1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
use std::collections::hash_map::Entry;
use std::collections::HashMap;
use std::sync::Arc;
use std::vec;

use cairo_lang_filesystem::span::TextOffset;

use crate::node::db::SyntaxGroup;
use crate::node::ids::GreenId;
use crate::node::key_fields::get_key_fields;
use crate::node::kind::SyntaxKind;
use crate::node::stable_ptr::SyntaxStablePtr;
use crate::node::{SyntaxNode, SyntaxNodeInner};

pub struct SyntaxNodeChildIterator<'db> {
    db: &'db dyn SyntaxGroup,
    node: SyntaxNode,
    green_iterator: vec::IntoIter<GreenId>,
    /// The current offset in the source file of the start of the child.
    offset: TextOffset,
    /// Mapping from (kind, key_fields) to the number of times this indexing pair has been seen.
    /// This is used to maintain the correct index for creating each StablePtr.
    /// See [`get_key_fields`].
    key_map: HashMap<(SyntaxKind, Vec<GreenId>), usize>,
}

impl<'db> Iterator for SyntaxNodeChildIterator<'db> {
    type Item = SyntaxNode;

    fn next(&mut self) -> Option<Self::Item> {
        let green_id = self.green_iterator.next()?;
        self.next_inner(green_id)
    }
}

impl<'db> DoubleEndedIterator for SyntaxNodeChildIterator<'db> {
    fn next_back(&mut self) -> Option<<SyntaxNodeChildIterator<'db> as Iterator>::Item> {
        let green_id = self.green_iterator.next_back()?;
        self.next_inner(green_id)
    }
}

impl<'db> ExactSizeIterator for SyntaxNodeChildIterator<'db> {
    fn len(&self) -> usize {
        self.green_iterator.len()
    }
}

impl<'db> SyntaxNodeChildIterator<'db> {
    pub(super) fn new(node: &SyntaxNode, db: &'db dyn SyntaxGroup) -> Self {
        SyntaxNodeChildIterator {
            db,
            node: node.clone(),
            green_iterator: node.green_node(db).children().into_iter(),
            offset: node.offset(),
            key_map: HashMap::new(),
        }
    }

    fn next_inner(
        &mut self,
        green_id: GreenId,
    ) -> Option<<SyntaxNodeChildIterator<'db> as Iterator>::Item> {
        let green = self.db.lookup_intern_green(green_id);
        let width = green.width();
        let kind = green.kind;
        let key_fields: Vec<GreenId> = get_key_fields(kind, green.children());
        let index = match self.key_map.entry((kind, key_fields.clone())) {
            Entry::Occupied(mut entry) => entry.insert(entry.get() + 1),
            Entry::Vacant(entry) => {
                entry.insert(1);
                0
            }
        };
        let stable_ptr = self.db.intern_stable_ptr(SyntaxStablePtr::Child {
            parent: self.node.0.stable_ptr,
            kind,
            key_fields,
            index,
        });
        // Create the SyntaxNode view for the child.
        let res = SyntaxNode(Arc::new(SyntaxNodeInner {
            green: green_id,
            offset: self.offset,
            parent: Some(self.node.clone()),
            stable_ptr,
        }));
        self.offset = self.offset.add_width(width);
        Some(res)
    }
}

/// `WalkEvent` describes tree walking process.
#[derive(Debug, Copy, Clone)]
pub enum WalkEvent<T> {
    /// Fired before traversing the node.
    Enter(T),
    /// Fired after the node is traversed.
    Leave(T),
}

impl<T> WalkEvent<T> {
    pub fn map<U>(self, f: impl FnOnce(T) -> U) -> WalkEvent<U> {
        match self {
            WalkEvent::Enter(it) => WalkEvent::Enter(f(it)),
            WalkEvent::Leave(it) => WalkEvent::Leave(f(it)),
        }
    }
}

/// Traverse the subtree rooted at the current node (including the current node) in preorder,
/// excluding tokens.
pub struct Preorder<'a> {
    db: &'a dyn SyntaxGroup,
    // FIXME(mkaput): Is it possible to avoid allocating iterators in layers here?
    //   This code does it because without fast parent & prev/next sibling operations it has to
    //   maintain DFS trace.
    layers: Vec<PreorderLayer<'a>>,
}

struct PreorderLayer<'a> {
    start: SyntaxNode,
    children: Option<SyntaxNodeChildIterator<'a>>,
}

impl<'a> Preorder<'a> {
    pub(super) fn new(start: SyntaxNode, db: &'a dyn SyntaxGroup) -> Self {
        let initial_layer = PreorderLayer::<'a> { start, children: None };

        // NOTE(mkaput): Reserving some capacity should help amortization and thus make this
        // iterator more performant. This wasn't benchmarked though and the capacity is just an
        // educated guess, based on typical depth of syntax files in test suites.
        let mut layers = Vec::with_capacity(32);
        layers.push(initial_layer);

        Self { db, layers }
    }
}

impl<'a> Iterator for Preorder<'a> {
    type Item = WalkEvent<SyntaxNode>;

    fn next(&mut self) -> Option<Self::Item> {
        // Lack of layers to traverse means end of iteration, so early return here.
        //
        // The layer is popped here to gain exclusive ownership of it without taking exclusive
        // ownership of the layers stack.
        let mut layer = self.layers.pop()?;
        match layer.children.take() {
            None => {
                // #1: If children iterator is not initialized, this means entire iteration just
                // started, and the enter event for start node has to be emitted.
                let event = WalkEvent::Enter(layer.start.clone());
                layer.children = Some(layer.start.children(self.db));
                self.layers.push(layer);
                Some(event)
            }
            Some(mut iter) => match iter.next() {
                None => {
                    // #2: If children iterator is exhausted, this means iteration of start node
                    // just finished, and the layer needs to be popped (i.e. not pushed back) and
                    // leave event for this node needs to be emitted.
                    Some(WalkEvent::Leave(layer.start.clone()))
                }
                Some(start) => {
                    // #3: Otherwise the iterator is just in the middle of visiting a child, so push
                    // a new layer to iterate it. To avoid recursion, step #1 is duplicated and
                    // inlined here.
                    let event = WalkEvent::Enter(start.clone());
                    let new_layer =
                        PreorderLayer { children: Some(start.children(self.db)), start };
                    layer.children = Some(iter);
                    self.layers.extend([layer, new_layer]);
                    Some(event)
                }
            },
        }
    }
}