cairo_lang_utils/
unordered_hash_map.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
#[cfg(test)]
#[path = "unordered_hash_map_test.rs"]
mod test;

#[cfg(not(feature = "std"))]
use alloc::vec;
use core::borrow::Borrow;
use core::hash::{BuildHasher, Hash};
use core::ops::Index;
#[cfg(feature = "std")]
use std::collections::HashMap;
#[cfg(feature = "std")]
pub use std::collections::hash_map::Entry;
#[cfg(feature = "std")]
use std::collections::hash_map::OccupiedEntry;
#[cfg(feature = "std")]
use std::collections::hash_map::RandomState;
#[cfg(feature = "std")]
use std::vec;

#[cfg(not(feature = "std"))]
use hashbrown::HashMap;
#[cfg(not(feature = "std"))]
pub use hashbrown::hash_map::Entry;
use itertools::Itertools;

/// A hash map that does not care about the order of insertion.
///
/// In particular, it does not support iterating, in order to guarantee deterministic compilation.
/// It does support aggregation which can be used in intermediate computations (see `aggregate_by`).
/// For an iterable version see [OrderedHashMap](crate::ordered_hash_map::OrderedHashMap).
#[cfg(feature = "std")]
#[derive(Clone, Debug)]
pub struct UnorderedHashMap<Key, Value, BH = RandomState>(HashMap<Key, Value, BH>);
#[cfg(not(feature = "std"))]
#[derive(Clone, Debug)]
pub struct UnorderedHashMap<Key, Value, BH = hashbrown::hash_map::DefaultHashBuilder>(
    HashMap<Key, Value, BH>,
);

impl<Key, Value, BH> UnorderedHashMap<Key, Value, BH> {
    fn with_hasher(hash_builder: BH) -> Self {
        Self(HashMap::<Key, Value, BH>::with_hasher(hash_builder))
    }
}

impl<Key, Value, BH> PartialEq for UnorderedHashMap<Key, Value, BH>
where
    Key: Eq + Hash,
    Value: PartialEq,
    BH: BuildHasher,
{
    fn eq(&self, other: &Self) -> bool {
        self.0 == other.0
    }
}

impl<Key, Value, BH> Eq for UnorderedHashMap<Key, Value, BH>
where
    Key: Eq + Hash,
    Value: Eq,
    BH: BuildHasher,
{
}

impl<Key, Value, BH> UnorderedHashMap<Key, Value, BH> {
    /// Returns the number of elements in the map.
    pub fn len(&self) -> usize {
        self.0.len()
    }

    /// Returns true if the map contains no elements.
    pub fn is_empty(&self) -> bool {
        self.0.is_empty()
    }
}

impl<Key: Eq + Hash, Value, BH: BuildHasher> UnorderedHashMap<Key, Value, BH> {
    /// Returns a reference to the value corresponding to the key.
    ///
    /// The key may be any borrowed form of the map's key type, but [`Hash`] and [`Eq`] on the
    /// borrowed form *must* match those for the key type.
    pub fn get<Q>(&self, key: &Q) -> Option<&Value>
    where
        Key: Borrow<Q>,
        Q: Hash + Eq + ?Sized,
    {
        self.0.get(key)
    }

    /// Returns a mutable reference to the value corresponding to the key.
    ///
    /// The key may be any borrowed form of the map's key type, but [`Hash`] and [`Eq`] on the
    /// borrowed form *must* match those for the key type.
    pub fn get_mut<Q>(&mut self, key: &Q) -> Option<&mut Value>
    where
        Key: Borrow<Q>,
        Q: Hash + Eq + ?Sized,
    {
        self.0.get_mut(key)
    }

    /// Inserts a key-value pair into the map.
    ///
    /// If the map did not have this key present, None is returned.
    ///
    /// If the map did have this key present, the value is updated, and the old value is returned.
    /// The key is not updated, though; this matters for types that can be == without being
    /// identical.
    pub fn insert(&mut self, key: Key, value: Value) -> Option<Value> {
        self.0.insert(key, value)
    }

    /// Removes a key from the map, returning the value at the key if the key was previously in the
    /// map.
    ///
    /// The key may be any borrowed form of the map's key type, but Hash and Eq on the borrowed form
    /// must match those for the key type.
    pub fn remove<Q>(&mut self, key: &Q) -> Option<Value>
    where
        Key: Borrow<Q>,
        Q: Hash + Eq + ?Sized,
    {
        self.0.remove(key)
    }

    #[cfg(feature = "std")]
    /// Gets the given key's corresponding entry in the map for in-place manipulation.
    pub fn entry(&mut self, key: Key) -> Entry<'_, Key, Value> {
        self.0.entry(key)
    }

    #[cfg(not(feature = "std"))]
    /// Gets the given key's corresponding entry in the map for in-place manipulation.
    pub fn entry(&mut self, key: Key) -> Entry<'_, Key, Value, BH> {
        self.0.entry(key)
    }

    /// Returns true if the map contains a value for the specified key.
    pub fn contains_key<Q>(&self, key: &Q) -> bool
    where
        Q: ?Sized,
        Key: Borrow<Q>,
        Q: Hash + Eq,
    {
        self.0.contains_key(key)
    }

    /// Maps the values of the map to new values using the given function.
    pub fn map<TargetValue>(
        &self,
        mapper: impl Fn(&Value) -> TargetValue,
    ) -> UnorderedHashMap<Key, TargetValue, BH>
    where
        Key: Clone,
        BH: Clone,
    {
        self.0.iter().fold(
            UnorderedHashMap::<_, _, _>::with_hasher(self.0.hasher().clone()),
            |mut acc, (key, value)| {
                match acc.entry(key.clone()) {
                    Entry::Occupied(_) => {
                        unreachable!("The original map should not contain duplicate keys.");
                    }
                    Entry::Vacant(vacant) => {
                        vacant.insert(mapper(value));
                    }
                };
                acc
            },
        )
    }

    /// Aggregates values of the map using the given functions.
    /// `mapping_function` maps each key to a new key, possibly mapping multiple original keys to
    /// the same target key.
    /// `reduce_function` dictates how to aggregate any two values of the same target key.
    /// `default_value` is the initial value for each target key.
    /// Note! as the map is unordered, `reduce_function` should be commutative. Otherwise, the
    /// result is undefined (nondeterministic).
    pub fn aggregate_by<TargetKey: Eq + Hash, TargetValue>(
        &self,
        mapping_function: impl Fn(&Key) -> TargetKey,
        reduce_function: impl Fn(&TargetValue, &Value) -> TargetValue,
        default_value: &TargetValue,
    ) -> UnorderedHashMap<TargetKey, TargetValue, BH>
    where
        BH: Clone,
    {
        self.0.iter().fold(
            UnorderedHashMap::<_, _, _>::with_hasher(self.0.hasher().clone()),
            |mut acc, (key, value)| {
                let target_key = mapping_function(key);
                match acc.entry(target_key) {
                    Entry::Occupied(occupied) => {
                        let old_target_value = occupied.into_mut();
                        let new_target_value = reduce_function(old_target_value, value);
                        *old_target_value = new_target_value;
                    }
                    Entry::Vacant(vacant) => {
                        let new_value = reduce_function(default_value, value);
                        vacant.insert(new_value);
                    }
                };
                acc
            },
        )
    }

    /// Iterates the map in an ascending order applied by the `Ord` implementation of `Key`.
    /// NOTE! To guarantee a deterministic output, the `Ord` implementation must apply a strict
    /// ordering. That is, `a <= b` and `b <= a`, then `a == b`. If `Ord` is derived (in all
    /// hierarchy levels), this is probably the case. If the ordering is not strict, the order of
    /// the output OrderedHashMap is undefined (nondeterministic).
    /// This can be used to convert an unordered map to an ordered map (mostly when the unordered
    /// map was used for intermediate processing).
    pub fn iter_sorted(&self) -> impl Iterator<Item = (&Key, &Value)>
    where
        Key: Ord,
    {
        self.0.iter().sorted_by_key(|(key, _)| *key)
    }

    /// A consuming version of `iter_sorted`.
    pub fn into_iter_sorted(self) -> impl Iterator<Item = (Key, Value)>
    where
        Key: Ord + Clone,
    {
        self.0.into_iter().sorted_by_key(|(key, _)| (*key).clone())
    }

    /// Iterates the map in an ascending order of the keys produced by the given function `f`.
    /// NOTE! To guarantee a deterministic output, `f`'s implementation must apply a strict
    /// ordering of the (Key, Value) pairs. That is, for any given pair of entries `a=(k_a, v_a)`
    /// and `b=(k_b, v_b)`, if `a <= b` and `b <= a`, then `a == b`. If the ordering is not strict,
    /// the order of the output OrderedHashMap is undefined (nondeterministic).
    /// This can be used to convert an unordered map to an ordered map (mostly when the unordered
    /// map was used for intermediate processing).
    pub fn iter_sorted_by_key<TargetKey, F>(&self, f: F) -> vec::IntoIter<(&Key, &Value)>
    where
        TargetKey: Ord,
        F: FnMut(&(&Key, &Value)) -> TargetKey,
    {
        self.0.iter().sorted_by_key(f)
    }

    /// A consuming version of `iter_sorted_by_key`.
    pub fn into_iter_sorted_by_key<TargetKey, F>(self, f: F) -> vec::IntoIter<(Key, Value)>
    where
        TargetKey: Ord,
        F: FnMut(&(Key, Value)) -> TargetKey,
    {
        self.0.into_iter().sorted_by_key(f)
    }

    /// Creates a new map with only the elements from the original map for which the given predicate
    /// returns `true`. Consuming.
    pub fn filter<P>(self, mut p: P) -> Self
    where
        BH: Default,
        P: FnMut(&Key, &Value) -> bool,
    {
        Self(self.0.into_iter().filter(|(key, value)| p(key, value)).collect())
    }

    /// Non consuming version of `filter`. Only clones the filtered entries. Requires `Key` and
    /// `Value` to implement `Clone`.
    pub fn filter_cloned<P>(&self, mut p: P) -> Self
    where
        BH: Default,
        P: FnMut(&Key, &Value) -> bool,
        Key: Clone,
        Value: Clone,
    {
        Self(
            self.0
                .iter()
                .filter_map(
                    |(key, value)| {
                        if p(key, value) { Some((key.clone(), value.clone())) } else { None }
                    },
                )
                .collect(),
        )
    }

    #[cfg(feature = "std")]
    /// Merges the map with another map. If a key is present in both maps, the given handler
    /// function is used to combine the values.
    pub fn merge<HandleDuplicate>(&mut self, other: &Self, handle_duplicate: HandleDuplicate)
    where
        BH: Clone,
        HandleDuplicate: Fn(OccupiedEntry<'_, Key, Value>, &Value),
        Key: Clone,
        Value: Clone,
    {
        for (key, value) in &other.0 {
            match self.0.entry(key.clone()) {
                Entry::Occupied(e) => {
                    handle_duplicate(e, value);
                }
                Entry::Vacant(e) => {
                    e.insert(value.clone());
                }
            }
        }
    }
}

impl<Key, Q: ?Sized, Value, BH: BuildHasher> Index<&Q> for UnorderedHashMap<Key, Value, BH>
where
    Key: Eq + Hash + Borrow<Q>,
    Q: Eq + Hash,
{
    type Output = Value;

    fn index(&self, key: &Q) -> &Self::Output {
        self.0.index(key)
    }
}

impl<Key, Value, BH: Default> Default for UnorderedHashMap<Key, Value, BH> {
    #[cfg(feature = "std")]
    fn default() -> Self {
        Self(Default::default())
    }
    #[cfg(not(feature = "std"))]
    fn default() -> Self {
        Self(HashMap::with_hasher(Default::default()))
    }
}

impl<Key: Hash + Eq, Value, BH: BuildHasher + Default> FromIterator<(Key, Value)>
    for UnorderedHashMap<Key, Value, BH>
{
    fn from_iter<T: IntoIterator<Item = (Key, Value)>>(iter: T) -> Self {
        Self(iter.into_iter().collect())
    }
}

impl<Key: Hash + Eq, Value, const N: usize, BH: BuildHasher + Default> From<[(Key, Value); N]>
    for UnorderedHashMap<Key, Value, BH>
{
    fn from(items: [(Key, Value); N]) -> Self {
        Self(HashMap::from_iter(items))
    }
}