cairo_lang_sierra_to_casm/
compiler.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
use std::fmt::Display;

use cairo_lang_casm::assembler::AssembledCairoProgram;
use cairo_lang_casm::instructions::{Instruction, InstructionBody, RetInstruction};
use cairo_lang_sierra::extensions::ConcreteLibfunc;
use cairo_lang_sierra::extensions::circuit::{CircuitConcreteLibfunc, CircuitInfo, VALUE_SIZE};
use cairo_lang_sierra::extensions::const_type::ConstConcreteLibfunc;
use cairo_lang_sierra::extensions::core::{
    CoreConcreteLibfunc, CoreLibfunc, CoreType, CoreTypeConcrete,
};
use cairo_lang_sierra::extensions::coupon::CouponConcreteLibfunc;
use cairo_lang_sierra::extensions::gas::GasConcreteLibfunc;
use cairo_lang_sierra::extensions::lib_func::SierraApChange;
use cairo_lang_sierra::ids::{ConcreteLibfuncId, ConcreteTypeId, VarId};
use cairo_lang_sierra::program::{
    BranchTarget, GenericArg, Invocation, Program, Statement, StatementIdx,
};
use cairo_lang_sierra::program_registry::{ProgramRegistry, ProgramRegistryError};
use cairo_lang_sierra_type_size::{TypeSizeMap, get_type_size_map};
use cairo_lang_utils::casts::IntoOrPanic;
use cairo_lang_utils::ordered_hash_map::OrderedHashMap;
use cairo_lang_utils::unordered_hash_map::UnorderedHashMap;
use cairo_lang_utils::unordered_hash_set::UnorderedHashSet;
use itertools::{chain, zip_eq};
use num_bigint::BigInt;
use num_traits::{ToPrimitive, Zero};
use thiserror::Error;

use crate::annotations::{AnnotationError, ProgramAnnotations, StatementAnnotations};
use crate::circuit::CircuitsInfo;
use crate::invocations::enm::get_variant_selector;
use crate::invocations::{
    BranchChanges, InvocationError, ProgramInfo, check_references_on_stack, compile_invocation,
};
use crate::metadata::Metadata;
use crate::references::{ReferenceValue, ReferencesError, check_types_match};
use crate::relocations::{RelocationEntry, relocate_instructions};

#[cfg(test)]
#[path = "compiler_test.rs"]
mod test;

#[derive(Error, Debug, Eq, PartialEq)]
pub enum CompilationError {
    #[error("Failed building type information")]
    FailedBuildingTypeInformation,
    #[error("Error from program registry: {0}")]
    ProgramRegistryError(Box<ProgramRegistryError>),
    #[error(transparent)]
    AnnotationError(#[from] AnnotationError),
    #[error("#{statement_idx}: {error}")]
    InvocationError { statement_idx: StatementIdx, error: InvocationError },
    #[error("#{statement_idx}: Return arguments are not on the stack.")]
    ReturnArgumentsNotOnStack { statement_idx: StatementIdx },
    #[error("#{statement_idx}: {error}")]
    ReferencesError { statement_idx: StatementIdx, error: ReferencesError },
    #[error("#{statement_idx}: Invocation mismatched to libfunc")]
    LibfuncInvocationMismatch { statement_idx: StatementIdx },
    #[error("{var_id} is dangling at #{statement_idx}.")]
    DanglingReferences { statement_idx: StatementIdx, var_id: VarId },
    #[error("#{source_statement_idx}->#{destination_statement_idx}: Expected branch align")]
    ExpectedBranchAlign {
        source_statement_idx: StatementIdx,
        destination_statement_idx: StatementIdx,
    },
    #[error("Const data does not match the declared const type.")]
    ConstDataMismatch,
    #[error("Unsupported const type.")]
    UnsupportedConstType,
    #[error("Unsupported circuit type.")]
    UnsupportedCircuitType,
    #[error("Const segments must appear in ascending order without holes.")]
    ConstSegmentsOutOfOrder,
    #[error("Code size limit exceeded.")]
    CodeSizeLimitExceeded,
    #[error("Unknown function id in metadata.")]
    MetadataUnknownFunctionId,
    #[error("Statement #{0} out of bounds in metadata.")]
    MetadataStatementOutOfBound(StatementIdx),
    #[error("Statement #{0} should not have gas variables.")]
    StatementNotSupportingGasVariables(StatementIdx),
    #[error("Statement #{0} should not have ap-change variables.")]
    StatementNotSupportingApChangeVariables(StatementIdx),
    #[error("Expected all gas variables to be positive.")]
    MetadataNegativeGasVariable,
}

/// Configuration for the Sierra to CASM compilation.
#[derive(Debug, Eq, PartialEq, Clone, Copy)]
pub struct SierraToCasmConfig {
    /// Whether to check the gas usage of the program.
    pub gas_usage_check: bool,
    /// CASM bytecode size limit.
    pub max_bytecode_size: usize,
}

/// The casm program representation.
#[derive(Debug, Eq, PartialEq, Clone)]
pub struct CairoProgram {
    pub instructions: Vec<Instruction>,
    pub debug_info: CairoProgramDebugInfo,
    pub consts_info: ConstsInfo,
}
impl Display for CairoProgram {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        if std::env::var("PRINT_CASM_BYTECODE_OFFSETS").is_ok() {
            let mut bytecode_offset = 0;
            for instruction in &self.instructions {
                writeln!(f, "{instruction}; // {bytecode_offset}")?;
                bytecode_offset += instruction.body.op_size();
            }
            for segment in self.consts_info.segments.values() {
                writeln!(f, "ret; // {bytecode_offset}")?;
                bytecode_offset += 1;
                for value in &segment.values {
                    writeln!(f, "dw {value}; // {bytecode_offset}")?;
                    bytecode_offset += 1;
                }
            }
        } else {
            for instruction in &self.instructions {
                writeln!(f, "{instruction};")?;
            }
            for segment in self.consts_info.segments.values() {
                writeln!(f, "ret;")?;
                for value in &segment.values {
                    writeln!(f, "dw {value};")?;
                }
            }
        }
        Ok(())
    }
}

impl CairoProgram {
    /// Creates an assembled representation of the program.
    pub fn assemble(&self) -> AssembledCairoProgram {
        self.assemble_ex(&[], &[])
    }

    /// Creates an assembled representation of the program preceded by `header` and followed by
    /// `footer`.
    pub fn assemble_ex(
        &self,
        header: &[Instruction],
        footer: &[Instruction],
    ) -> AssembledCairoProgram {
        let mut bytecode = vec![];
        let mut hints = vec![];
        for instruction in chain!(header, &self.instructions) {
            if !instruction.hints.is_empty() {
                hints.push((bytecode.len(), instruction.hints.clone()))
            }
            bytecode.extend(instruction.assemble().encode().into_iter())
        }
        let [ref ret_bytecode] = Instruction::new(InstructionBody::Ret(RetInstruction {}), false)
            .assemble()
            .encode()[..]
        else {
            panic!("`ret` instruction should be a single word.")
        };
        for segment in self.consts_info.segments.values() {
            bytecode.push(ret_bytecode.clone());
            bytecode.extend(segment.values.clone());
        }
        for instruction in footer {
            assert!(
                instruction.hints.is_empty(),
                "All footer instructions must have no hints since these cannot be added to the \
                 hints dict."
            );
            bytecode.extend(instruction.assemble().encode().into_iter())
        }
        AssembledCairoProgram { bytecode, hints }
    }
}

/// The debug information of a compilation from Sierra to casm.
#[derive(Debug, Eq, PartialEq, Clone)]
pub struct SierraStatementDebugInfo {
    /// The start offset of the sierra statement within the bytecode.
    pub start_offset: usize,
    /// The end offset of the sierra statement within the bytecode.
    pub end_offset: usize,
    /// The index of the sierra statement in the instructions vector.
    pub instruction_idx: usize,
    /// Statement-kind-dependent information.
    pub additional_kind_info: StatementKindDebugInfo,
}

/// Additional debug information for a Sierra statement, depending on its kind
/// (invoke/return/dummy).
#[derive(Debug, Eq, PartialEq, Clone)]
pub enum StatementKindDebugInfo {
    Return(ReturnStatementDebugInfo),
    Invoke(InvokeStatementDebugInfo),
}

/// Additional debug information for a return Sierra statement.
#[derive(Debug, Eq, PartialEq, Clone)]
pub struct ReturnStatementDebugInfo {
    /// The references of a Sierra return statement.
    pub ref_values: Vec<ReferenceValue>,
}

/// Additional debug information for an invoke Sierra statement.
#[derive(Debug, Eq, PartialEq, Clone)]
pub struct InvokeStatementDebugInfo {
    /// The result branch changes of a Sierra invoke statement.
    pub result_branch_changes: Vec<BranchChanges>,
    /// The references of a Sierra invoke statement.
    pub ref_values: Vec<ReferenceValue>,
}

/// The debug information of a compilation from Sierra to casm.
#[derive(Debug, Eq, PartialEq, Clone)]
pub struct CairoProgramDebugInfo {
    /// The debug information per Sierra statement.
    pub sierra_statement_info: Vec<SierraStatementDebugInfo>,
}

/// The information about the constants used in the program.
#[derive(Debug, Eq, PartialEq, Default, Clone)]
pub struct ConstsInfo {
    pub segments: OrderedHashMap<u32, ConstSegment>,
    pub total_segments_size: usize,

    /// Maps a circuit to its segment id.
    pub circuit_segments: OrderedHashMap<ConcreteTypeId, u32>,
}
impl ConstsInfo {
    /// Creates a new `ConstSegmentsInfo` from the given libfuncs.
    pub fn new<'a>(
        registry: &ProgramRegistry<CoreType, CoreLibfunc>,
        type_sizes: &TypeSizeMap,
        libfunc_ids: impl Iterator<Item = &'a ConcreteLibfuncId> + Clone,
        circuit_infos: &OrderedHashMap<ConcreteTypeId, CircuitInfo>,
        const_segments_max_size: usize,
    ) -> Result<Self, CompilationError> {
        let mut segments_data_size = 0;

        // A lambda to add a const.
        // Note that `segments` is passed as an argument to avoid taking borrowing it.
        let mut add_const = |segments: &mut OrderedHashMap<u32, ConstSegment>,
                             segment_id,
                             ty,
                             const_data: Vec<BigInt>| {
            let segment: &mut ConstSegment = segments.entry(segment_id).or_default();

            segments_data_size += const_data.len();
            segment.const_offset.insert(ty, segment.values.len());
            segment.values.extend(const_data);
            if segments_data_size + segments.len() > const_segments_max_size {
                return Err(CompilationError::CodeSizeLimitExceeded);
            }
            Ok(())
        };

        let mut segments = OrderedHashMap::default();

        for id in libfunc_ids.clone() {
            if let CoreConcreteLibfunc::Const(ConstConcreteLibfunc::AsBox(as_box)) =
                registry.get_libfunc(id).unwrap()
            {
                add_const(
                    &mut segments,
                    as_box.segment_id,
                    as_box.const_type.clone(),
                    extract_const_value(registry, type_sizes, &as_box.const_type).unwrap(),
                )?;
            }
        }

        // Check that the segments were declared in order and without holes.
        if segments
            .keys()
            .enumerate()
            .any(|(i, segment_id)| i != segment_id.into_or_panic::<usize>())
        {
            return Err(CompilationError::ConstSegmentsOutOfOrder);
        }

        let mut next_segment = segments.len() as u32;
        let mut circuit_segments = OrderedHashMap::default();

        for id in libfunc_ids {
            if let CoreConcreteLibfunc::Circuit(CircuitConcreteLibfunc::GetDescriptor(libfunc)) =
                registry.get_libfunc(id).unwrap()
            {
                let circ_ty = &libfunc.ty;
                let info = circuit_infos.get(circ_ty).unwrap();
                let mut const_value: Vec<BigInt> = vec![];
                let mut push_offset =
                    |offset: usize| const_value.push((offset * VALUE_SIZE).into());
                for gate_offsets in chain!(info.add_offsets.iter(), info.mul_offsets.iter()) {
                    push_offset(gate_offsets.lhs);
                    push_offset(gate_offsets.rhs);
                    push_offset(gate_offsets.output);
                }

                add_const(&mut segments, next_segment, circ_ty.clone(), const_value)?;
                circuit_segments.insert(circ_ty.clone(), next_segment);
                next_segment += 1;
            }
        }

        let mut total_segments_size = 0;
        for (_, segment) in segments.iter_mut() {
            segment.segment_offset = total_segments_size;
            // Add 1 for the `ret` instruction.
            total_segments_size += 1 + segment.values.len();
        }
        Ok(Self { segments, total_segments_size, circuit_segments })
    }
}

/// The data for a single segment.
#[derive(Debug, Eq, PartialEq, Default, Clone)]
pub struct ConstSegment {
    /// The values in the segment.
    pub values: Vec<BigInt>,
    /// The offset of each const within the segment.
    pub const_offset: UnorderedHashMap<ConcreteTypeId, usize>,
    /// The offset of the segment relative to the end of the code segment.
    pub segment_offset: usize,
}

/// Gets a concrete type, if it is a const type returns a vector of the values to be stored in the
/// const segment.
fn extract_const_value(
    registry: &ProgramRegistry<CoreType, CoreLibfunc>,
    type_sizes: &TypeSizeMap,
    ty: &ConcreteTypeId,
) -> Result<Vec<BigInt>, CompilationError> {
    let mut values = Vec::new();
    let mut types_stack = vec![ty.clone()];
    while let Some(ty) = types_stack.pop() {
        let CoreTypeConcrete::Const(const_type) = registry.get_type(&ty).unwrap() else {
            return Err(CompilationError::UnsupportedConstType);
        };
        let inner_type = registry.get_type(&const_type.inner_ty).unwrap();
        match inner_type {
            CoreTypeConcrete::Struct(_) => {
                // Add the struct members' types to the stack in reverse order.
                for arg in const_type.inner_data.iter().rev() {
                    match arg {
                        GenericArg::Type(arg_ty) => types_stack.push(arg_ty.clone()),
                        _ => return Err(CompilationError::ConstDataMismatch),
                    }
                }
            }
            CoreTypeConcrete::Enum(enm) => {
                // The first argument is the variant selector, the second is the variant data.
                match &const_type.inner_data[..] {
                    [GenericArg::Value(variant_index), GenericArg::Type(ty)] => {
                        let variant_index = variant_index.to_usize().unwrap();
                        values.push(
                            get_variant_selector(enm.variants.len(), variant_index).unwrap().into(),
                        );
                        let full_enum_size: usize =
                            type_sizes[&const_type.inner_ty].into_or_panic();
                        let variant_size: usize =
                            type_sizes[&enm.variants[variant_index]].into_or_panic();
                        // Padding with zeros to full enum size.
                        values.extend(itertools::repeat_n(
                            BigInt::zero(),
                            // Subtract 1 due to the variant selector.
                            full_enum_size - variant_size - 1,
                        ));
                        types_stack.push(ty.clone());
                    }
                    _ => return Err(CompilationError::ConstDataMismatch),
                }
            }
            CoreTypeConcrete::NonZero(_) => match &const_type.inner_data[..] {
                [GenericArg::Type(inner)] => {
                    types_stack.push(inner.clone());
                }
                _ => return Err(CompilationError::ConstDataMismatch),
            },
            _ => match &const_type.inner_data[..] {
                [GenericArg::Value(value)] => {
                    values.push(value.clone());
                }
                _ => return Err(CompilationError::ConstDataMismatch),
            },
        };
    }
    Ok(values)
}

/// Ensure the basic structure of the invocation is the same as the library function.
pub fn check_basic_structure(
    statement_idx: StatementIdx,
    invocation: &Invocation,
    libfunc: &CoreConcreteLibfunc,
) -> Result<(), CompilationError> {
    if invocation.args.len() != libfunc.param_signatures().len()
        || !itertools::equal(
            invocation.branches.iter().map(|branch| branch.results.len()),
            libfunc.output_types().iter().map(|types| types.len()),
        )
        || match libfunc.fallthrough() {
            Some(expected_fallthrough) => {
                invocation.branches[expected_fallthrough].target != BranchTarget::Fallthrough
            }
            None => false,
        }
    {
        Err(CompilationError::LibfuncInvocationMismatch { statement_idx })
    } else {
        Ok(())
    }
}

/// Compiles `program` from Sierra to CASM using `metadata` for information regarding AP changes
/// and gas usage, and config additional compilation flavours.
pub fn compile(
    program: &Program,
    metadata: &Metadata,
    config: SierraToCasmConfig,
) -> Result<CairoProgram, Box<CompilationError>> {
    let mut instructions = Vec::new();
    let mut relocations: Vec<RelocationEntry> = Vec::new();

    // Maps statement_idx to its debug info.
    // The last value (for statement_idx=number-of-statements)
    // contains the final offset (the size of the program code segment).
    let mut sierra_statement_info: Vec<SierraStatementDebugInfo> =
        Vec::with_capacity(program.statements.len());

    let registry = ProgramRegistry::<CoreType, CoreLibfunc>::new_with_ap_change(
        program,
        metadata.ap_change_info.function_ap_change.clone(),
    )
    .map_err(CompilationError::ProgramRegistryError)?;
    validate_metadata(program, &registry, metadata)?;
    let type_sizes = get_type_size_map(program, &registry)
        .ok_or(CompilationError::FailedBuildingTypeInformation)?;
    let mut backwards_jump_indices = UnorderedHashSet::<_>::default();
    for (statement_id, statement) in program.statements.iter().enumerate() {
        if let Statement::Invocation(invocation) = statement {
            for branch in &invocation.branches {
                if let BranchTarget::Statement(target) = branch.target {
                    if target.0 < statement_id {
                        backwards_jump_indices.insert(target);
                    }
                }
            }
        }
    }
    let mut program_annotations = ProgramAnnotations::create(
        program.statements.len(),
        backwards_jump_indices,
        &program.funcs,
        metadata,
        config.gas_usage_check,
        &type_sizes,
    )
    .map_err(|err| Box::new(err.into()))?;

    let circuits_info =
        CircuitsInfo::new(&registry, program.type_declarations.iter().map(|td| &td.id))?;

    let mut program_offset: usize = 0;
    for (statement_id, statement) in program.statements.iter().enumerate() {
        let statement_idx = StatementIdx(statement_id);

        if program_offset > config.max_bytecode_size {
            return Err(Box::new(CompilationError::CodeSizeLimitExceeded));
        }
        match statement {
            Statement::Return(ref_ids) => {
                let (annotations, return_refs) = program_annotations
                    .get_annotations_after_take_args(statement_idx, ref_ids.iter())
                    .map_err(|err| Box::new(err.into()))?;
                return_refs.iter().for_each(|r| r.validate(&type_sizes));

                if let Some(var_id) = annotations.refs.keys().next() {
                    return Err(Box::new(CompilationError::DanglingReferences {
                        statement_idx,
                        var_id: var_id.clone(),
                    }));
                };

                program_annotations
                    .validate_final_annotations(
                        statement_idx,
                        &annotations,
                        &program.funcs,
                        metadata,
                        &return_refs,
                    )
                    .map_err(|err| Box::new(err.into()))?;
                check_references_on_stack(&return_refs).map_err(|error| match error {
                    InvocationError::InvalidReferenceExpressionForArgument => {
                        CompilationError::ReturnArgumentsNotOnStack { statement_idx }
                    }
                    _ => CompilationError::InvocationError { statement_idx, error },
                })?;

                let start_offset = program_offset;

                let ret_instruction = RetInstruction {};
                program_offset += ret_instruction.op_size();

                sierra_statement_info.push(SierraStatementDebugInfo {
                    start_offset,
                    end_offset: program_offset,
                    instruction_idx: instructions.len(),
                    additional_kind_info: StatementKindDebugInfo::Return(
                        ReturnStatementDebugInfo { ref_values: return_refs },
                    ),
                });

                instructions.push(Instruction::new(InstructionBody::Ret(ret_instruction), false));
            }
            Statement::Invocation(invocation) => {
                let (annotations, invoke_refs) = program_annotations
                    .get_annotations_after_take_args(statement_idx, invocation.args.iter())
                    .map_err(|err| Box::new(err.into()))?;

                let libfunc = registry
                    .get_libfunc(&invocation.libfunc_id)
                    .map_err(CompilationError::ProgramRegistryError)?;
                check_basic_structure(statement_idx, invocation, libfunc)?;

                let param_types: Vec<_> = libfunc
                    .param_signatures()
                    .iter()
                    .map(|param_signature| param_signature.ty.clone())
                    .collect();
                check_types_match(&invoke_refs, &param_types).map_err(|error| {
                    Box::new(AnnotationError::ReferencesError { statement_idx, error }.into())
                })?;
                invoke_refs.iter().for_each(|r| r.validate(&type_sizes));
                let compiled_invocation = compile_invocation(
                    ProgramInfo {
                        metadata,
                        type_sizes: &type_sizes,
                        circuits_info: &circuits_info,
                        const_data_values: &|ty| {
                            extract_const_value(&registry, &type_sizes, ty).unwrap()
                        },
                    },
                    invocation,
                    libfunc,
                    statement_idx,
                    &invoke_refs,
                    annotations.environment,
                )
                .map_err(|error| CompilationError::InvocationError { statement_idx, error })?;

                let start_offset = program_offset;

                for instruction in &compiled_invocation.instructions {
                    program_offset += instruction.body.op_size();
                }

                sierra_statement_info.push(SierraStatementDebugInfo {
                    start_offset,
                    end_offset: program_offset,
                    instruction_idx: instructions.len(),
                    additional_kind_info: StatementKindDebugInfo::Invoke(
                        InvokeStatementDebugInfo {
                            result_branch_changes: compiled_invocation.results.clone(),
                            ref_values: invoke_refs,
                        },
                    ),
                });

                for entry in compiled_invocation.relocations {
                    relocations.push(RelocationEntry {
                        instruction_idx: instructions.len() + entry.instruction_idx,
                        relocation: entry.relocation,
                    });
                }
                instructions.extend(compiled_invocation.instructions);

                let branching_libfunc = compiled_invocation.results.len() > 1;
                // Using a vector of annotations for the loop allows us to clone the annotations
                // only in the case of more the 1 branch, which is less common.
                let mut all_updated_annotations = vec![StatementAnnotations {
                    environment: compiled_invocation.environment,
                    ..annotations
                }];
                while all_updated_annotations.len() < compiled_invocation.results.len() {
                    all_updated_annotations.push(all_updated_annotations[0].clone());
                }

                for ((branch_info, branch_changes), updated_annotations) in
                    zip_eq(&invocation.branches, compiled_invocation.results)
                        .zip(all_updated_annotations)
                {
                    let destination_statement_idx = statement_idx.next(&branch_info.target);
                    if branching_libfunc
                        && !is_branch_align(
                            &registry,
                            &program.statements[destination_statement_idx.0],
                        )?
                    {
                        return Err(Box::new(CompilationError::ExpectedBranchAlign {
                            source_statement_idx: statement_idx,
                            destination_statement_idx,
                        }));
                    }

                    program_annotations
                        .propagate_annotations(
                            statement_idx,
                            destination_statement_idx,
                            updated_annotations,
                            branch_info,
                            branch_changes,
                            branching_libfunc,
                        )
                        .map_err(|err| Box::new(err.into()))?;
                }
            }
        }
    }

    let statement_offsets: Vec<usize> = std::iter::once(0)
        .chain(sierra_statement_info.iter().map(|s: &SierraStatementDebugInfo| s.end_offset))
        .collect();

    let const_segments_max_size = config
        .max_bytecode_size
        .checked_sub(program_offset)
        .ok_or_else(|| Box::new(CompilationError::CodeSizeLimitExceeded))?;
    let consts_info = ConstsInfo::new(
        &registry,
        &type_sizes,
        program.libfunc_declarations.iter().map(|ld| &ld.id),
        &circuits_info.circuits,
        const_segments_max_size,
    )?;
    relocate_instructions(&relocations, &statement_offsets, &consts_info, &mut instructions);

    Ok(CairoProgram {
        instructions,
        consts_info,
        debug_info: CairoProgramDebugInfo { sierra_statement_info },
    })
}

/// Runs basic validations on the given metadata.
pub fn validate_metadata(
    program: &Program,
    registry: &ProgramRegistry<CoreType, CoreLibfunc>,
    metadata: &Metadata,
) -> Result<(), CompilationError> {
    // Function validations.
    for function_id in metadata.ap_change_info.function_ap_change.keys() {
        registry
            .get_function(function_id)
            .map_err(|_| CompilationError::MetadataUnknownFunctionId)?;
    }
    for (function_id, costs) in metadata.gas_info.function_costs.iter() {
        registry
            .get_function(function_id)
            .map_err(|_| CompilationError::MetadataUnknownFunctionId)?;
        for (_token_type, value) in costs.iter() {
            if *value < 0 {
                return Err(CompilationError::MetadataNegativeGasVariable);
            }
        }
    }

    // Get the libfunc for the given statement index, or an error.
    let get_libfunc = |idx: &StatementIdx| -> Result<&CoreConcreteLibfunc, CompilationError> {
        if let Statement::Invocation(invocation) =
            program.get_statement(idx).ok_or(CompilationError::MetadataStatementOutOfBound(*idx))?
        {
            registry
                .get_libfunc(&invocation.libfunc_id)
                .map_err(CompilationError::ProgramRegistryError)
        } else {
            Err(CompilationError::StatementNotSupportingApChangeVariables(*idx))
        }
    };

    // Statement validations.
    for idx in metadata.ap_change_info.variable_values.keys() {
        if !matches!(get_libfunc(idx)?, CoreConcreteLibfunc::BranchAlign(_)) {
            return Err(CompilationError::StatementNotSupportingApChangeVariables(*idx));
        }
    }
    for ((idx, _token), value) in metadata.gas_info.variable_values.iter() {
        if *value < 0 {
            return Err(CompilationError::MetadataNegativeGasVariable);
        }
        if !matches!(
            get_libfunc(idx)?,
            CoreConcreteLibfunc::BranchAlign(_)
                | CoreConcreteLibfunc::Coupon(CouponConcreteLibfunc::Refund(_))
                | CoreConcreteLibfunc::Gas(
                    GasConcreteLibfunc::WithdrawGas(_)
                        | GasConcreteLibfunc::BuiltinWithdrawGas(_)
                        | GasConcreteLibfunc::RedepositGas(_)
                )
        ) {
            return Err(CompilationError::StatementNotSupportingGasVariables(*idx));
        }
    }
    Ok(())
}

/// Returns true if `statement` is an invocation of the branch_align libfunc.
fn is_branch_align(
    registry: &ProgramRegistry<CoreType, CoreLibfunc>,
    statement: &Statement,
) -> Result<bool, CompilationError> {
    if let Statement::Invocation(invocation) = statement {
        let libfunc = registry
            .get_libfunc(&invocation.libfunc_id)
            .map_err(CompilationError::ProgramRegistryError)?;
        if let [branch_signature] = libfunc.branch_signatures() {
            if branch_signature.ap_change == SierraApChange::BranchAlign {
                return Ok(true);
            }
        }
    }

    Ok(false)
}