_trait.0.filter(db);
        let candidates =
            find_candidates_at_context(db, &lookup_context, filter).unwrap_or_default();
        let candidate_solvers = candidates
            .into_iter()
            .filter_map(|candidate| {
                CandidateSolver::new(db, canonical_trait, candidate, &lookup_context).ok()
            })
            .collect();

        Self { canonical_trait, lookup_context, candidate_solvers }
    }

    pub fn solution_set(
        &mut self,
        db: &dyn SemanticGroup,
    ) -> InferenceResult<SolutionSet<CanonicalImpl>> {
        let mut unique_solution: Option<CanonicalImpl> = None;
        for candidate_solver in &mut self.candidate_solvers {
            let candidate_solution_set = candidate_solver.solution_set(db)?;
            let candidate_solution = match candidate_solution_set {
                SolutionSet::None => continue,
                SolutionSet::Unique(candidate_solution) => candidate_solution,
                SolutionSet::Ambiguous(ambiguity) => return Ok(SolutionSet::Ambiguous(ambiguity)),
            };
            if let Some(unique_solution) = unique_solution {
                return Ok(SolutionSet::Ambiguous(Ambiguity::MultipleImplsFound {
                    concrete_trait_id: self.canonical_trait.0,
                    impls: vec![unique_solution.0, candidate_solution.0],
                }));
            }
            unique_solution = Some(candidate_solution);
        }
        Ok(unique_solution.map(SolutionSet::Unique).unwrap_or(SolutionSet::None))
    }
}

/// A solver for a candidate to a canonical trait.
#[derive(Debug)]
pub struct CandidateSolver {
    pub candidate: UninferredImpl,
    inference_data: InferenceData,
    canonical_embedding: CanonicalMapping,
    candidate_impl: ImplId,
    pub lookup_context: ImplLookupContext,
}
impl CandidateSolver {
    fn new(
        db: &dyn SemanticGroup,
        canonical_trait: CanonicalTrait,
        candidate: UninferredImpl,
        lookup_context: &ImplLookupContext,
    ) -> InferenceResult<CandidateSolver> {
        let mut inference_data = InferenceData::new();
        let mut inference = inference_data.inference(db);
        let (concrete_trait_id, canonical_embedding) = canonical_trait.embed(&mut inference);
        // Add the defining module of the candidate to the lookup.
        let mut lookup_context = lookup_context.clone();
        lookup_context.insert_module(candidate.module_id(db.upcast()));
        // Instantiate the candidate in the inference table.
        let candidate_impl =
            inference.infer_impl(candidate, concrete_trait_id, &lookup_context, None)?;

        Ok(CandidateSolver {
            candidate,
            inference_data,
            canonical_embedding,
            candidate_impl,
            lookup_context,
        })
    }
    fn solution_set(
        &mut self,
        db: &dyn SemanticGroup,
    ) -> InferenceResult<SolutionSet<CanonicalImpl>> {
        let mut inference = self.inference_data.inference(db);
        let solution_set = inference.solution_set()?;
        Ok(match solution_set {
            SolutionSet::None => SolutionSet::None,
            SolutionSet::Unique(_) => {
                let candidate_impl = inference.rewrite(self.candidate_impl).no_err();
                let canonical_impl =
                    CanonicalImpl::canonicalize(db, candidate_impl, &self.canonical_embedding);
                match canonical_impl {
                    Ok(canonical_impl) => SolutionSet::Unique(canonical_impl),
                    Err(MapperError(var)) => {
                        // Free variable.
                        SolutionSet::Ambiguous(Ambiguity::FreeVariable {
                            impl_id: self.candidate_impl,
                            var,
                        })
                    }
                }
            }
            SolutionSet::Ambiguous(ambiguity) => SolutionSet::Ambiguous(ambiguity),
        })
    }
}