1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
use std::collections::HashMap;

use cairo_lang_casm::ap_change::ApplyApChange;
use cairo_lang_casm::cell_expression::CellExpression;
use cairo_lang_casm::operand::{CellRef, DerefOrImmediate, Register};
use cairo_lang_sierra::extensions::felt::FeltBinaryOperator;
use cairo_lang_sierra::ids::{ConcreteTypeId, VarId};
use cairo_lang_sierra::program::Function;
use thiserror::Error;
use {cairo_lang_casm, cairo_lang_sierra};

use crate::invocations::InvocationError;
use crate::type_sizes::TypeSizeMap;

#[derive(Error, Debug, Eq, PartialEq)]
pub enum ReferencesError {
    #[error("Invalid function declaration.")]
    InvalidFunctionDeclaration(Function),
    #[error(
        "One of the arguments does not match the expected type of the libfunc or return statement."
    )]
    InvalidReferenceTypeForArgument,
}

pub type StatementRefs = HashMap<VarId, ReferenceValue>;

/// A Sierra reference to a value.
/// Corresponds to an argument or return value of a Sierra statement.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct ReferenceValue {
    pub expression: ReferenceExpression,
    pub ty: ConcreteTypeId,
}

#[derive(Clone, Debug, Eq, PartialEq)]
pub struct BinOpExpression {
    pub op: FeltBinaryOperator,
    pub a: CellRef,
    pub b: DerefOrImmediate,
}
impl ApplyApChange for BinOpExpression {
    fn apply_known_ap_change(self, ap_change: usize) -> Option<Self> {
        Some(BinOpExpression {
            op: self.op,
            a: self.a.apply_known_ap_change(ap_change)?,
            b: self.b.apply_known_ap_change(ap_change)?,
        })
    }

    fn can_apply_unknown(&self) -> bool {
        self.a.can_apply_unknown() && self.b.can_apply_unknown()
    }
}

/// A collection of Cell Expression which represents one logical object.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct ReferenceExpression {
    pub cells: Vec<CellExpression>,
}

impl ReferenceExpression {
    /// Builds a reference expression containing only a single cell
    pub fn from_cell(cell_expr: CellExpression) -> Self {
        Self { cells: vec![cell_expr] }
    }

    /// If returns the cells as an array of the requested size if the size is correct.
    pub fn try_unpack<const SIZE: usize>(
        &self,
    ) -> Result<&[CellExpression; SIZE], InvocationError> {
        <&[CellExpression; SIZE]>::try_from(&self.cells[..])
            .map_err(|_| InvocationError::InvalidReferenceExpressionForArgument)
    }

    /// If there is only one cell in the ReferenceExpression returns the contained CellExpression.
    pub fn try_unpack_single(&self) -> Result<&CellExpression, InvocationError> {
        Ok(&self.try_unpack::<1>()?[0])
    }
}

impl ApplyApChange for ReferenceExpression {
    fn apply_known_ap_change(self, ap_change: usize) -> Option<Self> {
        Some(ReferenceExpression {
            cells: self
                .cells
                .into_iter()
                .map(|cell_expr| cell_expr.apply_known_ap_change(ap_change))
                .collect::<Option<Vec<_>>>()?,
        })
    }

    fn can_apply_unknown(&self) -> bool {
        self.cells.iter().all(|cell| cell.can_apply_unknown())
    }
}

/// Builds the HashMap of references to the arguments of a function.
pub fn build_function_arguments_refs(
    func: &Function,
    type_sizes: &TypeSizeMap,
) -> Result<StatementRefs, ReferencesError> {
    let mut refs = HashMap::with_capacity(func.params.len());
    let mut offset = -3_i16;
    for param in func.params.iter().rev() {
        let size = type_sizes
            .get(&param.ty)
            .ok_or_else(|| ReferencesError::InvalidFunctionDeclaration(func.clone()))?;
        if refs
            .insert(
                param.id.clone(),
                ReferenceValue {
                    expression: ReferenceExpression {
                        cells: ((offset - size + 1)..(offset + 1))
                            .map(|i| {
                                CellExpression::Deref(CellRef { register: Register::FP, offset: i })
                            })
                            .collect(),
                    },
                    ty: param.ty.clone(),
                },
            )
            .is_some()
        {
            return Err(ReferencesError::InvalidFunctionDeclaration(func.clone()));
        }
        offset -= size;
    }
    Ok(refs)
}

/// Checks that the list of references contains types matching the given types.
pub fn check_types_match(
    refs: &[ReferenceValue],
    types: &[ConcreteTypeId],
) -> Result<(), ReferencesError> {
    if itertools::equal(types.iter(), refs.iter().map(|r| &r.ty)) {
        Ok(())
    } else {
        Err(ReferencesError::InvalidReferenceTypeForArgument)
    }
}