1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
use std::fmt::Display;

use cairo_lang_casm::assembler::AssembledCairoProgram;
use cairo_lang_casm::instructions::{Instruction, InstructionBody, RetInstruction};
use cairo_lang_sierra::extensions::core::{CoreConcreteLibfunc, CoreLibfunc, CoreType};
use cairo_lang_sierra::extensions::lib_func::SierraApChange;
use cairo_lang_sierra::extensions::ConcreteLibfunc;
use cairo_lang_sierra::ids::{ConcreteTypeId, VarId};
use cairo_lang_sierra::program::{
    BranchTarget, GenericArg, Invocation, Program, Statement, StatementIdx,
};
use cairo_lang_sierra::program_registry::{ProgramRegistry, ProgramRegistryError};
use cairo_lang_sierra_type_size::get_type_size_map;
use cairo_lang_utils::ordered_hash_map::OrderedHashMap;
use cairo_lang_utils::ordered_hash_set::OrderedHashSet;
use itertools::{chain, zip_eq};
use num_bigint::BigInt;
use thiserror::Error;

use crate::annotations::{AnnotationError, ProgramAnnotations, StatementAnnotations};
use crate::invocations::{
    check_references_on_stack, compile_invocation, InvocationError, ProgramInfo,
};
use crate::metadata::Metadata;
use crate::references::{check_types_match, ReferencesError};
use crate::relocations::{relocate_instructions, CodeOffset, RelocationEntry};

#[cfg(test)]
#[path = "compiler_test.rs"]
mod test;

#[derive(Error, Debug, Eq, PartialEq)]
pub enum CompilationError {
    #[error("Failed building type information")]
    FailedBuildingTypeInformation,
    #[error("Error from program registry: {0}")]
    ProgramRegistryError(Box<ProgramRegistryError>),
    #[error(transparent)]
    AnnotationError(#[from] AnnotationError),
    #[error("#{statement_idx}: {error}")]
    InvocationError { statement_idx: StatementIdx, error: InvocationError },
    #[error("#{statement_idx}: Return arguments are not on the stack.")]
    ReturnArgumentsNotOnStack { statement_idx: StatementIdx },
    #[error("#{statement_idx}: {error}")]
    ReferencesError { statement_idx: StatementIdx, error: ReferencesError },
    #[error("#{statement_idx}: Invocation mismatched to libfunc")]
    LibfuncInvocationMismatch { statement_idx: StatementIdx },
    #[error("{var_id} is dangling at #{statement_idx}.")]
    DanglingReferences { statement_idx: StatementIdx, var_id: VarId },
    #[error("#{source_statement_idx}->#{destination_statement_idx}: Expected branch align")]
    ExpectedBranchAlign {
        source_statement_idx: StatementIdx,
        destination_statement_idx: StatementIdx,
    },
    #[error("Const data does not match the declared const type.")]
    ConstDataMismatch,
    #[error("Unsupported const type.")]
    UnsupportedConstType,
}

/// The casm program representation.
#[derive(Debug, Eq, PartialEq, Clone)]
pub struct CairoProgram {
    pub instructions: Vec<Instruction>,
    pub debug_info: CairoProgramDebugInfo,
    pub const_segment_info: ConstSegmentInfo,
}
impl Display for CairoProgram {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        if std::env::var("PRINT_CASM_BYTECODE_OFFSETS").is_ok() {
            let mut bytecode_offset = 0;
            for instruction in &self.instructions {
                writeln!(f, "{instruction}; // {bytecode_offset}")?;
                bytecode_offset += instruction.body.op_size();
            }
            for const_allocation in self.const_segment_info.const_allocations.values() {
                writeln!(f, "ret; // {bytecode_offset}")?;
                bytecode_offset += 1;
                for value in &const_allocation.values {
                    writeln!(f, "dw {value}; // {bytecode_offset}")?;
                }
                bytecode_offset += 1;
            }
        } else {
            for instruction in &self.instructions {
                writeln!(f, "{instruction};")?;
            }
            for const_allocation in self.const_segment_info.const_allocations.values() {
                writeln!(f, "ret;")?;
                for value in &const_allocation.values {
                    writeln!(f, "dw {value};")?;
                }
            }
        }
        Ok(())
    }
}

impl CairoProgram {
    /// Creates an assembled representation of the program.
    pub fn assemble(&self) -> AssembledCairoProgram {
        self.assemble_ex(&[], &[])
    }

    /// Creates an assembled representation of the program preceded by `header` and followed by
    /// `footer`.
    pub fn assemble_ex(
        &self,
        header: &[Instruction],
        footer: &[Instruction],
    ) -> AssembledCairoProgram {
        let mut bytecode = vec![];
        let mut hints = vec![];
        for instruction in chain!(header, &self.instructions) {
            if !instruction.hints.is_empty() {
                hints.push((bytecode.len(), instruction.hints.clone()))
            }
            bytecode.extend(instruction.assemble().encode().into_iter())
        }
        let [ref ret_bytecode] = Instruction::new(InstructionBody::Ret(RetInstruction {}), false)
            .assemble()
            .encode()[..]
        else {
            panic!("Ret instruction is a single word")
        };
        for const_allocation in self.const_segment_info.const_allocations.values() {
            bytecode.push(ret_bytecode.clone());
            bytecode.extend(const_allocation.values.clone());
        }
        for instruction in footer {
            assert!(
                instruction.hints.is_empty(),
                "All footer instructions must have no hints since these cannot be added to the \
                 hints dict."
            );
            bytecode.extend(instruction.assemble().encode().into_iter())
        }
        AssembledCairoProgram { bytecode, hints }
    }
}

/// The debug information of a compilation from Sierra to casm.
#[derive(Debug, Eq, PartialEq, Copy, Clone)]
pub struct SierraStatementDebugInfo {
    /// The offset of the sierra statement within the bytecode.
    pub code_offset: usize,
    /// The index of the sierra statement in the instructions vector.
    pub instruction_idx: usize,
}

/// The debug information of a compilation from Sierra to casm.
#[derive(Debug, Eq, PartialEq, Clone)]
pub struct CairoProgramDebugInfo {
    /// The debug information per Sierra statement.
    pub sierra_statement_info: Vec<SierraStatementDebugInfo>,
}

/// A builder for the const segment information.
#[derive(Debug, Default)]
pub struct ConstSegmentInfoBuilder {
    used_const_types: OrderedHashSet<ConcreteTypeId>,
}

impl ConstSegmentInfoBuilder {
    /// Inserts a const type into the builder, to be added to the const segment.
    pub fn insert(&mut self, const_type: &ConcreteTypeId) {
        self.used_const_types.insert(const_type.clone());
    }
    /// Builds the const segment information.
    pub fn build(
        self,
        registry: &ProgramRegistry<CoreType, CoreLibfunc>,
    ) -> Result<ConstSegmentInfo, CompilationError> {
        let mut const_allocations = OrderedHashMap::default();
        let mut const_segment_size = 0;
        for const_type in self.used_const_types {
            let const_allocation = ConstAllocation {
                offset: const_segment_size,
                values: extract_const_value(registry, &const_type).unwrap(),
            };
            const_segment_size += const_allocation.values.len() + 1;
            const_allocations.insert(const_type.clone(), const_allocation);
        }
        Ok(ConstSegmentInfo { const_allocations, const_segment_size })
    }
}

/// The data of a single const in the const segment.
#[derive(Debug, Eq, PartialEq, Default, Clone)]
pub struct ConstAllocation {
    /// The offset of the const within the constants segment.
    pub offset: CodeOffset,
    /// The values to be stored in the const segment.
    pub values: Vec<BigInt>,
}

/// The information about the constants used in the program.
#[derive(Debug, Eq, PartialEq, Default, Clone)]
pub struct ConstSegmentInfo {
    /// A map between the const type and the data of the const.
    pub const_allocations: OrderedHashMap<ConcreteTypeId, ConstAllocation>,
    /// The size of the constants segment.
    pub const_segment_size: usize,
}

/// Gets a concrete type, if it is a const type returns a vector of the values to be stored in the
/// const segment.
fn extract_const_value(
    registry: &ProgramRegistry<CoreType, CoreLibfunc>,
    ty: &ConcreteTypeId,
) -> Result<Vec<BigInt>, CompilationError> {
    let mut values = Vec::new();
    let mut types_stack = vec![ty.clone()];
    while let Some(ty) = types_stack.pop() {
        let const_type =
            if let cairo_lang_sierra::extensions::core::CoreTypeConcrete::Const(const_type) =
                registry.get_type(&ty).unwrap()
            {
                const_type
            } else {
                return Err(CompilationError::UnsupportedConstType);
            };
        let inner_type = registry.get_type(&const_type.inner_ty).unwrap();
        match inner_type {
            cairo_lang_sierra::extensions::core::CoreTypeConcrete::Struct(_) => {
                // Add the struct members types to the stack.
                for arg in const_type.inner_data.iter().rev() {
                    match arg {
                        GenericArg::Type(arg_ty) => types_stack.push(arg_ty.clone()),
                        _ => return Err(CompilationError::ConstDataMismatch),
                    }
                }
            }
            cairo_lang_sierra::extensions::core::CoreTypeConcrete::Enum(_) => {
                // The first argument is the variant selector, the second is the variant data.
                match const_type.inner_data.as_slice() {
                    [GenericArg::Value(selector), GenericArg::Type(ty)] => {
                        values.push(selector.clone());
                        types_stack.push(ty.clone());
                    }
                    _ => return Err(CompilationError::ConstDataMismatch),
                }
            }
            _ => values.extend(
                const_type
                    .inner_data
                    .iter()
                    .map(|arg| match arg {
                        GenericArg::Value(value) => Ok(value.clone()),
                        _ => Err(CompilationError::ConstDataMismatch),
                    })
                    .collect::<Result<Vec<BigInt>, CompilationError>>()?,
            ),
        };
    }
    Ok(values)
}

/// Ensure the basic structure of the invocation is the same as the library function.
pub fn check_basic_structure(
    statement_idx: StatementIdx,
    invocation: &Invocation,
    libfunc: &CoreConcreteLibfunc,
) -> Result<(), CompilationError> {
    if invocation.args.len() != libfunc.param_signatures().len()
        || !itertools::equal(
            invocation.branches.iter().map(|branch| branch.results.len()),
            libfunc.output_types().iter().map(|types| types.len()),
        )
        || match libfunc.fallthrough() {
            Some(expected_fallthrough) => {
                invocation.branches[expected_fallthrough].target != BranchTarget::Fallthrough
            }
            None => false,
        }
    {
        Err(CompilationError::LibfuncInvocationMismatch { statement_idx })
    } else {
        Ok(())
    }
}

pub fn compile(
    program: &Program,
    metadata: &Metadata,
    gas_usage_check: bool,
) -> Result<CairoProgram, Box<CompilationError>> {
    let mut instructions = Vec::new();
    let mut relocations: Vec<RelocationEntry> = Vec::new();
    // Maps statement_idx to program_offset. The last value (for statement_idx=number-of-statements)
    // contains the final offset (the size of the program code segment).
    let mut statement_offsets = Vec::with_capacity(program.statements.len());
    let mut statement_indices = Vec::with_capacity(program.statements.len());

    let registry = ProgramRegistry::<CoreType, CoreLibfunc>::new_with_ap_change(
        program,
        metadata.ap_change_info.function_ap_change.clone(),
    )
    .map_err(CompilationError::ProgramRegistryError)?;
    let mut const_segment_info_builder = ConstSegmentInfoBuilder::default();
    let type_sizes = get_type_size_map(program, &registry)
        .ok_or(CompilationError::FailedBuildingTypeInformation)?;
    let mut program_annotations = ProgramAnnotations::create(
        program.statements.len(),
        &program.funcs,
        metadata,
        gas_usage_check,
        &type_sizes,
    )
    .map_err(|err| Box::new(err.into()))?;

    let mut program_offset: usize = 0;

    for (statement_id, statement) in program.statements.iter().enumerate() {
        let statement_idx = StatementIdx(statement_id);
        statement_indices.push(instructions.len());
        statement_offsets.push(program_offset);
        match statement {
            Statement::Return(ref_ids) => {
                let (annotations, return_refs) = program_annotations
                    .get_annotations_after_take_args(statement_idx, ref_ids.iter())
                    .map_err(|err| Box::new(err.into()))?;
                return_refs.iter().for_each(|r| r.validate(&type_sizes));

                if let Some(var_id) = annotations.refs.keys().next() {
                    return Err(Box::new(CompilationError::DanglingReferences {
                        statement_idx,
                        var_id: var_id.clone(),
                    }));
                };

                program_annotations
                    .validate_final_annotations(
                        statement_idx,
                        &annotations,
                        &program.funcs,
                        metadata,
                        &return_refs,
                    )
                    .map_err(|err| Box::new(err.into()))?;
                check_references_on_stack(&return_refs).map_err(|error| match error {
                    InvocationError::InvalidReferenceExpressionForArgument => {
                        CompilationError::ReturnArgumentsNotOnStack { statement_idx }
                    }
                    _ => CompilationError::InvocationError { statement_idx, error },
                })?;

                let ret_instruction = RetInstruction {};
                program_offset += ret_instruction.op_size();
                instructions.push(Instruction::new(InstructionBody::Ret(ret_instruction), false));
            }
            Statement::Invocation(invocation) => {
                let (annotations, invoke_refs) = program_annotations
                    .get_annotations_after_take_args(statement_idx, invocation.args.iter())
                    .map_err(|err| Box::new(err.into()))?;

                let libfunc = registry
                    .get_libfunc(&invocation.libfunc_id)
                    .map_err(CompilationError::ProgramRegistryError)?;
                check_basic_structure(statement_idx, invocation, libfunc)?;

                let param_types: Vec<_> = libfunc
                    .param_signatures()
                    .iter()
                    .map(|param_signature| param_signature.ty.clone())
                    .collect();
                check_types_match(&invoke_refs, &param_types).map_err(|error| {
                    Box::new(AnnotationError::ReferencesError { statement_idx, error }.into())
                })?;
                invoke_refs.iter().for_each(|r| r.validate(&type_sizes));
                let compiled_invocation = compile_invocation(
                    ProgramInfo { metadata, type_sizes: &type_sizes },
                    invocation,
                    libfunc,
                    statement_idx,
                    &invoke_refs,
                    annotations.environment,
                    &mut const_segment_info_builder,
                )
                .map_err(|error| CompilationError::InvocationError { statement_idx, error })?;

                for instruction in &compiled_invocation.instructions {
                    program_offset += instruction.body.op_size();
                }

                for entry in compiled_invocation.relocations {
                    relocations.push(RelocationEntry {
                        instruction_idx: instructions.len() + entry.instruction_idx,
                        relocation: entry.relocation,
                    });
                }
                instructions.extend(compiled_invocation.instructions);

                let updated_annotations = StatementAnnotations {
                    environment: compiled_invocation.environment,
                    ..annotations
                };

                let branching_libfunc = compiled_invocation.results.len() > 1;

                for (branch_info, branch_changes) in
                    zip_eq(&invocation.branches, compiled_invocation.results)
                {
                    let destination_statement_idx = statement_idx.next(&branch_info.target);
                    if branching_libfunc
                        && !is_branch_align(
                            &registry,
                            &program.statements[destination_statement_idx.0],
                        )?
                    {
                        return Err(Box::new(CompilationError::ExpectedBranchAlign {
                            source_statement_idx: statement_idx,
                            destination_statement_idx,
                        }));
                    }

                    program_annotations
                        .propagate_annotations(
                            statement_idx,
                            destination_statement_idx,
                            &updated_annotations,
                            branch_info,
                            branch_changes,
                            branching_libfunc,
                        )
                        .map_err(|err| Box::new(err.into()))?;
                }
            }
        }
    }
    // Push the final offset and index at the end of the vectors.
    statement_indices.push(instructions.len());
    statement_offsets.push(program_offset);
    let const_segment_info = const_segment_info_builder.build(&registry)?;
    relocate_instructions(&relocations, &statement_offsets, &const_segment_info, &mut instructions);

    Ok(CairoProgram {
        instructions,
        const_segment_info,
        debug_info: CairoProgramDebugInfo {
            sierra_statement_info: zip_eq(statement_offsets, statement_indices)
                .map(|(code_offset, instruction_idx)| SierraStatementDebugInfo {
                    code_offset,
                    instruction_idx,
                })
                .collect(),
        },
    })
}

/// Returns true if `statement` is an invocation of the branch_align libfunc.
fn is_branch_align(
    registry: &ProgramRegistry<CoreType, CoreLibfunc>,
    statement: &Statement,
) -> Result<bool, CompilationError> {
    if let Statement::Invocation(invocation) = statement {
        let libfunc = registry
            .get_libfunc(&invocation.libfunc_id)
            .map_err(CompilationError::ProgramRegistryError)?;
        if let [branch_signature] = libfunc.branch_signatures() {
            if branch_signature.ap_change == SierraApChange::BranchAlign {
                return Ok(true);
            }
        }
    }

    Ok(false)
}