cairo_lang_semantic/expr/
inference.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
//! Bidirectional type inference.

use std::collections::{HashMap, VecDeque};
use std::hash::Hash;
use std::mem;
use std::ops::{Deref, DerefMut};

use cairo_lang_debug::DebugWithDb;
use cairo_lang_defs::ids::{
    ConstantId, EnumId, ExternFunctionId, ExternTypeId, FreeFunctionId, GenericParamId,
    ImplAliasId, ImplDefId, ImplFunctionId, ImplImplDefId, LanguageElementId, LocalVarId,
    LookupItemId, MemberId, ParamId, StructId, TraitConstantId, TraitFunctionId, TraitId,
    TraitImplId, TraitTypeId, VarId, VariantId,
};
use cairo_lang_diagnostics::{skip_diagnostic, DiagnosticAdded};
use cairo_lang_proc_macros::{DebugWithDb, SemanticObject};
use cairo_lang_syntax::node::ids::SyntaxStablePtrId;
use cairo_lang_utils::ordered_hash_map::{Entry, OrderedHashMap};
use cairo_lang_utils::{define_short_id, extract_matches, Intern, LookupIntern};

use self::canonic::{CanonicalImpl, CanonicalMapping, CanonicalTrait, NoError};
use self::solver::{enrich_lookup_context, Ambiguity, SolutionSet};
use crate::corelib::{core_felt252_ty, get_core_trait, numeric_literal_trait, CoreTraitContext};
use crate::db::SemanticGroup;
use crate::diagnostic::{SemanticDiagnosticKind, SemanticDiagnostics, SemanticDiagnosticsBuilder};
use crate::expr::inference::canonic::ResultNoErrEx;
use crate::expr::inference::conform::InferenceConform;
use crate::expr::objects::*;
use crate::expr::pattern::*;
use crate::items::constant::{ConstValue, ConstValueId, ImplConstantId};
use crate::items::functions::{
    ConcreteFunctionWithBody, ConcreteFunctionWithBodyId, GenericFunctionId,
    GenericFunctionWithBodyId, ImplFunctionBodyId, ImplGenericFunctionId,
    ImplGenericFunctionWithBodyId,
};
use crate::items::generics::{GenericParamConst, GenericParamImpl, GenericParamType};
use crate::items::imp::{
    GeneratedImplId, GeneratedImplItems, GeneratedImplLongId, ImplId, ImplImplId, ImplLongId,
    ImplLookupContext, UninferredGeneratedImplId, UninferredGeneratedImplLongId, UninferredImpl,
};
use crate::items::trt::{ConcreteTraitGenericFunctionId, ConcreteTraitGenericFunctionLongId};
use crate::substitution::{HasDb, RewriteResult, SemanticRewriter, SubstitutionRewriter};
use crate::types::{
    ClosureTypeLongId, ConcreteEnumLongId, ConcreteExternTypeLongId, ConcreteStructLongId,
    ImplTypeId,
};
use crate::{
    add_basic_rewrites, add_expr_rewrites, add_rewrite, semantic_object_for_id, ConcreteEnumId,
    ConcreteExternTypeId, ConcreteFunction, ConcreteImplId, ConcreteImplLongId, ConcreteStructId,
    ConcreteTraitId, ConcreteTraitLongId, ConcreteTypeId, ConcreteVariant, FunctionId,
    FunctionLongId, GenericArgumentId, GenericParam, LocalVariable, MatchArmSelector, Member,
    Parameter, SemanticObject, Signature, TypeId, TypeLongId, ValueSelectorArm,
};

pub mod canonic;
pub mod conform;
pub mod infers;
pub mod solver;

/// A type variable, created when a generic type argument is not passed, and thus is not known
/// yet and needs to be inferred.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub struct TypeVar {
    pub inference_id: InferenceId,
    pub id: LocalTypeVarId,
}

/// A const variable, created when a generic const argument is not passed, and thus is not known
/// yet and needs to be inferred.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub struct ConstVar {
    pub inference_id: InferenceId,
    pub id: LocalConstVarId,
}

/// An id for an inference context. Each inference variable is associated with an inference id.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, DebugWithDb, SemanticObject)]
#[debug_db(dyn SemanticGroup + 'static)]
pub enum InferenceId {
    LookupItemDeclaration(LookupItemId),
    LookupItemGenerics(LookupItemId),
    LookupItemDefinition(LookupItemId),
    ImplDefTrait(ImplDefId),
    ImplAliasImplDef(ImplAliasId),
    GenericParam(GenericParamId),
    GenericImplParamTrait(GenericParamId),
    Canonical,
    /// For resolving that will not be used anywhere in the semantic model.
    NoContext,
}

/// An impl variable, created when a generic type argument is not passed, and thus is not known
/// yet and needs to be inferred.
#[derive(Clone, Debug, PartialEq, Eq, Hash, DebugWithDb, SemanticObject)]
#[debug_db(dyn SemanticGroup + 'static)]
pub struct ImplVar {
    pub inference_id: InferenceId,
    #[dont_rewrite]
    pub id: LocalImplVarId,
    pub concrete_trait_id: ConcreteTraitId,
    #[dont_rewrite]
    pub lookup_context: ImplLookupContext,
}
impl ImplVar {
    pub fn intern(&self, db: &dyn SemanticGroup) -> ImplVarId {
        self.clone().intern(db)
    }
}

#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, SemanticObject)]
pub struct LocalTypeVarId(pub usize);
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, SemanticObject)]
pub struct LocalImplVarId(pub usize);

#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, SemanticObject)]
pub struct LocalConstVarId(pub usize);

define_short_id!(ImplVarId, ImplVar, SemanticGroup, lookup_intern_impl_var, intern_impl_var);
impl ImplVarId {
    pub fn id(&self, db: &dyn SemanticGroup) -> LocalImplVarId {
        self.lookup_intern(db).id
    }
    pub fn concrete_trait_id(&self, db: &dyn SemanticGroup) -> ConcreteTraitId {
        self.lookup_intern(db).concrete_trait_id
    }
    pub fn lookup_context(&self, db: &dyn SemanticGroup) -> ImplLookupContext {
        self.lookup_intern(db).lookup_context
    }
}
semantic_object_for_id!(ImplVarId, lookup_intern_impl_var, intern_impl_var, ImplVar);

#[derive(Copy, Clone, Debug, Eq, Hash, PartialEq, SemanticObject)]
pub enum InferenceVar {
    Type(LocalTypeVarId),
    Const(LocalConstVarId),
    Impl(LocalImplVarId),
}

// TODO(spapini): Add to diagnostics.
#[derive(Clone, Debug, Eq, Hash, PartialEq, DebugWithDb)]
#[debug_db(dyn SemanticGroup + 'static)]
pub enum InferenceError {
    /// An inference error wrapping a previously reported error.
    Reported(DiagnosticAdded),
    Cycle(InferenceVar),
    TypeKindMismatch {
        ty0: TypeId,
        ty1: TypeId,
    },
    ConstKindMismatch {
        const0: ConstValueId,
        const1: ConstValueId,
    },
    ImplKindMismatch {
        impl0: ImplId,
        impl1: ImplId,
    },
    GenericArgMismatch {
        garg0: GenericArgumentId,
        garg1: GenericArgumentId,
    },
    TraitMismatch {
        trt0: TraitId,
        trt1: TraitId,
    },
    GenericFunctionMismatch {
        func0: GenericFunctionId,
        func1: GenericFunctionId,
    },
    ConstInferenceNotSupported,

    // TODO(spapini): These are only used for external interface. Separate them along with the
    // finalize() function to a wrapper.
    NoImplsFound(ConcreteTraitId),
    Ambiguity(Ambiguity),
    TypeNotInferred(TypeId),
}
impl InferenceError {
    pub fn format(&self, db: &(dyn SemanticGroup + 'static)) -> String {
        match self {
            InferenceError::Reported(_) => "Inference error occurred.".into(),
            InferenceError::Cycle(_var) => "Inference cycle detected".into(),
            InferenceError::TypeKindMismatch { ty0, ty1 } => {
                format!("Type mismatch: `{:?}` and `{:?}`.", ty0.debug(db), ty1.debug(db))
            }
            InferenceError::ConstKindMismatch { const0, const1 } => {
                format!("Const mismatch: `{:?}` and `{:?}`.", const0.debug(db), const1.debug(db))
            }
            InferenceError::ImplKindMismatch { impl0, impl1 } => {
                format!("Impl mismatch: `{:?}` and `{:?}`.", impl0.debug(db), impl1.debug(db))
            }
            InferenceError::GenericArgMismatch { garg0, garg1 } => {
                format!(
                    "Generic arg mismatch: `{:?}` and `{:?}`.",
                    garg0.debug(db),
                    garg1.debug(db)
                )
            }
            InferenceError::TraitMismatch { trt0, trt1 } => {
                format!("Trait mismatch: `{:?}` and `{:?}`.", trt0.debug(db), trt1.debug(db))
            }
            InferenceError::ConstInferenceNotSupported => {
                "Const generic inference not yet supported.".into()
            }
            InferenceError::NoImplsFound(concrete_trait_id) => {
                let trait_id = concrete_trait_id.trait_id(db);
                if trait_id == numeric_literal_trait(db) {
                    let generic_type = extract_matches!(
                        concrete_trait_id.generic_args(db)[0],
                        GenericArgumentId::Type
                    );
                    return format!(
                        "Mismatched types. The type `{:?}` cannot be created from a numeric \
                         literal.",
                        generic_type.debug(db)
                    );
                } else if trait_id
                    == get_core_trait(db, CoreTraitContext::TopLevel, "StringLiteral".into())
                {
                    let generic_type = extract_matches!(
                        concrete_trait_id.generic_args(db)[0],
                        GenericArgumentId::Type
                    );
                    return format!(
                        "Mismatched types. The type `{:?}` cannot be created from a string \
                         literal.",
                        generic_type.debug(db)
                    );
                }
                format!(
                    "Trait has no implementation in context: {:?}.",
                    concrete_trait_id.debug(db)
                )
            }
            InferenceError::Ambiguity(ambiguity) => ambiguity.format(db),
            InferenceError::TypeNotInferred(ty) => {
                format!("Type annotations needed. Failed to infer {:?}.", ty.debug(db))
            }
            InferenceError::GenericFunctionMismatch { func0, func1 } => {
                format!("Function mismatch: `{}` and `{}`.", func0.format(db), func1.format(db))
            }
        }
    }
}

impl InferenceError {
    pub fn report(
        &self,
        diagnostics: &mut SemanticDiagnostics,
        stable_ptr: SyntaxStablePtrId,
    ) -> DiagnosticAdded {
        match self {
            InferenceError::Reported(diagnostic_added) => *diagnostic_added,
            _ => diagnostics
                .report(stable_ptr, SemanticDiagnosticKind::InternalInferenceError(self.clone())),
        }
    }
}

/// This struct is used to ensure that when an inference error occurs, it is properly set in the
/// `Inference` object, and then properly consumed.
///
/// It must not be constructed directly. Instead, it is returned by [Inference::set_error].
#[derive(Clone, Copy, Debug, Default, Eq, Hash, PartialEq)]
pub struct ErrorSet;

pub type InferenceResult<T> = Result<T, ErrorSet>;

#[derive(Copy, Clone, Debug, Eq, Hash, PartialEq)]
pub enum InferenceErrorStatus {
    Pending,
    Consumed,
}

/// A mapping of an impl var's trait items to concrete items
#[derive(Debug, Default, PartialEq, Eq, Clone)]
pub struct ImplVarTraitItemMappings {
    /// The trait types of the impl var.
    types: HashMap<TraitTypeId, TypeId>,
    /// The trait constants of the impl var.
    constants: HashMap<TraitConstantId, ConstValueId>,
    /// The trait impls of the impl var.
    impls: HashMap<TraitImplId, ImplId>,
}

/// State of inference.
#[derive(Debug, DebugWithDb, PartialEq, Eq)]
#[debug_db(dyn SemanticGroup + 'static)]
pub struct InferenceData {
    pub inference_id: InferenceId,
    /// Current inferred assignment for type variables.
    pub type_assignment: HashMap<LocalTypeVarId, TypeId>,
    /// Current inferred assignment for const variables.
    pub const_assignment: HashMap<LocalConstVarId, ConstValueId>,
    /// Current inferred assignment for impl variables.
    pub impl_assignment: HashMap<LocalImplVarId, ImplId>,
    /// Unsolved impl variables mapping to a maps of trait items to a corresponding item variable.
    /// Upon solution of the trait conforms the fully known item to the variable.
    pub impl_vars_trait_item_mappings: HashMap<LocalImplVarId, ImplVarTraitItemMappings>,
    /// Type variables.
    pub type_vars: Vec<TypeVar>,
    /// Const variables.
    pub const_vars: Vec<ConstVar>,
    /// Impl variables.
    pub impl_vars: Vec<ImplVar>,
    /// Mapping from variables to stable pointers, if exist.
    pub stable_ptrs: HashMap<InferenceVar, SyntaxStablePtrId>,
    /// Inference variables that are pending to be solved.
    pending: VecDeque<LocalImplVarId>,
    /// Inference variables that have been refuted - no solutions exist.
    refuted: Vec<LocalImplVarId>,
    /// Inference variables that have been solved.
    solved: Vec<LocalImplVarId>,
    /// Inference variables that are currently ambiguous. May be solved later.
    ambiguous: Vec<(LocalImplVarId, Ambiguity)>,
    /// Mapping from impl types to type variables.
    pub impl_type_bounds: OrderedHashMap<ImplTypeId, TypeId>,

    // Error handling members.
    /// The current error status.
    pub error_status: Result<(), InferenceErrorStatus>,
    /// `Some` only when error_state is Err(Pending).
    error: Option<InferenceError>,
    /// `Some` only when error_state is Err(Consumed).
    consumed_error: Option<DiagnosticAdded>,
}
impl InferenceData {
    pub fn new(inference_id: InferenceId) -> Self {
        Self {
            inference_id,
            type_assignment: HashMap::new(),
            impl_assignment: HashMap::new(),
            const_assignment: HashMap::new(),
            impl_vars_trait_item_mappings: HashMap::new(),
            type_vars: Vec::new(),
            impl_vars: Vec::new(),
            const_vars: Vec::new(),
            stable_ptrs: HashMap::new(),
            pending: VecDeque::new(),
            refuted: Vec::new(),
            solved: Vec::new(),
            ambiguous: Vec::new(),
            impl_type_bounds: OrderedHashMap::default(),
            error_status: Ok(()),
            error: None,
            consumed_error: None,
        }
    }
    pub fn inference<'db, 'b: 'db>(&'db mut self, db: &'b dyn SemanticGroup) -> Inference<'db> {
        Inference::new(db, self)
    }
    pub fn clone_with_inference_id(
        &self,
        db: &dyn SemanticGroup,
        inference_id: InferenceId,
    ) -> InferenceData {
        let mut inference_id_replacer =
            InferenceIdReplacer::new(db, self.inference_id, inference_id);
        Self {
            inference_id,
            type_assignment: self
                .type_assignment
                .iter()
                .map(|(k, v)| (*k, inference_id_replacer.rewrite(*v).no_err()))
                .collect(),
            const_assignment: self
                .const_assignment
                .iter()
                .map(|(k, v)| (*k, inference_id_replacer.rewrite(*v).no_err()))
                .collect(),
            impl_assignment: self
                .impl_assignment
                .iter()
                .map(|(k, v)| (*k, inference_id_replacer.rewrite(*v).no_err()))
                .collect(),
            impl_vars_trait_item_mappings: self
                .impl_vars_trait_item_mappings
                .iter()
                .map(|(k, mappings)| {
                    (
                        *k,
                        ImplVarTraitItemMappings {
                            types: mappings
                                .types
                                .iter()
                                .map(|(k, v)| (*k, inference_id_replacer.rewrite(*v).no_err()))
                                .collect(),
                            constants: mappings
                                .constants
                                .iter()
                                .map(|(k, v)| (*k, inference_id_replacer.rewrite(*v).no_err()))
                                .collect(),
                            impls: mappings
                                .impls
                                .iter()
                                .map(|(k, v)| (*k, inference_id_replacer.rewrite(*v).no_err()))
                                .collect(),
                        },
                    )
                })
                .collect(),
            type_vars: inference_id_replacer.rewrite(self.type_vars.clone()).no_err(),
            const_vars: inference_id_replacer.rewrite(self.const_vars.clone()).no_err(),
            impl_vars: inference_id_replacer.rewrite(self.impl_vars.clone()).no_err(),
            stable_ptrs: self.stable_ptrs.clone(),
            pending: inference_id_replacer.rewrite(self.pending.clone()).no_err(),
            refuted: inference_id_replacer.rewrite(self.refuted.clone()).no_err(),
            solved: inference_id_replacer.rewrite(self.solved.clone()).no_err(),
            ambiguous: inference_id_replacer.rewrite(self.ambiguous.clone()).no_err(),
            impl_type_bounds: self
                .impl_type_bounds
                .iter()
                .map(|(k, v)| (*k, inference_id_replacer.rewrite(*v).no_err()))
                .collect(),
            error_status: self.error_status,
            error: self.error.clone(),
            consumed_error: self.consumed_error,
        }
    }
    pub fn temporary_clone(&self) -> InferenceData {
        Self {
            inference_id: self.inference_id,
            type_assignment: self.type_assignment.clone(),
            const_assignment: self.const_assignment.clone(),
            impl_assignment: self.impl_assignment.clone(),
            impl_vars_trait_item_mappings: self.impl_vars_trait_item_mappings.clone(),
            type_vars: self.type_vars.clone(),
            const_vars: self.const_vars.clone(),
            impl_vars: self.impl_vars.clone(),
            stable_ptrs: self.stable_ptrs.clone(),
            pending: self.pending.clone(),
            refuted: self.refuted.clone(),
            solved: self.solved.clone(),
            ambiguous: self.ambiguous.clone(),
            impl_type_bounds: self.impl_type_bounds.clone(),
            error_status: self.error_status,
            error: self.error.clone(),
            consumed_error: self.consumed_error,
        }
    }
}

/// State of inference. A system of inference constraints.
pub struct Inference<'db> {
    db: &'db dyn SemanticGroup,
    pub data: &'db mut InferenceData,
}

impl Deref for Inference<'_> {
    type Target = InferenceData;

    fn deref(&self) -> &Self::Target {
        self.data
    }
}
impl DerefMut for Inference<'_> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        self.data
    }
}

impl<'db> std::fmt::Debug for Inference<'db> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        let x = self.data.debug(self.db.elongate());
        write!(f, "{x:?}")
    }
}

impl<'db> Inference<'db> {
    fn new(db: &'db dyn SemanticGroup, data: &'db mut InferenceData) -> Self {
        Self { db, data }
    }

    /// Getter for an [ImplVar].
    fn impl_var(&self, var_id: LocalImplVarId) -> &ImplVar {
        &self.impl_vars[var_id.0]
    }

    /// Getter for an impl var assignment.
    pub fn impl_assignment(&self, var_id: LocalImplVarId) -> Option<ImplId> {
        self.impl_assignment.get(&var_id).copied()
    }

    /// Getter for a type var assignment.
    fn type_assignment(&self, var_id: LocalTypeVarId) -> Option<TypeId> {
        self.type_assignment.get(&var_id).copied()
    }

    /// Allocates a new [TypeVar] for an unknown type that needs to be inferred.
    /// Returns a wrapping TypeId.
    pub fn new_type_var(&mut self, stable_ptr: Option<SyntaxStablePtrId>) -> TypeId {
        let var = self.new_type_var_raw(stable_ptr);

        TypeLongId::Var(var).intern(self.db)
    }

    /// Allocates a new [TypeVar] for an unknown type that needs to be inferred.
    /// Returns the variable id.
    pub fn new_type_var_raw(&mut self, stable_ptr: Option<SyntaxStablePtrId>) -> TypeVar {
        let var =
            TypeVar { inference_id: self.inference_id, id: LocalTypeVarId(self.type_vars.len()) };
        if let Some(stable_ptr) = stable_ptr {
            self.stable_ptrs.insert(InferenceVar::Type(var.id), stable_ptr);
        }
        self.type_vars.push(var);
        var
    }

    /// Getter for an impl type assignment.
    /// Creates a new type var if the impl type is not yet assigned.
    pub fn impl_type_assignment(&mut self, impl_type: ImplTypeId) -> TypeId {
        match self.data.impl_type_bounds.entry(impl_type) {
            Entry::Occupied(entry) => *entry.get(),
            Entry::Vacant(entry) => {
                let inference_id = self.data.inference_id;
                let id = LocalTypeVarId(self.data.type_vars.len());
                let var = TypeVar { inference_id, id };
                let ty = TypeLongId::Var(var).intern(self.db);
                entry.insert(ty);
                self.type_vars.push(var);
                ty
            }
        }
    }

    /// If an impl type is not fully inferred, we assign it's var to the original type
    pub fn finalize_impl_type_bounds(&mut self) {
        let mut impl_type_bounds = std::mem::take(&mut self.data.impl_type_bounds);
        impl_type_bounds.retain(|impl_type, ty| {
            if !matches!(self.rewrite(ty.lookup_intern(self.db)).no_err(), TypeLongId::Var(_)) {
                return true;
            }

            self.conform_ty(*ty, TypeLongId::ImplType(*impl_type).intern(self.db)).ok();
            false
        });
        self.data.impl_type_bounds = impl_type_bounds;
    }

    /// Allocates a new [ConstVar] for an unknown consts that needs to be inferred.
    /// Returns a wrapping [ConstValueId].
    pub fn new_const_var(
        &mut self,
        stable_ptr: Option<SyntaxStablePtrId>,
        ty: TypeId,
    ) -> ConstValueId {
        let var = self.new_const_var_raw(stable_ptr);
        ConstValue::Var(var, ty).intern(self.db)
    }

    /// Allocates a new [ConstVar] for an unknown type that needs to be inferred.
    /// Returns the variable id.
    pub fn new_const_var_raw(&mut self, stable_ptr: Option<SyntaxStablePtrId>) -> ConstVar {
        let var = ConstVar {
            inference_id: self.inference_id,
            id: LocalConstVarId(self.const_vars.len()),
        };
        if let Some(stable_ptr) = stable_ptr {
            self.stable_ptrs.insert(InferenceVar::Const(var.id), stable_ptr);
        }
        self.const_vars.push(var);
        var
    }

    /// Allocates a new [ImplVar] for an unknown type that needs to be inferred.
    /// Returns a wrapping ImplId.
    pub fn new_impl_var(
        &mut self,
        concrete_trait_id: ConcreteTraitId,
        stable_ptr: Option<SyntaxStablePtrId>,
        lookup_context: ImplLookupContext,
    ) -> ImplId {
        let var = self.new_impl_var_raw(lookup_context, concrete_trait_id, stable_ptr);
        ImplLongId::ImplVar(self.impl_var(var).intern(self.db)).intern(self.db)
    }

    /// Allocates a new [ImplVar] for an unknown type that needs to be inferred.
    /// Returns the variable id.
    fn new_impl_var_raw(
        &mut self,
        lookup_context: ImplLookupContext,
        concrete_trait_id: ConcreteTraitId,
        stable_ptr: Option<SyntaxStablePtrId>,
    ) -> LocalImplVarId {
        let mut lookup_context = lookup_context;
        lookup_context
            .insert_module(concrete_trait_id.trait_id(self.db).module_file_id(self.db.upcast()).0);

        let id = LocalImplVarId(self.impl_vars.len());
        if let Some(stable_ptr) = stable_ptr {
            self.stable_ptrs.insert(InferenceVar::Impl(id), stable_ptr);
        }
        let var =
            ImplVar { inference_id: self.inference_id, id, concrete_trait_id, lookup_context };
        self.impl_vars.push(var);
        self.pending.push_back(id);
        id
    }

    /// Solves the inference system. After a successful solve, there are no more pending impl
    /// inferences.
    /// Returns whether the inference was successful. If not, the error may be found by
    /// `.error_state()`.
    pub fn solve(&mut self) -> InferenceResult<()> {
        self.solve_ex().map_err(|(err_set, _)| err_set)
    }

    /// Same as `solve`, but returns the error stable pointer if an error occurred.
    fn solve_ex(&mut self) -> Result<(), (ErrorSet, Option<SyntaxStablePtrId>)> {
        let mut ambiguous = std::mem::take(&mut self.ambiguous);
        self.pending.extend(ambiguous.drain(..).map(|(var, _)| var));
        while let Some(var) = self.pending.pop_front() {
            // First inference error stops inference.
            self.solve_single_pending(var).map_err(|err_set| {
                (err_set, self.stable_ptrs.get(&InferenceVar::Impl(var)).copied())
            })?;
        }
        Ok(())
    }

    fn solve_single_pending(&mut self, var: LocalImplVarId) -> InferenceResult<()> {
        if self.impl_assignment.contains_key(&var) {
            return Ok(());
        }
        let solution = match self.impl_var_solution_set(var)? {
            SolutionSet::None => {
                self.refuted.push(var);
                return Ok(());
            }
            SolutionSet::Ambiguous(ambiguity) => {
                self.ambiguous.push((var, ambiguity));
                return Ok(());
            }
            SolutionSet::Unique(solution) => solution,
        };

        // Solution found. Assign it.
        self.assign_local_impl(var, solution)?;

        // Something changed.
        self.solved.push(var);
        let mut ambiguous = std::mem::take(&mut self.ambiguous);
        self.pending.extend(ambiguous.drain(..).map(|(var, _)| var));

        Ok(())
    }

    /// Returns the solution set status for the inference:
    /// Whether there is a unique solution, multiple solutions, no solutions or an error.
    pub fn solution_set(&mut self) -> InferenceResult<SolutionSet<()>> {
        self.solve()?;
        if !self.refuted.is_empty() {
            return Ok(SolutionSet::None);
        }
        if let Some((_, ambiguity)) = self.ambiguous.first() {
            return Ok(SolutionSet::Ambiguous(ambiguity.clone()));
        }
        assert!(self.pending.is_empty(), "solution() called on an unsolved solver");
        Ok(SolutionSet::Unique(()))
    }

    /// Finalizes the inference by inferring uninferred numeric literals as felt252.
    /// Returns an error and does not report it.
    pub fn finalize_without_reporting(
        &mut self,
    ) -> Result<(), (ErrorSet, Option<SyntaxStablePtrId>)> {
        if self.error_status.is_err() {
            // TODO(yuval): consider adding error location to the set error.
            return Err((ErrorSet, None));
        }

        let numeric_trait_id = numeric_literal_trait(self.db);
        let felt_ty = core_felt252_ty(self.db);

        // Conform all uninferred numeric literals to felt252.
        loop {
            let mut changed = false;
            self.solve_ex()?;
            for (var, _) in self.ambiguous.clone() {
                let impl_var = self.impl_var(var).clone();
                if impl_var.concrete_trait_id.trait_id(self.db) != numeric_trait_id {
                    continue;
                }
                // Uninferred numeric trait. Resolve as felt252.
                let ty = extract_matches!(
                    impl_var.concrete_trait_id.generic_args(self.db)[0],
                    GenericArgumentId::Type
                );
                if self.rewrite(ty).no_err() == felt_ty {
                    continue;
                }
                self.conform_ty(ty, felt_ty).map_err(|err_set| {
                    (err_set, self.stable_ptrs.get(&InferenceVar::Impl(impl_var.id)).copied())
                })?;
                changed = true;
                break;
            }
            if !changed {
                break;
            }
        }
        assert!(
            self.pending.is_empty(),
            "pending should all be solved by this point. Guaranteed by solve()."
        );

        let Some((var, err)) = self.first_undetermined_variable() else {
            return Ok(());
        };
        Err((self.set_error(err), self.stable_ptrs.get(&var).copied()))
    }

    /// Finalizes the inference and report diagnostics if there are any errors.
    /// All the remaining type vars are mapped to the `missing` type, to prevent additional
    /// diagnostics.
    pub fn finalize(
        &mut self,
        diagnostics: &mut SemanticDiagnostics,
        stable_ptr: SyntaxStablePtrId,
    ) {
        if let Err((err_set, err_stable_ptr)) = self.finalize_without_reporting() {
            let diag = self.report_on_pending_error(
                err_set,
                diagnostics,
                err_stable_ptr.unwrap_or(stable_ptr),
            );

            let ty_missing = TypeId::missing(self.db, diag);
            for var in &self.data.type_vars {
                self.data.type_assignment.entry(var.id).or_insert(ty_missing);
            }
        }
    }

    /// Retrieves the first variable that is still not inferred, or None, if everything is
    /// inferred.
    /// Does not set the error but return it, which is ok as this is a private helper function.
    fn first_undetermined_variable(&mut self) -> Option<(InferenceVar, InferenceError)> {
        for (id, var) in self.type_vars.iter().enumerate() {
            if self.type_assignment(LocalTypeVarId(id)).is_none() {
                let ty = TypeLongId::Var(*var).intern(self.db);
                return Some((InferenceVar::Type(var.id), InferenceError::TypeNotInferred(ty)));
            }
        }
        if let Some(var) = self.refuted.first().copied() {
            let impl_var = self.impl_var(var).clone();
            let concrete_trait_id = impl_var.concrete_trait_id;
            let concrete_trait_id = self.rewrite(concrete_trait_id).no_err();
            return Some((
                InferenceVar::Impl(var),
                InferenceError::NoImplsFound(concrete_trait_id),
            ));
        }
        if let Some((var, ambiguity)) = self.ambiguous.first() {
            let var = *var;
            // Note: do not rewrite `ambiguity`, since it is expressed in canonical variables.
            return Some((InferenceVar::Impl(var), InferenceError::Ambiguity(ambiguity.clone())));
        }
        None
    }

    /// Assigns a value to a local impl variable id. See assign_impl().
    fn assign_local_impl(
        &mut self,
        var: LocalImplVarId,
        impl_id: ImplId,
    ) -> InferenceResult<ImplId> {
        let concrete_trait = impl_id
            .concrete_trait(self.db)
            .map_err(|diag_added| self.set_error(InferenceError::Reported(diag_added)))?;
        self.conform_traits(self.impl_var(var).concrete_trait_id, concrete_trait)?;
        if let Some(other_impl) = self.impl_assignment(var) {
            return self.conform_impl(impl_id, other_impl);
        }
        if !impl_id.is_var_free(self.db) && self.impl_contains_var(impl_id, InferenceVar::Impl(var))
        {
            return Err(self.set_error(InferenceError::Cycle(InferenceVar::Impl(var))));
        }
        self.impl_assignment.insert(var, impl_id);
        if let Some(mappings) = self.impl_vars_trait_item_mappings.remove(&var) {
            for (trait_ty, ty) in mappings.types {
                self.conform_ty(
                    ty,
                    self.db
                        .impl_type_concrete_implized(ImplTypeId::new(impl_id, trait_ty, self.db))
                        .map_err(|_| ErrorSet)?,
                )?;
            }
            for (trait_constant, constant_id) in mappings.constants {
                self.conform_const(
                    constant_id,
                    self.db
                        .impl_constant_concrete_implized_value(ImplConstantId::new(
                            impl_id,
                            trait_constant,
                            self.db,
                        ))
                        .map_err(|_| ErrorSet)?,
                )?;
            }
            for (trait_impl, inner_impl_id) in mappings.impls {
                self.conform_impl(
                    inner_impl_id,
                    self.db
                        .impl_impl_concrete_implized(ImplImplId::new(impl_id, trait_impl, self.db))
                        .map_err(|_| ErrorSet)?,
                )?;
            }
        }
        Ok(impl_id)
    }

    /// Tries to assigns value to an [ImplVarId]. Return the assigned impl, or an error.
    fn assign_impl(&mut self, var_id: ImplVarId, impl_id: ImplId) -> InferenceResult<ImplId> {
        let var = var_id.lookup_intern(self.db);
        if var.inference_id != self.inference_id {
            return Err(self.set_error(InferenceError::ImplKindMismatch {
                impl0: ImplLongId::ImplVar(var_id).intern(self.db),
                impl1: impl_id,
            }));
        }
        self.assign_local_impl(var.id, impl_id)
    }

    /// Assigns a value to a [TypeVar]. Return the assigned type, or an error.
    /// Assumes the variable is not already assigned.
    fn assign_ty(&mut self, var: TypeVar, ty: TypeId) -> InferenceResult<TypeId> {
        if var.inference_id != self.inference_id {
            return Err(self.set_error(InferenceError::TypeKindMismatch {
                ty0: TypeLongId::Var(var).intern(self.db),
                ty1: ty,
            }));
        }
        assert!(!self.type_assignment.contains_key(&var.id), "Cannot reassign variable.");
        let inference_var = InferenceVar::Type(var.id);
        if !ty.is_var_free(self.db) && self.ty_contains_var(ty, inference_var) {
            return Err(self.set_error(InferenceError::Cycle(inference_var)));
        }
        // If assigning var to var - making sure assigning to the lower id for proper canonization.
        if let TypeLongId::Var(other) = ty.lookup_intern(self.db) {
            if other.inference_id == self.inference_id && other.id.0 > var.id.0 {
                let var_ty = TypeLongId::Var(var).intern(self.db);
                self.type_assignment.insert(other.id, var_ty);
                return Ok(var_ty);
            }
        }
        self.type_assignment.insert(var.id, ty);
        Ok(ty)
    }

    /// Assigns a value to a [ConstVar]. Return the assigned const, or an error.
    /// Assumes the variable is not already assigned.
    fn assign_const(&mut self, var: ConstVar, id: ConstValueId) -> InferenceResult<ConstValueId> {
        if var.inference_id != self.inference_id {
            return Err(self.set_error(InferenceError::ConstKindMismatch {
                const0: ConstValue::Var(var, TypeId::missing(self.db, skip_diagnostic()))
                    .intern(self.db),
                const1: id,
            }));
        }

        self.const_assignment.insert(var.id, id);
        Ok(id)
    }

    /// Computes the solution set for an impl variable with a recursive query.
    fn impl_var_solution_set(
        &mut self,
        var: LocalImplVarId,
    ) -> InferenceResult<SolutionSet<ImplId>> {
        let impl_var = self.impl_var(var).clone();
        // Update the concrete trait of the impl var.
        let concrete_trait_id = self.rewrite(impl_var.concrete_trait_id).no_err();
        self.impl_vars[impl_var.id.0].concrete_trait_id = concrete_trait_id;

        let solution_set = self.trait_solution_set(concrete_trait_id, impl_var.lookup_context)?;
        Ok(match solution_set {
            SolutionSet::None => SolutionSet::None,
            SolutionSet::Unique((canonical_impl, canonicalizer)) => {
                SolutionSet::Unique(canonical_impl.embed(self, &canonicalizer))
            }
            SolutionSet::Ambiguous(ambiguity) => SolutionSet::Ambiguous(ambiguity),
        })
    }

    /// Computes the solution set for a trait with a recursive query.
    pub fn trait_solution_set(
        &mut self,
        concrete_trait_id: ConcreteTraitId,
        mut lookup_context: ImplLookupContext,
    ) -> InferenceResult<SolutionSet<(CanonicalImpl, CanonicalMapping)>> {
        // TODO(spapini): This is done twice. Consider doing it only here.
        let concrete_trait_id = self.rewrite(concrete_trait_id).no_err();
        enrich_lookup_context(self.db, concrete_trait_id, &mut lookup_context);

        // Don't try to resolve impls if the first generic param is a variable.
        let generic_args = concrete_trait_id.generic_args(self.db);
        match generic_args.first() {
            Some(GenericArgumentId::Type(ty)) => {
                if let TypeLongId::Var(_) = ty.lookup_intern(self.db) {
                    // Don't try to infer such impls.
                    return Ok(SolutionSet::Ambiguous(Ambiguity::WillNotInfer(concrete_trait_id)));
                }
            }
            Some(GenericArgumentId::Impl(imp)) => {
                // Don't try to infer such impls.
                if let ImplLongId::ImplVar(_) = imp.lookup_intern(self.db) {
                    return Ok(SolutionSet::Ambiguous(Ambiguity::WillNotInfer(concrete_trait_id)));
                }
            }
            Some(GenericArgumentId::Constant(const_value)) => {
                if let ConstValue::Var(_, _) = const_value.lookup_intern(self.db) {
                    // Don't try to infer such impls.
                    return Ok(SolutionSet::Ambiguous(Ambiguity::WillNotInfer(concrete_trait_id)));
                }
            }
            _ => {}
        };

        let (canonical_trait, canonicalizer) =
            CanonicalTrait::canonicalize(self.db, self.inference_id, concrete_trait_id);
        let solution_set = match self.db.canonic_trait_solutions(canonical_trait, lookup_context) {
            Ok(solution_set) => solution_set,
            Err(err) => return Err(self.set_error(err)),
        };
        match solution_set {
            SolutionSet::None => Ok(SolutionSet::None),
            SolutionSet::Unique(canonical_impl) => {
                Ok(SolutionSet::Unique((canonical_impl, canonicalizer)))
            }
            SolutionSet::Ambiguous(ambiguity) => Ok(SolutionSet::Ambiguous(ambiguity)),
        }
    }

    /// Validate that the given impl is valid based on its negative impls arguments.
    /// Returns `SolutionSet::Unique(canonical_impl)` if the impl is valid and
    /// SolutionSet::Ambiguous(...) otherwise.
    fn validate_neg_impls(
        &mut self,
        lookup_context: &ImplLookupContext,
        canonical_impl: CanonicalImpl,
    ) -> InferenceResult<SolutionSet<CanonicalImpl>> {
        let ImplLongId::Concrete(concrete_impl) = canonical_impl.0.lookup_intern(self.db) else {
            return Ok(SolutionSet::Unique(canonical_impl));
        };
        let mut rewriter = SubstitutionRewriter {
            db: self.db,
            substitution: &concrete_impl
                .substitution(self.db)
                .map_err(|diag_added| self.set_error(InferenceError::Reported(diag_added)))?,
        };

        for garg in self
            .db
            .impl_def_generic_params(concrete_impl.impl_def_id(self.db))
            .map_err(|diag_added| self.set_error(InferenceError::Reported(diag_added)))?
        {
            let GenericParam::NegImpl(neg_impl) = garg else {
                continue;
            };

            let concrete_trait_id = rewriter
                .rewrite(neg_impl)
                .map_err(|diag_added| self.set_error(InferenceError::Reported(diag_added)))?
                .concrete_trait
                .map_err(|diag_added| self.set_error(InferenceError::Reported(diag_added)))?;
            for garg in concrete_trait_id.generic_args(self.db) {
                let GenericArgumentId::Type(ty) = garg else {
                    continue;
                };

                // If the negative impl has a generic argument that is not fully
                // concrete we can't tell if we should rule out the candidate impl.
                // For example if we have -TypeEqual<S, T> we can't tell if S and
                // T are going to be assigned the same concrete type.
                // We return `SolutionSet::Ambiguous` here to indicate that more
                // information is needed.
                if !ty.is_fully_concrete(self.db) {
                    // TODO(ilya): Try to detect the ambiguity earlier in the
                    // inference process.
                    return Ok(SolutionSet::Ambiguous(
                        Ambiguity::NegativeImplWithUnresolvedGenericArgs {
                            impl_id: ImplLongId::Concrete(concrete_impl).intern(self.db),
                            ty,
                        },
                    ));
                }
            }

            if !matches!(
                self.trait_solution_set(concrete_trait_id, lookup_context.clone())?,
                SolutionSet::None
            ) {
                // If a negative impl has an impl, then we should skip it.
                return Ok(SolutionSet::None);
            }
        }

        Ok(SolutionSet::Unique(canonical_impl))
    }

    // Error handling methods
    // ======================

    /// Sets an error in the inference state.
    /// Does nothing if an error is already set.
    /// Returns an `ErrorSet` that can be used in reporting the error.
    pub fn set_error(&mut self, err: InferenceError) -> ErrorSet {
        if self.error_status.is_err() {
            return ErrorSet;
        }
        self.error_status = if let InferenceError::Reported(diag_added) = err {
            self.consumed_error = Some(diag_added);
            Err(InferenceErrorStatus::Consumed)
        } else {
            self.error = Some(err);
            Err(InferenceErrorStatus::Pending)
        };
        ErrorSet
    }

    /// Returns whether an error is set (either pending or consumed).
    pub fn is_error_set(&self) -> InferenceResult<()> {
        if self.error_status.is_err() { Err(ErrorSet) } else { Ok(()) }
    }

    /// Consumes the error but doesn't report it. If there is no error, or the error is consumed,
    /// returns None. This should be used with caution. Always prefer to use
    /// (1) `report_on_pending_error` if possible, or (2) `consume_reported_error` which is safer.
    ///
    /// Gets an `ErrorSet` to "enforce" it is only called when an error is set.
    pub fn consume_error_without_reporting(&mut self, err_set: ErrorSet) -> Option<InferenceError> {
        self.consume_error_inner(err_set, skip_diagnostic())
    }

    /// Consumes the error that is already reported. If there is no error, or the error is consumed,
    /// does nothing. This should be used with caution. Always prefer to use
    /// `report_on_pending_error` if possible.
    ///
    /// Gets an `ErrorSet` to "enforce" it is only called when an error is set.
    /// Gets an `DiagnosticAdded` to "enforce" it is only called when a diagnostic was reported.
    pub fn consume_reported_error(&mut self, err_set: ErrorSet, diag_added: DiagnosticAdded) {
        self.consume_error_inner(err_set, diag_added);
    }

    /// Consumes the error and returns it, but doesn't report it. If there is no error, or the error
    /// is already consumed, returns None. This should be used with caution. Always prefer to use
    /// `report_on_pending_error` if possible.
    ///
    /// Gets an `ErrorSet` to "enforce" it is only called when an error is set.
    /// Gets an `DiagnosticAdded` to "enforce" it is only called when a diagnostic was reported.
    fn consume_error_inner(
        &mut self,
        _err_set: ErrorSet,
        diag_added: DiagnosticAdded,
    ) -> Option<InferenceError> {
        if self.error_status != Err(InferenceErrorStatus::Pending) {
            return None;
            // panic!("consume_error when there is no pending error");
        }
        self.error_status = Err(InferenceErrorStatus::Consumed);
        self.consumed_error = Some(diag_added);
        mem::take(&mut self.error)
    }

    /// Consumes the pending error, if any, and reports it.
    /// Should only be called when an error is set, otherwise it panics.
    /// Gets an `ErrorSet` to "enforce" it is only called when an error is set.
    /// If an error was set but it's already consumed, it doesn't report it again but returns the
    /// stored `DiagnosticAdded`.
    pub fn report_on_pending_error(
        &mut self,
        _err_set: ErrorSet,
        diagnostics: &mut SemanticDiagnostics,
        stable_ptr: SyntaxStablePtrId,
    ) -> DiagnosticAdded {
        let Err(state_error) = self.error_status else {
            panic!("report_on_pending_error should be called only on error");
        };
        match state_error {
            InferenceErrorStatus::Consumed => self
                .consumed_error
                .expect("consumed_error is not set although error_status is Err(Consumed)"),
            InferenceErrorStatus::Pending => {
                let diag_added = match mem::take(&mut self.error)
                    .expect("error is not set although error_status is Err(Pending)")
                {
                    InferenceError::TypeNotInferred(_) if diagnostics.error_count > 0 => {
                        // If we have other diagnostics, there is no need to TypeNotInferred.

                        // Note that `diagnostics` is not empty, so it is safe to return
                        // 'DiagnosticAdded' here.
                        skip_diagnostic()
                    }
                    diag => diag.report(diagnostics, stable_ptr),
                };

                self.error_status = Err(InferenceErrorStatus::Consumed);
                self.consumed_error = Some(diag_added);
                diag_added
            }
        }
    }

    /// If the current status is of a pending error, reports an alternative diagnostic, by calling
    /// `report`, and consumes the error. Otherwise, does nothing.
    pub fn report_modified_if_pending(
        &mut self,
        err_set: ErrorSet,
        report: impl FnOnce() -> DiagnosticAdded,
    ) {
        if self.error_status == Err(InferenceErrorStatus::Pending) {
            self.consume_reported_error(err_set, report());
        }
    }
}

impl<'a> HasDb<&'a dyn SemanticGroup> for Inference<'a> {
    fn get_db(&self) -> &'a dyn SemanticGroup {
        self.db
    }
}
add_basic_rewrites!(<'a>, Inference<'a>, NoError, @exclude TypeLongId TypeId ImplLongId ConstValue);
add_expr_rewrites!(<'a>, Inference<'a>, NoError, @exclude);
add_rewrite!(<'a>, Inference<'a>, NoError, Ambiguity);
impl<'a> SemanticRewriter<TypeId, NoError> for Inference<'a> {
    fn internal_rewrite(&mut self, value: &mut TypeId) -> Result<RewriteResult, NoError> {
        if value.is_var_free(self.db) {
            return Ok(RewriteResult::NoChange);
        }
        value.default_rewrite(self)
    }
}
impl<'a> SemanticRewriter<TypeLongId, NoError> for Inference<'a> {
    fn internal_rewrite(&mut self, value: &mut TypeLongId) -> Result<RewriteResult, NoError> {
        match value {
            TypeLongId::Var(var) => {
                if let Some(type_id) = self.type_assignment.get(&var.id) {
                    let mut long_type_id = type_id.lookup_intern(self.db);
                    if let RewriteResult::Modified = self.internal_rewrite(&mut long_type_id)? {
                        *self.type_assignment.get_mut(&var.id).unwrap() =
                            long_type_id.clone().intern(self.db);
                    }
                    *value = long_type_id;
                    return Ok(RewriteResult::Modified);
                }
            }
            TypeLongId::ImplType(impl_type_id) => {
                if let Some(type_id) = self.impl_type_bounds.get(impl_type_id) {
                    *value = type_id.lookup_intern(self.db);
                    self.internal_rewrite(value)?;
                    return Ok(RewriteResult::Modified);
                }
                let impl_type_id_rewrite_result = self.internal_rewrite(impl_type_id)?;
                let impl_id = impl_type_id.impl_id();
                let trait_ty = impl_type_id.ty();
                return Ok(match impl_id.lookup_intern(self.db) {
                    ImplLongId::GenericParameter(_) | ImplLongId::TraitImpl(_) => {
                        impl_type_id_rewrite_result
                    }
                    ImplLongId::ImplImpl(impl_impl) => {
                        // The grand parent impl must be var free since we are rewriting the parent,
                        // and the parent is not var.
                        assert!(impl_impl.impl_id().is_var_free(self.db));
                        impl_type_id_rewrite_result
                    }
                    ImplLongId::Concrete(_) => {
                        if let Ok(ty) = self.db.impl_type_concrete_implized(ImplTypeId::new(
                            impl_id, trait_ty, self.db,
                        )) {
                            *value = self.rewrite(ty).no_err().lookup_intern(self.db);
                            RewriteResult::Modified
                        } else {
                            impl_type_id_rewrite_result
                        }
                    }
                    ImplLongId::ImplVar(var) => {
                        *value = self.rewritten_impl_type(var, trait_ty).lookup_intern(self.db);
                        return Ok(RewriteResult::Modified);
                    }
                    ImplLongId::GeneratedImpl(generated) => {
                        *value = self
                            .rewrite(
                                *generated
                                    .lookup_intern(self.db)
                                    .impl_items
                                    .0
                                    .get(&impl_type_id.ty())
                                    .unwrap(),
                            )
                            .no_err()
                            .lookup_intern(self.db);
                        RewriteResult::Modified
                    }
                });
            }
            _ => {}
        }
        value.default_rewrite(self)
    }
}
impl<'a> SemanticRewriter<ConstValue, NoError> for Inference<'a> {
    fn internal_rewrite(&mut self, value: &mut ConstValue) -> Result<RewriteResult, NoError> {
        match value {
            ConstValue::Var(var, _) => {
                return Ok(if let Some(const_value_id) = self.const_assignment.get(&var.id) {
                    let mut const_value = const_value_id.lookup_intern(self.db);
                    if let RewriteResult::Modified = self.internal_rewrite(&mut const_value)? {
                        *self.const_assignment.get_mut(&var.id).unwrap() =
                            const_value.clone().intern(self.db);
                    }
                    *value = const_value;
                    RewriteResult::Modified
                } else {
                    RewriteResult::NoChange
                });
            }
            ConstValue::ImplConstant(impl_constant_id) => {
                let impl_constant_id_rewrite_result = self.internal_rewrite(impl_constant_id)?;
                let impl_id = impl_constant_id.impl_id();
                let trait_constant = impl_constant_id.trait_constant_id();
                return Ok(match impl_id.lookup_intern(self.db) {
                    ImplLongId::GenericParameter(_)
                    | ImplLongId::TraitImpl(_)
                    | ImplLongId::GeneratedImpl(_) => impl_constant_id_rewrite_result,
                    ImplLongId::ImplImpl(impl_impl) => {
                        // The grand parent impl must be var free since we are rewriting the parent,
                        // and the parent is not var.
                        assert!(impl_impl.impl_id().is_var_free(self.db));
                        impl_constant_id_rewrite_result
                    }
                    ImplLongId::Concrete(_) => {
                        if let Ok(constant) = self.db.impl_constant_concrete_implized_value(
                            ImplConstantId::new(impl_id, trait_constant, self.db),
                        ) {
                            *value = self.rewrite(constant).no_err().lookup_intern(self.db);
                            RewriteResult::Modified
                        } else {
                            impl_constant_id_rewrite_result
                        }
                    }
                    ImplLongId::ImplVar(var) => {
                        *value = self
                            .rewritten_impl_constant(var, trait_constant)
                            .lookup_intern(self.db);
                        return Ok(RewriteResult::Modified);
                    }
                });
            }
            _ => {}
        }
        value.default_rewrite(self)
    }
}
impl<'a> SemanticRewriter<ImplLongId, NoError> for Inference<'a> {
    fn internal_rewrite(&mut self, value: &mut ImplLongId) -> Result<RewriteResult, NoError> {
        match value {
            ImplLongId::ImplVar(var) => {
                // Relax the candidates.
                let impl_var_id = var.lookup_intern(self.db).id;
                if let Some(impl_id) = self.impl_assignment(impl_var_id) {
                    let mut long_impl_id = impl_id.lookup_intern(self.db);
                    if let RewriteResult::Modified = self.internal_rewrite(&mut long_impl_id)? {
                        *self.impl_assignment.get_mut(&impl_var_id).unwrap() =
                            long_impl_id.clone().intern(self.db);
                    }
                    *value = long_impl_id;
                    return Ok(RewriteResult::Modified);
                }
            }
            ImplLongId::ImplImpl(impl_impl_id) => {
                let impl_impl_id_rewrite_result = self.internal_rewrite(impl_impl_id)?;
                let impl_id = impl_impl_id.impl_id();
                let trait_impl = impl_impl_id.trait_impl_id();
                return Ok(match impl_id.lookup_intern(self.db) {
                    ImplLongId::GenericParameter(_)
                    | ImplLongId::TraitImpl(_)
                    | ImplLongId::GeneratedImpl(_) => impl_impl_id_rewrite_result,
                    ImplLongId::ImplImpl(impl_impl) => {
                        // The grand parent impl must be var free since we are rewriting the parent,
                        // and the parent is not var.
                        assert!(impl_impl.impl_id().is_var_free(self.db));
                        impl_impl_id_rewrite_result
                    }
                    ImplLongId::Concrete(_) => {
                        if let Ok(ty) = self.db.impl_impl_concrete_implized(ImplImplId::new(
                            impl_id, trait_impl, self.db,
                        )) {
                            *value = self.rewrite(ty).no_err().lookup_intern(self.db);
                            RewriteResult::Modified
                        } else {
                            impl_impl_id_rewrite_result
                        }
                    }
                    ImplLongId::ImplVar(var) => {
                        *value = self.rewritten_impl_impl(var, trait_impl).lookup_intern(self.db);
                        return Ok(RewriteResult::Modified);
                    }
                });
            }

            _ => {}
        }
        if value.is_var_free(self.db) {
            return Ok(RewriteResult::NoChange);
        }
        value.default_rewrite(self)
    }
}

struct InferenceIdReplacer<'a> {
    db: &'a dyn SemanticGroup,
    from_inference_id: InferenceId,
    to_inference_id: InferenceId,
}
impl<'a> InferenceIdReplacer<'a> {
    fn new(
        db: &'a dyn SemanticGroup,
        from_inference_id: InferenceId,
        to_inference_id: InferenceId,
    ) -> Self {
        Self { db, from_inference_id, to_inference_id }
    }
}
impl<'a> HasDb<&'a dyn SemanticGroup> for InferenceIdReplacer<'a> {
    fn get_db(&self) -> &'a dyn SemanticGroup {
        self.db
    }
}
add_basic_rewrites!(<'a>, InferenceIdReplacer<'a>, NoError, @exclude InferenceId);
add_expr_rewrites!(<'a>, InferenceIdReplacer<'a>, NoError, @exclude);
add_rewrite!(<'a>, InferenceIdReplacer<'a>, NoError, Ambiguity);
impl<'a> SemanticRewriter<InferenceId, NoError> for InferenceIdReplacer<'a> {
    fn internal_rewrite(&mut self, value: &mut InferenceId) -> Result<RewriteResult, NoError> {
        if value == &self.from_inference_id {
            *value = self.to_inference_id;
            Ok(RewriteResult::Modified)
        } else {
            Ok(RewriteResult::NoChange)
        }
    }
}